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Abstract. Automated Theory Formation is a hybrid AI technique
which has been implemented in two scientific discovery systems,
HR1 and HR2, both of which have been used successfully in vari-
ous applications. We describe here the latest iteration in the HR se-
ries, in terms of the lessons learned from the successes and failures
of the previous versions, and how these lessons have informed our
design choices and the implementation details of the new version.
We also present two case studies: a synthetic domain mirroring an
aspect of medical diagnosis, and invariant discovery in formal meth-
ods. In each case, we compare HR3 with HR2 to highlight various
improvements in the new version.

1 Introduction
As argued in [13], while this is a broad categorisation, there have
been two major paradigms in Artificial Intelligence research: prob-
lem solving and artefact generation. In the former, an intelligent task
to automate is interpreted as a series of problems to be solved; in
the latter, an intelligent task is interpreted as a series of artefacts
of value to be generated. As an illustrative example, there are au-
tomated theorem provers which act as decision procedures and say
simply “yes” or “no” to questions about the truth/falsehood of a given
conjecture (problem solving), and there are some which produce
proofs which can be interrogated and understood (artefact genera-
tion). While many systems for scientific discovery have been devel-
oped within the problem solving paradigm, and such applications do
indeed require much problem solving, we believe that scientific hy-
potheses, examples and proofs/evidence are artefacts of value, and
hence the latter paradigm would appear to be a more natural setting.
In the artefact generation paradigm, it is important to write computa-
tional systems that produce rather than solve, and this can mean keep-
ing data that would be discarded in a problem solving setting and/or
searching parts of a space which could be avoided when all that is
required is a single answer. While this has clear computational dis-
advantages, there are advantages to artefact generation approaches,
which we highlight at various stages below.

Firmly within the artefact generation paradigm, we have devel-
oped a series of discovery systems which perform Automated Theory
Formation (ATF), as described in section 1.1 below. Largely applied
to mathematical invention tasks, but also with applications in other
domains, our HR1 and HR2 ATF systems have been used with much
success. However, in recent years, various limitations related to the
design and implementation of HR2 have become apparent. In partic-
ular, the speed at which it operates and its memory consumption have
held it back, and we have been forced to use other systems such as
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the WEKA machine learning suite [15] and the Progol [24] Inductive
Logic Programming (ILP) system for applications where HR2 would
naturally fit, due to the size of the search space encountered.

Given these failures, we have gone back to the drawing board and
built a new version, HR3, from scratch. Memory footprint and search
efficiency have been paramount considerations in the new design. In
addition, in comparing HR2 with other systems, notably ILP imple-
mentations like Progol, as in [5], we have identified the unique as-
pects of the ATF approach, and sought to preserve them in the new
version. The design decisions are described in section 2, and details
of how these have influenced the implementation of HR3 are given
in section 3. We describe a novel way for discarding uninteresting
conjectures through the use of random theories in section 4. In sec-
tions 5 and 6, we present two case studies with a scientific discovery
flavour, to compare and contrast HR3 with its predecessor. We con-
clude in section 7 and discuss some avenues for future development
and deployment of the HR3 software.

1.1 Background

Automated Theory Formation was introduced as a hybrid AI tech-
nique for discovery tasks in [8] and then through a series of imple-
mentations and papers, leading to this one. While ‘Automated The-
ory Formation’ is a rather grandiose and perhaps too generic title
for this approach, we chose it to reflect that everything one would
expect as bare necessities in a mathematical theory (examples, con-
cepts, conjecture, theorems and proofs) are produced with the ATF
approach. To form such theories, the HR2 system starts with minimal
background knowledge as would be given to a machine learning sys-
tem, in Prolog notation, or just the axioms of a mathematical theory
in first order logic. Using a set of production rules, it takes old con-
cepts and generates new ones from them, using logical constructions,
including the usage of universal and existential quantification, com-
position, disjunction, etc., and/or using mathematical constructions,
such as counting, the usage of inequalities and statistical summarisa-
tion methods such as averaging, finding maxima, etc.

The concepts categorise and describe the given examples and the
system can be seen as performing unsupervised learning. From the
concepts, HR2 finds non-existence, implication and equivalence con-
jectures empirically by noticing patterns in the data, e.g., finding that
the success set of one concept is a subset of that of another, which
prompts the formation of an implication conjecture. In this sense, the
system is best described as data mining conjectures, or as a descrip-
tive machine learning system. Finally, when axioms are provided in
the first order logic syntax of a theorem prover such as Otter [21]
or model generator such as MACE [22], then HR2 uses these to at-
tempt to prove the truth of the conjecture, or find a counterexample,



which is added to the theory. The ATF routine is driven by measures
of interestingness [11] which guide a heuristic search by choosing
the next concepts to develop with the production rules, and as such
are somewhat similar to the mode declarations used in ILP systems.

It is beyond the scope of this paper to give full details of the ATF
project, so we highlight the three milestone publications which have
appeared over the last decade. Firstly, in [7], we describe the the-
ory behind ATF and its implementation in the HR1 software, with
applications to mathematical discovery. Secondly, in [12], the HR2
system is projected as an Inductive Logic Programming system, and
a summary of the many applications to which we applied it is given.
Such applications include the reformulation of constraint satisfaction
problems [4], generating novel algebraic classification theorems [28]
and the automatic invention of integer sequences [9]. Thirdly, in [25],
certain more sophisticated approaches to theory formation are pre-
sented, drawing on theories such as Global Workspace Architectures
[1] and Lakatos’s philosophy of mathematics [17].

