
Countdown Numbers Game: Solved, Analysed, Extended
Simon Colton1

Abstract. The Countdown Numbers Game is a popular arithmeti-
cal puzzle which has been played as a two-player game on French
and British television weekly for decades. We have solved this game
in the sense that the optimal solution for the nearly 12 million puzzle
instances has been generated and recorded. We describe here how
we have achieved this using the HR3 Automated Theory Formation
system. This has allowed us to analyse the space of puzzles; sug-
gest gamesmanship tactics and game design improvements to the
online/handheld versions of the game; and begin to investigate the
potential for automatic invention of such games.

1 Introduction

The French television show Des Chiffres et des Lettres is one of
the longest running quiz shows worldwide, having been on air
for 48 years. The British counterpart is called Countdown, and is
also long running: there have been more than 5000 episodes since
its debut in November 1982. Both shows have a section which
involves an arithmetical puzzle to be solved by both contestants.
In the British version, this is called the Numbers Game while
in the French version it is called Le Compte est Bon (“the total
is right”). Each puzzle instance involves an input list which
is a randomly ordered sublist of 6 elements from this integer list:
{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 25, 50, 75, 100}
The numbers 1 to 10 are called the small numbers, with the numbers
25, 50, 75 and 100 being called the large numbers. Contestants
apply only the basic arithmetical operators (addition, subtraction,
multiplication and division) to the inputs to arrive at a randomly
chosen target number. Each input number may be employed only
once in the solution, and no fractional or negative numbers can be
employed. There is no requirement to use all the input numbers.

The British and French versions differ a little. In the British ver-
sion, the target number is between 100 and 999 and contestants are
given 30 seconds to solve the puzzle, while in the French version, the
target is between 101 and 999, and the time limit is 45 seconds. In
both cases, the target number is calculated using a random number
generator which is not linked to the input list. In the French version,
the input numbers are chosen randomly by computer, whereas in the
British version, a contestant chooses from the shuffled integer list.
The choice is blind, but the contestant has the option to include 0,
1, 2, 3 or 4 of the large numbers. There are two Numbers Games in
each show, hence both contestants get to choose the numbers for an
instance. Scoring of the game also differs slightly between the two
versions. In Countdown, contestants score 10 points if they achieve
a perfect solution, but if neither achieves this, then the contestant or
contestants with the closest answer scores 7 points if they are within
5 of the target, and 5 points if they are within 10. In Des Chiffres
et des Lettres, contestants score 10 if they get a perfect solution, but

1 Computational Creativity Group, Department of Computing, Goldsmiths,
University of London ccg.doc.gold.ac.uk

Figure 1. An example of the
Countdown Numbers Game
involving all four large numbers
and two small numbers as input,
with target integer 952.

One solution to this puzzle is:

((((75∗6)/50)∗(100+3))+25)

if neither achieves this, the contestant or contestants achieving the
closest answer scores 7 points.

An example puzzle from Countdown, to which we refer through-
out, is given in figure 1. While fairly difficult for most people, solving
instances of the puzzle is relatively easy for software, and there is an
abundance of online solvers available. Many of these solvers claim to
be perfect in the sense that they will always give an optimal solution
(with the notion of optimal changing) for any problem instance. For
instance, the solver available at: www.crosswordtools.com/
numbers-game is designed to give the most intuitive solution
based on the difficulty of applying the different arithmetical operators
(e.g., with addition being easier to apply than division). Other aspects
of how difficult a puzzle instance might be for a person include the
number of inputs required for a solution and the size of the largest
number used in the calculation. For instance, when solving the puz-
zle in figure 1, contestant James Martin calculated 318∗75 = 23850
and 23800/25 = 952 to find a solution. The simpler solution in fig-
ure 1 requires lesser mental feats. The Compte est Bon variant of the
puzzle was employed by Defays in [8] and chapter 3 of [9] to study
relations between perception and cognition as part of Hofstadter et.
al’s fluid analogies programme.