2 Design Considerations

HR2 employs production rules to turn old concepts into new ones
and empirical conjecture making techniques to find relationships be-
tween the concepts. Used in various modes, it can introduce new
constants produced by third party model generation, constraint solv-
ing and/or computer algebra systems, and new proofs via third party
Automated Theorem Provers (ATPs). The generation of a variety of
types of output, and variety within each type has been a feature of
HR2, and there have been many applications where we had no idea
in advance whether an example, concept, conjecture or proof would
be the most interesting thing about a domain investigated by HR2.
More than any other, this feature has enabled us to present HR2 as a
creative system in a Computational Creativity setting [13], because
of the surprising and high-quality nature of the artefacts produced.
Hence our first main design consideration for HR3 was to maintain
and improve upon this diversity of output artefact. To this end, we
have implemented production rules able to deal with floating point
numbers (which HR2 never did well) and textual data such as tweets,
and to enable HR3 to read input in a variety of formats, including
Prolog and CSV files, ontologies and Java code.

The variety of output is clearly enabled by HR2’s reliance on third
party software. However, the variety of concepts that HR produces is
very much restricted by the requirements that these systems put on
the nature of the concepts that HR2 can produce. In all the applica-
tions with ATPs, for instance, HR2 was only allowed to use its subset
of production rules which generate concepts expressible in first order
logic. While it has been presented as an ILP system in [12], HR2 was
never intended to be dependent on a particular logical formalism. It
achieved this by having two separate processes: one for generating
the data supporting a concept, and another for generating a definition
(or definitions) for a concept. While this has been a little difficult to
maintain, it has allowed us to implement production rules that invent
concepts with only sketchy definitions that a mathematician might
understand – as the definition is not linked to the construction of a
success set for a concept, we have this freedom. This has enabled
us on many occasions to implement bespoke production rules and
concept evaluation techniques, enabling HR2 to be applied to tasks
where a logical representation would impose restrictions. Hence, our
second main design consideration was to maintain this lack of re-
liance on logical formalisms in HR3, and to increase independence
from third party systems which are reliant on first order and other
logics. To this end, we have implemented an approach to redundancy

reduction which removes one reliance on ATP systems, as described
in section 4 and demonstrated in the case studies below.

The majority of HR2’s processing is done to no avail: it produces
concept definitions that no-one ever reads, makes conjectures that
no-one will investigate, calls third party theorem provers and model
generators to determine the truth of conjectures that no-one is inter-
ested in, and constantly checks and discards theory material, which
takes an inordinate amount of time. We found that the extra process-
ing often ground HR2 to a halt, and so we took the decision to imple-
ment an on-demand model for HR3. In particular, at theory forma-
tion time, HR3 performs the barest amount of work in order to form
a theory, and only after, when the user chooses which of the material
to look at, is extra processing performed in order to present the con-
cepts and conjectures in a coherent way. We realised that HR3 does
not need to produce definitions during theory formation, and while it
records information for non-existence and equivalence conjectures, it
doesn’t formulate these explicitly either, nor does it look for implica-
tion conjectures at all. In addition to slowing theory formation down,
the additional material produced added a lot to the memory footprint,
and we would often find that HR2 was pushing memory boundaries
when it started with a large background theory and produced many
concepts and conjectures. For this reason, with HR3, we decided to
keep the memory footprint as low as possible. How this is achieved,
and how the bare details of a theory are expanded on demand are
described in section 3 below.

HR2 has a graphical user interface with more than 300 widgets on
it, which help users to set up the background knowledge and search
and reasoning settings for a session, and to interrogate the results
both during and after theory formation. This has been particularly
difficult to maintain. Moreover, we often found that, after a theory
had been formed, the inspection functionality was not sufficient, as
there was an aspect of the theory that was not accessible, or a calcu-
lation that we didn’t know in advance we wanted to perform. Given
that the theory formation sessions could take many hours, this was of-
ten frustrating. Hence, we implemented text boxes into which users
could write Java code, and then a hand-crafted interpreter would use
this at run-time to generate reports. This was not easy to maintain,
and has been superseded by class-loading technologies in Java.

While we plan to build simple interfaces to HR3, in particular to
enable it to act as a web-service, we have decided that the primary in-
terface will be Java programming. Hence HR3 will be made available
as an API, rather than stand-alone software. This will acknowledge
the fact that the likely power-users of HR3 will be programmers,
while casual users will use the web interface, and is in line with
modern trends in software deployment. However, there is another
important reason to make the primary interface Java code: to recog-
nise and develop HR3 as an automated programming system. We see
software writing software (creatively) as a major future direction in
Computational Creativity research. Moreover, machine learning pro-
grams perform automated programming, which is most obvious in
ILP and evolutionary programming approaches, but true in general.
HR3 is being developed to generalise past the restrictions the ma-
chine learning paradigm imposes via logical and other formalisms
on concept representation, and the tasks systems are applied to. Au-
tomated Theory Formation as per HR3 really involves the production
of (i) sets of algorithmic procedures from which data and definitions
can be generated if needed, (ii) relationships between the processing
done by the procedures on different types of data, and (iii) proofs
(or empirical demonstrations) of the likely truth of the relationships.
Hence, when describing the implementation details below, we often
talk about concepts, constructions and procedures.



3 Implementation Details
As with HR2, we split the timeline for working with HR3 into the-
ory formation time, where it is working uninterrupted on forming
concepts and conjectures, and theory interrogation time, where var-
ious routines are run to generate more information about what has
been produced. Given that the primary interface to HR3 is writing
Java programs, the programmer is at liberty to partially form a the-
ory, then interrogate it, then form more of the theory, perhaps de-
pendent on the results of the intermediate interrogation, etc. HR3
generates and records remarkably little information at theory forma-
tion time, and the information it does keep is very slimline: only lists
of integers. Background constants and predicate names are stored
as strings, but the relationships expressed on the tuples of constants
by the predicates are stored as integer lists. Then, when new a new
concept is added to the theory, HR3 records (i) a list of integers for
each concept, which point to tuples of objects, which are themselves
integer lists pointing to Strings – this acts as the datatable describ-
ing the success set of the concept, and (ii) a set of integer lists for
each concept, representing the different constructions which led to
the datatable of the concept (hence storing information about equiva-
lence conjectures). Whenever a newly formed concept has an empty
set of supporting tuples, the construction leading to this is recorded
as a list of integers, and nothing else. To reduce the memory footprint
and increase processing efficiency, we represent integer lists as TIn-
tArrays from the Trove API for high performance Java collections,
available at: http://trove.starlight-systems.com.