Concentrating on the Countdown variant, to solve this in the sense
that the 15-puzzle and Rubik’s Cube have been solved, means calcu-
lating and storing the optimal solution to each puzzle instance. For
the Numbers Game, such a total solution can be achieved through
generating each problem instance and solving it using a trusted
solver. This has been achieved by Alliot in unpublished (in the peer-
reviewed sense) work, via a detailed and interesting investigation [1]
of the puzzle space, with an emphasis on complexity analysis. Al-
liot uses a highly optimised solver which uses a breadth first search
and is able to solve single instances in mere milliseconds. He reports
that it solves the entire puzzle space in 53 seconds. It is fair to say
that this approach frames the task of solving the Countdown Num-
bers game in the problem solving paradigm of AI, as discussed in
[6], whereby an intelligent task to perform is interpreted as a series
of problems to be solved. Our approach is different. As described be-
low, we have framed the task within the artefact generation paradigm
of AI, whereby intelligent tasks are interpreted as a series of valuable
objects to be generated. Our approach is slower, as it exhausts the
space for solutions for every puzzle instance, but there are benefits to
having all solutions, as discussed later.

www.crosswordtools.com/numbers-game
www.crosswordtools.com/numbers-game

The advantage to solving games is summarised neatly in [10]:
“Solving a game takes this to the next level by replacing the heuris-
tics with perfection”. In addition to always providing perfect answers
to given puzzles, puzzles more appropriate to ability can be selected
when a game has been solved, as the puzzle space can be analysed
and aspects of its nature determined and utilised, as for the Numbers
Games in section 4. In addition, we can use such projects to investi-
gate and validate the abilities of a generic AI approach in a novel situ-
ation. To this end, we have solved the Numbers Game using the HR3
Automated Theory Formation system, which is described in section
2, with details of its application given in section 3. We conclude by
discussing the potential of automatically inventing new games, by
briefly describing a novel variant of Countdown that we have solved.

2 The HR3 System

Automated Theory Formation (ATF) is a hybrid AI approach which
starts with minimal background knowledge about a domain and pro-
duces a theory. Such a theory consists of examples, concepts which
categorise the examples, conjectures which relate the concepts, and
proofs which demonstrate the truth of certain conjectures, which be-
come known as theorems. The first implementation of an ATF system
was HR1 [4], written in Prolog, and the second, Java, implementa-
tion was HR2 [5]. Both systems have been used for mathematical
discovery tasks, some of which are summarised in [5], in addition to
artefact generation projects in non-mathematical domains.

The latest implementation, the HR3 system described in [7], has
been engineered with both speed and memory efficiency in mind:
it can run up to 15000 times faster than HR2 and can store mil-
lions of concepts within a modest memory capacity. Providing full
details of how HR3 works is beyond the scope of this paper. Of im-
portance here is the fact that it uses production rules to take one
(or two) old concepts and generate the examples of a new concept
from them. There are currently 13 production rules, but more will be
added (HR2 has 22). These are split into: 9 logical rules which, for
instance, manipulate concepts by introducing universal or existential
quantification, and use composition, negation, etc., and 4 numerical
rules which manipulate the numbers in concepts, e.g., with numeri-
cal relations and by counting subobjects. In particular, HR3 has an
Arithmetic production rule which is able to take two concepts which
contain numerical information and apply addition, subtraction, mul-
tiplication and division to the numbers. This is the only production
rule we required for the Countdown application.

For improved efficiency, unlike HR2, much of HR3’s function-
ing is on-demand. For instance, it does not generate a definition for a
newly generated concept until the user asks for one. HR3 does record
the construction history of each concept, which enables the data for
it to be constructed from scratch from the background knowledge,
and definitions can be similarly generated in this fashion. Moreover,
for efficiency, there are a number of ways in which HR3’s search for
concepts can be curtailed. Firstly, each production rule has the abil-
ity to refuse to apply itself to certain input concepts, and we describe
how we set up the Arithmetic production rule in this respect in the
next section. Secondly, general or bespoke analysis modules can be
used at runtime to (i) stop a production rule step (or whole sets of
steps) being carried out in advance and (ii) refuse to allow a newly
invented concept into the theory, hence reducing the search, as no
concepts will be built from it later. Again, in the next section, we
describe how we introduced two modules in order to break symme-
tries in the theory formation sessions for the Countdown application,
drastically improving efficiency.

3 Solving the Countdown Numbers Game
We define a puzzle instance as a quadruple P = 〈T, I, C,A〉, where
T is the target number, I is the list of six input numbers ordered from
smallest to largest, C is the calculation performed over I , and A is
the answer, or result of the calculation (which may or may not be the
same as T). Note that the calculation C must follow the rules, i.e.,
involving each i ∈ I only once and requiring the calculation of no
negative or fractional numbers at any stage. For a given instance P ,
we denote PT to be the target of P , with PI , PC and PA defined
similarly. It is clear that this covers all the possible puzzles which
could be shown on the television show up to permutation of the input
numbers, and there is no need to consider puzzles which do not have
numerical ordering on the inputs, as these are trivially isomorphic to
an instance as defined above.

An instance P is said to be correct if T = A or @P ′ s.t. P ′ =
〈T, I, C′, A′, 〉 is an instance, and |T − A′| < |T − A|. For an in-
stance P , we define U(P) to be the number of input numbers used
in PC , L(P) to be the largest number calculated at any interme-
diary stage of PC , not including A, and N(P) to be the num-
ber of distinct numerical operators used (counted only once) in the
calculation. Given two instances P and Q, we denote P < Q
if PT = QT , PA = QA and either (i) U(P) < U(Q) or (ii)
U(P) = U(Q) and L(P) < L(A) or (iii) U(P) = U(Q) and
L(P) = L(A) and N(P) < N(Q). We say that an instance P is
optimal if @P ′ s.t. P ′ < P . Note that for any pair 〈T, I〉, there may
be multiple optimal instances, and that this formulation of optimality
is justified by the discussion in section 1, but arbitrary, and we plan to
investigate other candidates in future work, in particular those more
related to how people solve puzzle instances.

As an example, in figure 1, the puzzle is an isomorphism of this
correct instance:
P = 〈952, {3, 6, 25, 50, 75, 100}, ((((75∗6)/50)∗(100+3))+25), 952〉
Moreover, U(P) = 6, as all six inputs are used in PC , and L(P) =
927 because ((75∗6)/50)∗(100+3) = 927 is the intermediary cal-
culation resulting in the biggest number. The contestant in the game
shown in figure 1 did very well to find the instance:
Q = 〈952, {3, 6, 25, 50, 75, 100}, (((100+6) ∗ 3) ∗ 75)− 50)/25), 952〉
but this is not optimal in our sense, because P < Q, given that
U(P) = U(Q) and L(P) = 927 < L(Q) = 23850. On the
YouTube site2 showing the TV clip of this game, one of the com-
mentators has pointed out this easier solution.

3.1 Setting Up and Running HR3
Given the above definitions, solving the Countdown Game puzzle in
its entirety involves finding a correct, optional instance 〈T, I, C,A〉
for every pair 〈T, I〉 allowed under the rules. As an exercise in auto-
mated theory formation, we first attempted to get HR3 to find every
optimal instance in a single run. This nearly worked, but it exceeded
a memory limit – we plan to come back to this approach in future
work. Instead, we took each of the possible lists of numerically or-
dered six input numbers I as the background knowledge to a theory
formation session and generated all possible calculations (up to iso-
morphism) involving a subset of I . From these, we determined all
optimal instances of Countdown puzzles, as described below.