For example, suppose we start with background knowledge about
animals, (a toy dataset that often ships with ILP systems), such as:

animal(dog).animal(herring).integer(0).integer(4).
legs(dog,4).legs(herring,0).milk(dog).

When reading this, HR3 would assign constants dog, herring, 0 and
4 the integers 0, 1, 2 and 3. Then tuples (dog), (herring), (0), (4),
(dog,4), (herring,0), (dog) would be mapped to (0), (1), (2), (3), (0,3),
(1,2), (0), which would in turn be assigned tuple numbers 0, 1, 2, 3,
4, 5 and 0. Finally, the datatable for the concept of ‘animal’ would be
recorded as the list [0,1], as it contains the first and second tuples, the
datatable for ‘integer’ would be [2,3], the datatable for ‘legs’ would
be [4,5] and the datatable for ‘milk’ would be [6].

HR3’s production rules are very similar to those implemented in
HR2. Their main task at theory formation time is to take one or two
datatables of individual concepts and output a new datatable. Storing
datatables for concepts as a list of integers is troublesome for some
production rules, as it requires unpacking and manipulating of the tu-
ples that the integers point to, and then further unpacking the tuples.
However, for some of the most used production rules, this represen-
tation makes processing very efficient. In particular, for the conjunc-
tion production rule, given two old datatables, the new one is simply
the intersection of the two lists of integers. This rule is unique in al-
ways being used in theory formation, and, being a binary production
rule, it is used for the majority of theory formation steps. The disjunc-
tion binary production rule also has a very efficient implementation
which simply finds the union of two lists of integers, and negation
subtracts one list from another, hence is similarly fast. Unlike HR2,
where production rules are applied piecemeal, HR3 applies produc-
tion rules in blocks. This has further efficiency gains, as sub-blocks
of steps can be distributed over multiple threads (see later). Check-
ing whether a newly generated datatable is the same as a previous
one is important, as making equivalence conjectures rather than new
concepts reduces search significantly. We tested various methods for

this, and found that a double-hashing approach, where hashtables are
stored as entries in a hashtable, was the most efficient.

In addition to generating a new datatable for a new concept, each
production rule also generates a list of integers which contains in-
formation about how the datatable was constructed which would be
sufficient to repeat the process. For instance, the conjunction, nega-
tion and disjunction production rules record only the numbers of the
concepts whose datatables were combined. The existential and count
rules record which concept number they were applied to, and the
column in the tuples to which existential quantification and count-
ing was applied respectively. Whenever a newly formed concept is
produced which has the same datatable as a previous concept, the
construction is added to a construction set for the latter. Each con-
struction contains by default a number pointing to the production
rule used, and they can be used for re-building concepts over random
data, as explained in section 4.

At theory interrogation time, prompted by the user, an individ-
ual construction for a concept can be expanded into a set of pro-
cedures which are nested integer lists. For instance, supposing the
conjunction production rule was represented by the number 3, then
the construction [3,17,20] specifies that conjunction was applied to
concepts 17 and 20. We can therefore take any construction from the
construction set of concept 17 and substitute it in this construction,
e.g., [3,[2,14],20], and do likewise for concept 20, producing, for
instance: [3,[2,14],[3,10,11]]. This could be further expanded, con-
tinuing until a cycle occurs or optionally a background concept is
reached, in which case it might be useful to not substitute it with any
of its alternative constructions.

Users can set an expansion depth limit to the number of substitu-
tions that can be made, which limits the number of procedures gen-
erated for any construction. This is done by recording the depth of
expansion and only allowing the first construction for each concept
to be used when the depth limit is passed. Often, the number of dif-
ferent procedures for a concept can be enormous, and this is exacer-
bated when two concepts appear in a conjecture, so a depth limit is
very useful, as we see in the second case study below. We say that
a construction has been expanded to completion when all the proce-
dures have been produced from it, with no depth limit. Each proce-
dure represents fully a different algorithm for manipulating the back-
ground knowledge to produce the data for the concept from which it
was derived. HR3 also uses procedures to generate definitions for a
concept. Working iteratively from the original predicate definitions
given in the background theory, each production rule has bespoke
code able to change the definition(s) that are given to it, with the
input definitions to each production rule dictated by the procedure.

We are embracing parallelism fully in the new version of HR. In
particular, we have implemented a load balancing mechanism where
theory formation steps can be distributed across the available threads
in a machine. We have experimented with two setups for this: (a) a
single theory is maintained and each theory formation thread con-
tributes to this in a synchronised way, or (b) each thread gets a com-
pletely independent copy of the theory, then adds material to this,
which is collated at the end, in a synchronised way. We have found
that method (b) is most effective when the domain is sparse in terms
of the number of different concepts in it. As the threads are indepen-
dent in terms of data, a nearly-linear speed up in run time is achieved.
However, when each thread finds many new concepts, there is a bot-
tleneck at the end with method (b), as concepts from each thread have
to be compared to those from all the other threads in a linear fash-
ion before being added to the theory, to avoid repetitions. In these
circumstances, distribution method (a) can be faster.

http://trove.starlight-systems.com


System Threads Steps Concepts Memory (Gb) Time (ms) Steps/s

HR2 1 1000 248 0.31 3000 333
HR2 1 10000 755 1.13 11000 909
HR2 1 50000 1846 2.56 56000 893
HR2 1 100000 3540 2.73 151000 662
HR3 1 1114 57 0.00 49 48000
HR3 1 2315 210 0.00 57 68000
HR3 1 42074 2875 0.01 152 336000
HR3 1 991143 12230 0.13 485 2043000
HR3 1 75629333 16392 0.05 18413 4107000
HR3 2 75629333 16392 0.33 10008 7556000
HR3 4 75629333 16392 0.60 6519 11601000
HR3 8 75629333 16392 1.66 5549 13693000

Table 1. Efficiency results for HR2 and HR3 on a 2.6Ghz machine.

3.1 An Efficiency Comparison

As mentioned previously, time and memory efficiency was a major
concern with HR2 and we have optimised HR3 to be much bet-
ter in these respects. To compare the systems, we ran both to form
a theory from the animals dataset, using the compose/conjunction,
split/instantiation and negate/negation production rules. For HR2,
we ran it for a particular number of theory formation steps, whereas
we ran HR3 for particular sequences of production rule blocks. We
imposed no constraints on the theory formation in either case, and
told both systems to keep information about all concepts, equiva-
lence conjectures and non-existence conjectures it encountered. For
HR3, we further experimented with 1, 2, 4 and 8 threads employed
during theory formation using thread distribution setup (b) above.
The results of the experiments, where we compared the efficiencies
and memory footprint of HR2 and HR3, are presented in table 1.

Looking at time efficiency, we see that HR2 suffers from a rela-
tively large start-up cost, meaning that it performs at 333 steps per
second at 1,000 steps, performs at best when the session is more sub-
stantial (raising to 909 steps/s), but its performance degrades as the
theory it is dealing with grows in size (reducing to 662 steps/s). At
its fastest (13.6m steps/s), HR3 is 15,000 times faster than HR2 at its
fastest (909 steps/s). This is somewhat misleading, however, as HR3
gained from searching a larger, largely empty space (in terms of new
concepts). Comparing (roughly) like for like in terms of the number
of theory formation steps, we see that, at 1,000 steps, HR3 is around
100 times faster than HR2, while at 10,000 steps, HR3 is around 300
times faster. Note that efficiency gains recorded in the case studies
below are much more modest, largely because of the small theory
formation sessions required to solve the problems in each case. Us-
ing 8 threads, HR3 searches a space of 75.6 million concept construc-
tions in 5.5 seconds. Again, while this is indicative of the raw speed
of HR3, this is somewhat misleading, as in the animals domain, the
concept space is very sparse, hence there was virtually no bottleneck
waiting for each thread to offload its results sequentially.

Regarding memory efficiency, HR2 rapidly consumed gigabytes
of memory, because it was generating information that would never
be seen. In contrast, even with 12,230 concepts, 896,285 equiva-
lences and 82,628 non-existence conjectures stored, HR3 only used
130Mb of memory. Note that we turned off the storing of equiva-
lence and non-existence conjectures for the very large sessions, as
we found that this caused memory issues for HR3. In these large
sessions, we see that copying the theories for the multi-threaded ap-
proach imposed a memory cost, and we plan to look into reducing
the memory footprint in these cases.

4 Tidying Theories using Random Data

A practical reality of working with an ATF system is an overwhelm-
ing volume of examples, concepts and conjectures produced, which
can be so numerous (in the millions) that they have to be carefully
pruned before presentation. HR3 makes three types of conjecture
empirically: (i) @ t s.t. N(t), i.e., non-existence conjectures stating
that, given the semantics of the domain, no tuple of constants t exists
which satisfies the definition of concept N , or equivalently: when
the construction process for concept N is performed, the result is
an empty set, (ii) ∀ t (L(t) → R(t)), i.e., implication conjectures
stating that, given the semantics of the domain, the definition of con-
cept L implies the definition of concept R, or equivalently: when the
construction process for concept L is performed, the resulting set of
tuples is a subset of those acquired when the construction process for
concept R is performed, and (iii) ∀ t (L(t) ↔ R(t)), i.e., equiva-
lence conjectures, explained similarly to implications.

One particularly annoying subset of material that needs to be
found and discarded are tautological conjectures such as ((A∧B)↔
(B∧A)), etc. In HR2, we employed a variety of tactics to avoid out-
putting these kinds of results. These included (i) forbidden paths,
which constrained the concept formation, e.g., HR2 would not in-
vent the concept (B ∧ A) if B appeared later in the theory than A,
hence the above tautology would not happen (ii) in-built reasoning
that worked with the definitions of concepts in conjectures to de-
termine whether they were obviously true, and (iii) appealing to a
third party automated theorem prover to show that a conjecture was
true even without any axioms. Taken together, these approaches were
fairly effective, but by no means perfect; difficult to maintain, as each
new production rule required much additional coding to rule out the
particular forms of tautologies that it introduced; and, above all, very
time consuming. We have opted for a radically different approach
with HR3 which is much faster, more reliable and requires no addi-
tional functionality in the production rules.

At its core, the approach requires the generation of a ran-
dom counterpart to a given background theory. By that, we mean
that the random counterpart has the same number of constants
as the original background theory, the same number of predicates
with the same arities, and the same number of data points sup-
porting each predicate. For instance, in the animals dataset, there
are 18 constants and 13 background concepts represented by 9
unary predicate with 18, 4, 3, 4, 4, 5, 8, 14 and 14 support-
ing singletons respectively, and 4 binary predicates with 18, 18,
18 and 22 supporting pairs of constants. The random counterpart
matches this structure exactly, but fills in the singletons and pairs
with randomly chosen constants. For instance, the data for the
‘class’ predicate, with 18 points such as class(dog, mammal),
class(herring, fish) which reflect reality, would be re-
placed in the random theory with a binary predicate rclass with
18 data points chosen randomly, such as rclass(rconst10,
rconst17), rclass(rconst12, rconst16), etc.