Given an input list I = {x1, . . . , x6}, each xi was used to produce
the background concept of ‘being the particular instance of number
xi’. Concepts input to HR3 are normally more like prime numbers,

2 www.youtube.com/watch?v=6mCgiaAFCu8

www.youtube.com/watch?v=6mCgiaAFCu8

which have more than one example. However, giving each xi its own
concept (with only one example, naturally) enabled us to break sym-
metries in the search space and drastically increase efficiency, as de-
scribed below. Moreover, for input sets where there is a repeated in-
teger, by giving each of the pair its own concept, we were able to
tidy up the processing enormously (details omitted). Starting from
the background information, the Arithmetic production rule was used
iteratively to take pairs of concepts and calculate new concepts like
the concept of singletons X such that X = 10 + 25, and from this,
X = (10 + 25)/5, etc. We told HR3 to stop after all possible calcu-
lations involving all the xi had been exhausted, which required five
applications of the Arithmetic production rule. Calculations involv-
ing all the xi such as (a+ b) ∗ (c+ d) ∗ (e+ f) were generated after
only three applications, because (a + b), (c + d) and (e + f) were
all generated with the first application. However, calculations such as
(a ∗ (b/(c+ (d− (e+ f))))) only came out after five applications.

In addition to isomorphism up to permutation of the input num-
bers, two puzzle instances may be isomorphic in terms of the calcu-
lation, C, performed. This is due to the commutativity of the addi-
tion and multiplication operators. Hence, we set flags for the Arith-
metic production rule which allowed the addition and multiplication
of concept C1 with C2, but not C2 with C1. Given that no nega-
tive numbers are allowed at any stage in the calculation, we also
ruled out any application of subtraction where the right hand number
was greater than the left hand number. Also as the rules don’t al-
low it, we similarly ruled out any calculation resulting in a fractional
value. We also ruled out any subtraction which results in zero. This
doesn’t remove optimal instances from the results, because adding
and subtracting zero doesn’t change the calculation, division by zero
is ruled out by the rules of simple arithmetic, and multiplication by
zero leads to a result of zero, and hence there is a simpler solution
which involves writing nothing. We ruled out multiplication by 1 and
subtraction/addition of 0 for similar reasons. Additionally, before the
final application of the Arithmetic production rule, it was told to rule
out any calculations resulting in an answer of less than 90 or greater
than 1009, as these would not be of use.

Even with these symmetry breaking constraints on the function-
ing of the Arithmetic production rule, there was still much redun-
dancy in the search space to be removed. Firstly, using an existing
module, we told HR3 not to combine any pairs of concepts which
contain a shared background concept in their construction history, as
this would represent a calculation using an integer from the input set
twice, which is not allowed. Also, suppose the concept C1 perform-
ing the calculation 8 = ((3+ 1)+ 4) had already been generated by
HR3, and then later it invented concept C2 which calculated 8 in a
different way using the same numbers, e.g., 8 = (3 − 1) ∗ 4. Note
that the former uses only addition, while the latter uses subtraction
and multiplication, and recall that we are interested in generating the
optimal Countdown instances, as defined above. It is clear that any
instance, P containing the sub-calculation ((3 − 1) ∗ 4) would not
be optimal, because there would be at least one instance Q contain-
ing the sub-calculation ((3 + 1) + 4) for which Q < P , hence any
calculations based on subcalculations ((3 − 1) ∗ 4) and the like are
ruled out, along with calculations such as 18 = (5 ∗ 4)− 2 in favour
of 18 = (5 + 4) ∗ 2 due to a smaller intermediate calculation, and
((5 ∗ 4)− (3− 2)) in favour of ((5 ∗ 3) + 4) because of the smaller
number of inputs used. To make sure no optimal solutions were lost,
if the new concept was better than the existing one (in the optimality
sense), then the existing one is substituted with the new one.