Given a conjecture, C, empirically true of the original data, if C is
a tautology to be removed, this means that the underlying semantics
of the domain don’t have to be taken into account to prove the truth
of C. The constructive analogy is that: no matter what data tuples
are given to begin with, the construction of the concepts related by
the tautology will always lead to that relation being upheld. Random
theories are constructed with only the syntax of the original theory
used, and none of the semantics of the underlying data taken into
account. Hence, a conjecture which is true about the original data can
be tested by constructing the related concepts from the random data



and seeing if the relation still holds. This is enabled by applying the
procedures linked by a conjecture to the random data. If a conjecture
still holds for random data, this will be for one of these reasons:

1. The relationship happened by random chance.

2. The relationship happened as an artefact of the construction pro-
cesses leading to the related concepts, which had nothing to do with
the underlying data.

3. Sparsity of data coupled with the construction processes produc-
ing highly generalised or specialised concepts mean that, while the
conjecture is true of the random data, it is not true in the general case.

4. The relationship happened because the data which would break
this conjecture has not been sampled due to a small random sample
size used in constructing the random theory.

In practice, we generate multiple random theories as above, then
test conjectures against them. If all the random theories support the
conjecture, this provides much evidence that reason 2 above (cor-
responding to the conjecture being tautologous and not interesting)
is correct. Under testing of this approach, we have observed that
by increasing the number of random theories tested, the probabil-
ity of reasons 1, 3 and 4 causing an empirically true relation being
true in a random theory reduces greatly. Intuitively, the random theo-
ries approach asks the user to consider statements like the following:
“The following conjecture was true in your original data, so it might
say something of interest about your domain. However, when tested
against 100 randomly generated theories, this conjecture was shown
to be true in all cases. Do you still think it says something interesting
about your data?” Under normal circumstances, it is highly likely that
the cause of the relationship holding for the random datasets is reason
2 above: independent of any underlying semantics, the constructions
performed by the production rules always relate data thus. We have
found that this method always removes all tautologous conjectures,
as they are always true regardless of the nature of the random theory.

However, in circumstances of sparse data and theory formation
with much generalisation or specialisation, the approach can also re-
move some false positives, i.e., conjectures which are not true in the
general case, are discarded because of reason 3 above. For instance,
consider the conjecture ∀t(A(t) ∧B(t) ∧C(t))↔ (A(t) ∧B(t) ∧
D(t)). Suppose that the number of supporting examples for concepts
A and B was 5 each, out of a total of 20 tuples of the correct type.
Then, if concepts A,B,C and D were constructed randomly, the
likelihood of a tuple t being such that (A(t) ∧ B(t)) is true would
be 0.25 × 0.25 = 0.0625, as the construction of A and B were in-
dependent events. Hence, we can expect only 20 × 0.0625 = 1.25
tuples of the 20 possible to satisfy (A(t) ∧ B(t)). So, we expect at
most 1 tuple, T , to be true of both the left hand and right hand side
of the conjecture, given the constraint of satisfying (A(t) ∧ B(t))
imposed on both sides. Finally, suppose concepts C and D have
10 supporting examples out of the 20 possible. Hence, the likeli-
hood of T supporting the left hand side is 0.5 and supporting the
right hand side is 0.5 also. So, the probability of the conjecture
∀ t (A(t) ∧ B(t) ∧ C(t)) ↔ (A(t) ∧ B(t) ∧ D(t)) being true is
calculated at 2× (0.5× 0.5) = 0.5.

We see that, given the sparsity of data for the domain, this con-
jecture is likely to be true of half the randomly generated theories
it is tested against, while clearly not a tautology. Hence it would
seem unwise to discard it based on the evidence of one random
theory. To mitigate the risk of throwing away non-tautologous con-
jectures, numerous random theories can be generated, and the con-
jecture discarded only if it is true of all of them. However, it is

worth pointing out that the sparsity of data in the random counter-
part theories is inherited from the original data. Hence, the origi-
nal data suffers from the same likelihood of a conjecture being true
purely because the construction process narrows down already sparse
data. As an example from the animals domain, take the conjecture:
legs(a, 0)∧homeothermic(a)↔ covering(a, none)∧milk(a),
which states that all leg-free, warm-blooded animals have no cover-
ing and produce milk (and vice-versa). This may appear interesting,
but it is likely to be very brittle as a general result, given that there
is only one animal in the dataset (the dolphin) for which either the
left-hand or right-hand concept applies. Hence, while this conjecture
is not tautologous, throwing it away because data sparsity led the
random theories approach to suggest it as a tautology, would proba-
bly not be disastrous. In [11], we say that such conjectures have low
applicabilities, which can indicate low interestingness.

We have found the random theories approach to be highly
effective at removing all tautologous implications, equivalences
and non-existence conjectures, while removing relatively few non-
tautologous ones. Hence, when coupled with other filters which look
at the background concepts discussed in a conjecture, we reduced the
volume of uninteresting conjectures shown to users very well. More-
over, even when hundreds of random theories are used, the process is
remarkably fast because it is usually only applied to a small number
of user-chosen conjectures. Note also that the approach is formalism
independent, i.e., we do not need to resort to first order theorem prov-
ing or other techniques which would limit the type of concepts HR3
can produce. Moreover, as it uses only existing ATF techniques, this
method is low maintenance and sustainable as the number of produc-
tion rules in HR3 increases.

Tautologous conjectures are only part of the problem. Another ma-
jor problem is with redundancy in the output conjectures. For in-
stance, if we are presented with the conjecture ∀ t (A(t) → B(t)),
then we do not want to be presented later with the conjecture
∀ t (A(t) ∧ C(t) → B(t)), as this latter one is entailed by the for-
mer. HR2 uses a slow and incomplete forward chaining method to re-
move redundancy, and we have also appealed to third party theorem
provers when the conjectures were expressible in first order logic.
Hence, neither of these approaches was taken forward into HR3, and
we turned again to the idea of using randomly generated theories.

Given a pair of implication conjectures C1 : L1(t) → R1(t) and
C2 : L2(t) → R2(t), as before, we generate a number of random
theories as a test-bed for the hypothesis that C1 entails C2, that is, if
C1 is true, then C2 must be true as well. As C1 comes from an orig-
inal theory, the procedure required to produce concept L1 is known
and can be applied to the random theory. After this, the datatable
for the concept with definition ((L1(t) ∧ R1(t)) ∨ ¬L1(t)) is con-
structed. This is done by HR3 using its own production rules, namely
a conjunction step followed by a negation step and finally a disjunc-
tion step. The tuples in the resulting datatable are those which sup-
port conjecture C1, i.e., they are tuples, t, for which L1(t)→ R1(t)
is true in the random theory. A similar construction of the datatable
for ((L2(t) ∧ R2(t)) ∨ ¬L2(t)) is performed, resulting in a second
set of tuples. If the set of tuples for the first construction is a subset
of those from the second, the most likely reason is that the two are
related by the nature of the production rules. If we use multiple ran-
dom theories as before, the likelihood of this explanation increases.
Hence, we know that any tuple supporting conjecture C1 also sup-
ports C2, and we can infer that C2 is entailed by C1, so C2 can be
discarded without loss of information. We have implemented similar
methods for non-existence and equivalence conjectures, and we use
these to remove conjectures in the second case study below.



System L3A1 L3A2 L3A3 L4A1 L4A2 L4A3 L5A1 L5A2 L5A3 L6A5 L6A6 L6A7 Av.

HR2 1920 (6) 3840 (22) 25960 (56) 1960 (10) 3970 (12) 25030 (37) 2080 (10) 4570 (15) 15090 (29) 29570 (45) 30250 (75) 40880 (75) 15427 (33)
HR3 40 (0) 60 (0) 90 (0) 50 (0) 70 (0) 120 (0) 80 (0) 120 (0) 170 (0) 550 (0) 570 (0) 2180 (0) 342 (0)

Progol 50 (15) 80 (17) 100 (17) 40 (13) 50 (13) 140 (14) 40 (16) 70 (16) 160 (16) 1430 (21) 3990 (25) 4920 (31) 923 (18)

Table 2. Execution times in milliseconds for HR2, HR3 and Progol running on a 3.4Ghz processor, averaged over 100 investigation problems requiring
solutions of the form LXAY (with exactly X literals of arity at most Y). Percentage error rates are given in brackets.

5 Dynamic Investigation Problems

We use the term investigation problem for a type of problem which
models to some extent a generic situation which might arise in, say,
medical diagnosis or the solving of a crime. That is, there are a num-
ber of possible diagnoses/suspects, and the problem is to use the facts
of the case to rank them in order of increasing likelihood of being
the cause of the illness/guilty of the crime (which we call the target
candidate). Such ranking often leads to further medical tests/police
enquiries focusing on the most likely candidates, which will bring
to light further information about the current case. Hence, we use
the term dynamic investigation problem (DIP) to describe a series of
such problems to be solved, as detailed in [26]. Solving each prob-
lem entails using the facts of the case, coupled with prior knowledge
about the domain to narrow down the candidates to just one. Hence,
a natural way to model such problems is as a constraint satisfaction
problem (CSP), with one variable which takes one of n values, each
representing a candidate, and the facts of the case acting as the con-
straints. Solving the case means finding a value to assign to the vari-
able which doesn’t break the constraints.

Often, however, not all the essential information is readily avail-
able, hence these problems are best modeled as partial CSPs. As
such, especially during the early stages of the investigation, there
will be no outright solution, and the constraints in the CSP need to be
used to rank the candidates for further investigation. Additional rele-
vant information can often be found in related past cases, from which
regularities can be observed and utilised, and consultation of previ-
ous case studies is part of the investigation process. To model this,
each investigation problem is given as a pair (C,B), where C is the
CSP expressed as a Prolog program, and B is a Prolog background
knowledge file, as would be found in an ILP application. Solving the
investigation problem involves extracting rules from B which can
be interpreted as extra constraints in C that enable a ranking of the
candidates such that one is ranked higher than all the others.

For our study here, we have focused on the extraction of additional
constraints during the middle of an investigation, i.e., when the con-
straints may not be enough to narrow down the candidates to the tar-
get directly, hence they should be used to rank the candidates in terms
of their likelihood of being the target. One obvious way to do this
ranking is in terms of how many constraints are upheld by each can-
didate. Given this, we see that a larger number of constraints would
make the ranking more fine-grained than a smaller number, and this
would increase the likelihood of one or two candidates being ranked
higher than others. For instance, if there were 10 candidates and only
two constraints found for the case, there would only be three classes
of candidate: those satisfying 0, 1 or 2 constraints, and we would
expect the number of candidates satisfying both constraints (hence
being the most likely at this stage to be the target), to be 3 or 4.
This is because we would expect the 10 candidates to be partitioned
into 3.3 sets of 3. If, however, there were 5 constraints found, then
we would expect the number of most-likely candidates to be 1 or 2,
which would help narrow down further investigations.

We have developed a problem generator that can produce pairs
(C,B) where B embeds a set of constraints, E, as a single clause,
with a given number of literals, L, conjoined in the clause, and a
given maximum arity, A, for the literals. The embedding is such that
the clause is true of each of the target candidates in a number of case
studies, and hence a 100% rule of the form:

target(X)← A1( , . . . , X, . . . , ) ∧ . . . ∧AL( , . . . , X, . . . , )

can be mined from B. Each Ai here is to be interpreted as an
additional constraint on the target candidate X . Note that embed-
ded in B may be other smaller conjunctions of constraints (liter-
als) which are also true of all the targets in the case studies, e.g.,
target(X) ← A1(X, ) ∧ A2( , X) may be true in all the cases,
even though E contains five literals. Given the value of higher num-
bers of constraints, the problem here is to mine the clause which is
true of all targets and contains as many literals as possible.

We produced 100 problems with 12 different pairings of L and A,
as per the header in table 2, and we have used this synthetic dataset to
compare Progol, HR2 and HR3 when mining the target clause from
the background data. For Progol, this is a straight-forward predictive
learning task, where a logic program implying the target literal is to
be learned. For HR2, we formed a theory by exhaustively using only
the exists and compose production rules, and extracted equivalence
conjectures where the left hand side was the target concept. From
those, we chose the one involving the most literals. For HR3, we
exhaustively applied the existential and conjunct production rules to
the data, and similarly extracted equivalence conjectures. For each
concept with data equivalent to the target, the set of definitions for it
were generated via expansion to completion. From the entire set of
definitions, we presented as the solution the one utilising the greatest
number of background concepts (HR3 has no access to information
about literals in logical definitions, etc.)

The results from the 1,200 problems are given in table 2. We see
that both Prolog and HR are very fast, taking less than a second per
problem on average. HR3’s efficiency was improved using a search
reduction technique that avoided conjoining concepts where both
have fewer examples than the target. It also used a random theories
approach to remove any tautologous equivalences, which slightly im-
proved the efficiency in generating the definitions. HR3 performed
the same amount of search (in terms of theory formation steps) as
HR2 did, but was 45 times faster over all the problems, which rises
to 288 times faster for problem set L3A3. The error rate for HR3
is zero, because it was able to expand the definitions of equivalent
concepts to completion. In many cases, the unexpanded definitions
involved fewer than the required number of background concepts,
but because HR3 could use other equivalence conjectures to expand
the definitions of the background concepts, the most specific solution
could be found in each case. HR2 suffered from not having this abil-
ity, resulting in an error rate of 33%. Progol uses an Occam’s Razor
principle based on information content to choose the most general
hypothesis, which meant that in 18% of the problems, it returned a
solution involving fewer background predicates than required.



Setup Conjectures formed and removed Execution times (ms)
System ED NRT Steps Conjs1 Conjs2 Conjs3 H. Remove E. Remove Required ATF Removal Total

HR2 - - 3778 21784 815 363 20969 462 9/9 15990 648205 664255
HR3 1 1 3689 1165 122 74 1043 48 5/9 285 2198 2483
HR3 1 10 3689 1165 119 76 1046 43 5/9 276 3057 3333
HR3 1 100 3689 1165 118 76 1047 42 5/9 280 11429 11709
HR3 2 1 3689 59031 2352 783 56679 1569 9/9 272 38508 38780
HR3 2 10 3689 59031 2145 851 56886 1294 9/9 301 58251 58552
HR3 2 100 3689 59031 2094 913 56937 1181 9/9 273 113275 113548
HR3 2 250 3689 59031 2092 928 56939 1164 9/9 289 184629 184918

Table 3. Mondex results, comparing execution times on a 2.6Ghz processor, and conjectures found by HR2 with those found by different setups of HR3.

6 Invariant Discovery in Formal Methods
Formal methods are mathematically rigorous techniques used in de-
veloping and verifying software intensive systems. They allow the
construction of models using mathematical notation, so developers
can reason about their correctness, but the development of high qual-
ity formal models is time consuming and difficult [29]. Refinement
techniques have been developed to handle the complexity of mod-
elling large systems: starting from an abstract representation, de-
tails are added incrementally towards a more concrete representation
which is closer to implementation. Invariants play an important role
in formal modelling, as they express properties of the system which
must always be true, hence specifying invariants in a model ensures
that certain properties are never violated. Invariants can be used dur-
ing refinement to prove consistency over the behaviours of a concrete
step and the abstract step it refines. Moreover, invariants prevent the
introduction of errors when changes are made to a model; conversely,
their absence increases the possibility of errors being introduced into
a model when the system evolves. Automated invariant discovery is
an area of much interest in formal methods, and many approaches
have been explored, e.g., the Daikon system [14] uses invariant tem-
plates to analyse program execution traces, and Bolton uses the Al-
loy analyser to discover invariants for Z specifications [2]. High-level
patterns of proof have also been effectively used in constraining the
discovery of program invariants [16, 20].

We have used the HR2 system to automatically discover invari-
ants of Event-B models in a refinement step of the Mondex model
developed in [3], as described in [18, 19]. Mondex is a system for
the transfer of money between electronic purses, where each transfer
must follow a protocol ensuring that no money is lost in a transaction,
regardless of its success or failure. For a particular refinement step,
the developers in [3] underwent a manual iterative process of invari-
ant strengthening in the search for the correct invariants to overcome
refinement proof-failures. We simulated this process using three ses-
sions with HR2 to extract invariants in the form of 100% true con-
jectures. The background concepts for HR2 were derived directly
from the state of the model (i.e., sets, constants and variables), and
the examples for each of these concepts were derived from simula-
tion traces. Such simulation allows the analysis of the operation of
a model by observing how its state changes when different scenarios
are explored. As a result, a simulation trace represents a record of the
behaviour of the system at each step of the simulation.

The production rules to use in HR2 were selected with a proof-
failure analysis of the model, and HR2 was run for 1,000 steps to
produce a theory from which various equivalence, non-existence and
implication conjectures were extracted. Details of the proof failure
analysis and how the conjectures were selected are given in [19].
The equivalence and implication invariant candidates were pruned
using a heuristic method to remove any where a literal on the left
hand side also appeared on the right hand side (or vice versa). The

non-existence conjectures were pruned by removing any with a re-
peated literal. Following this, the Prover9 automated theorem prover
[23] was used to remove any conjecture that was entailed by another.
With each resulting conjecture, a formal proof was sought that it ex-
pressed something which was invariant at all stages of processing in
the model. Additional manual heuristics were used to select the final
set of 9 conjectures that represent the invariants.

For our study here, which, unlike in section 5, involves data from
a real-world application, we undertook a version of the experiments
in [19] with both HR2 and HR3, with various considerations to make
a comparison as fair as possible. For HR2, we used the disjunct and
compose production rules, and we used HR3’s counterparts. Rather
than 1,000 steps, we enabled HR2 to run to a complexity limit pro-
ducing all concepts with up to four background concepts combined.
This matched the usage of disjunction once in HR3, followed by con-
junction once. Also, HR2 and HR3 were both setup to remove con-
jectures using the same heuristics, and the stage where Prover9 was
used in the HR2 sessions was replaced by HR3 employing random
theories to remove entailed conjectures. HR3 found all the required
invariants in a single session, whereas HR2 was used in three ses-
sions, and we averaged the statistics for these. We experimented with
different setups for HR3, namely by altering the Expansion depth
(ED) for definitions in conjectures, and the Number of Random The-
ories (NRT) used for pruning entailed conjectures.

The results from the experiments are given in table 3. We first note
that the theory formation session times (ATF) for HR3 are around
57 times faster than for HR2. In addition, the times taken by HR3
to remove entailed conjectures (Removal) are much smaller than the
time spent in the HR2 sessions using Prover9 for the same job. We
note that, if speed is important, the ED=NRT=1 setup for HR3 finds
5 out of 9 of the (Required) invariants in around 2.5 seconds. Here,
however, while it didn’t remove any required invariants, the random
theories approach did remove some conjectures which were not tau-
tologously entailed by others. This number reduces when NRT is
increased: we see in the (E. Remove) column that only 42 entailed
conjectures, as opposed to 48, are removed when 100 random theo-
ries are employed. When definitions are expanded to depth 2, nearly
60,000 raw conjectures are formed (Conjs1), but these are rapidly re-
duced by the heuristic (H. Remove) to around 2,000 (Conjs2), and the
random theories approach reduces this by around half again, to less
than 1,000 (Conjs3). The increase in number of conjectures found by
HR3 over HR2 is due to HR3 unpacking definitions more. As in the
ED=1 cases, as the number of random theories is increased, the num-
ber of entailed conjectures removed reduces. It’s clear that, even with
250 random theories, a number of non-entailed conjectures are being
removed. However, it’s worth re-iterating that the majority of these
will be due to sparsity of data, and likely not particularly interesting.
None of the required invariants were removed, even when only one
random theory was employed (taking 38.8 seconds in total).



7 Conclusions and Future Work

This is the first report about the HR3 software, the latest implemen-
tation taking forward our investigation of Automated Theory Forma-
tion (ATF) as an approach for discovery tasks. ATF is an artefact gen-
eration method where entire theories are formed about a domain and
then investigated for various purposes, rather than a problem solving
approach where a single answer is sought. We provided design con-
siderations based on successes and failures of HR2, and gave some
details about how HR3 generates, stores and presents theories. Our
two main design ideals were to: (a) allow HR3 to produce a variety of
artefact types within a theory, and further variety within each type,
and (b) build HR3 to be independent of any logical formalism. To
this end, we described a new approach to the removal of tautologies
and redundant material from theories, which uses randomly gener-
ated data against which to test the truth of conjectures.

We showed the value of HR3 and the new approaches in two case
studies where we compared it against HR2. The DIP and Mondex
examples were driving forces for the development of HR3. In partic-
ular, HR2’s high error rate and slow speed in solving DIPs meant that
we needed to employ other systems such as Progol and Weka for this
task, and HR2’s slowness for the Mondex application meant that any
real-time usage of ATF for formal model designers was unlikely. We
have omitted details of memory consumption in the case studies, but
this was also a factor in the poor performance of HR2 for these tasks.
In both case studies, we showed that HR3 is much faster at building
theories with more value than HR2.

We continue to develop HR3 by adding production rules and func-
tionality according to the design considerations presented here. The
random theories approach has much potential, as it is formalism-
independent, low maintenance and very effective at tidying up the-
ories before presentation to the user. Increasing the number of ran-
dom theories tested increases the accuracy of this approach in not re-
moving false positives, and we have argued that many of these false
positives, while not tautologous or redundant, are still likely to be
uninteresting as they arise from scarcity of data, rather than the se-
mantics of the data about which a theory is being formed. We plan
to investigate the conjectures which are discarded thoroughly and to
get HR3 to calculate and use a probability that a given conjecture is
tautologous. We will also investigate whether increasing the size of
random theories is more effective than increasing their number, in
terms of accuracy and efficiency. Initial testing indicates that it will
be faster, but there may be issues in multiplying the size of a random
theory while maintaining the structure of the original.

We plan further case studies with HR3 to test its value as a dis-
covery system. We have so far repeated HR2 experiments with HR3
on classic machine learning dataset such as mutagenesis [6] and on
new problems, e.g., large databases of shopping information, ontolo-
gies about wine, etc. In addition, we have shown how the numerical
productions rules in HR3 can be used in a distributed way to solve
(in the sense that Checkers has been solved [27]) arithmetical puz-
zles such as Countdown [10], and we plan to generate new puzzles
of this type. Finally, in unpublished work, we have successfully ap-
plied HR3 to the automatic generation of stanza structures for poems
where the lines of each stanza are supplied from Twitter. Such appli-
cations demonstrate the value of HR3 as a discovery and creativity
tool, and we hope that it will have more impact outside of our own
work than HR2 did, due to the improvements described above. In
particular, we expect to have an online version of HR3 running soon,
with which people will be able to submit background information in
a variety of forms and inspect the theories that HR3 produces.
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