Once the theory was produced, we employed a bespoke module to
go through it and for each target number, n, between 100 and 999,

find the optimal calculation which achieved n and record the num-
ber of sub-optimal calculations which also achieve n. In the cases
where it was not possible to achieve n exactly, the module found the
calculation resulting in n ± k for k as small as possible, choosing
n−k when n−k and n+k were equal in terms of optimality. To in-
crease efficiency, we distributed the theory formation sessions over a
multi-threaded machine. We used a Dell server with four processors
each able to run 32 parallel threads at 2.9 Ghz. We tried various load
balancing setups and found that distributing the sessions as shell pro-
cesses (calling HR3 with the input numbers given as command line
arguments) randomly over the four machines was the most efficient.

The number of different ordered lists of six integers taken
from the Countdown possibilities is 13243, as calculated at www.
crosswordtools.com/numbers-game/faq.php, and this
concurred with our generation of all possible background theories
for HR3. Hence, given the integers 100 to 999 as targets, there are
13243 ∗ 900 = 11918700 different puzzles to solve. With the par-
allel setup above, HR3 took 1771 seconds, or 29.5 minutes to gen-
erate optimal solutions to every problem instance. Given that 128
threads were running concurrently, the average duration of a theory
formation session (which accounted for 900 instances) was therefore
(1771/13, 243) ∗ 128 = 17.12 seconds, hence it solved individual
puzzle instances in 19ms on average. In preliminary testing, leaving
out any of the symmetry breaking techniques, resulted in theory for-
mation sessions for a given input list lasting tens of minutes, which
would have ruled out performing all the sessions.

4 An Analysis of the Puzzle Space
Table 1 provides an analysis of the space of puzzles in the Count-
down Numbers Game. This was calculated from the solved instances,
which are stored on file as tuples of the form:
〈T,A,D, I, C,A, U(P), N(P), L(P), S1(P), . . . , S6(P), E〉

where 〈T, I, C,A〉 defines an instance, P , D = |T − A|, Si(P) is
the number of calculations using i inputs from I that achieve A, and
E is an explanation of the calculation as list of sub-calculations. For
instance, the explanation for the example in figure 1 is: 5*6=450,
450/50=9, 100+3=103, 9*103=927, 927+25=952. The columns in
table 1 break the space down in terms of the number of big num-
bers in the input list, with the first column of results representing the
whole puzzle space. The rows give various raw numbers and percent-
ages pertaining to the instances within the sub-space of puzzles. In
particular, the number of instances overall is broken down into those
which are solvable scoring max 10, 7 and 5 points, and those which
are unsolvable, given along with the expected score.

We define an instance, P , to be easy if U(P) ≤ 3, medium
if U(P) = 4 and hard if U(P) ≥ 5. We further define an in-
stance to be isolated if SU(P)(P) = 1, and difficult if PT = PA,
U(P) = 6, L(P) ≥ 1000, N(P) = 4 and S6(P) = 1. To achieve
the 10-point perfect solution (which is possible), such difficult prob-
lems require the usage of all six numbers and all four operators, and
the calculation of a intermediate number greater than or equal to
1000. In addition, they are isolated, i.e., there is only a single way
(up to arithmetical isomorphism) to solve such difficult problems.
Note that the example in figure 1 (which is celebrated on the internet
as a particularly thorny example) is not classed as difficult under this
scheme for three reasons: N(P) = 3 < 4, L(P) = 927 < 1000 and
S6(P) = 2 > 1. As per table 4, there are 408515 isolated instances
(3.43%) and 8614 difficult instances (0.07%), with the one requiring
the highest intermediate calculation (of 99300) being:
〈993, {1, 3, 25, 50, 75, 100}, (((((50 + 3) ∗ 25)− 1) ∗ 75)/100), 993〉

In one sense, this is the most difficult Countdown puzzle possible.

www.crosswordtools.com/numbers-game/faq.php
www.crosswordtools.com/numbers-game/faq.php

Big numbers ≥ 0 ≥ 1 0 1 2 3 4 Primedown
Instances 11918700 9353700 2565000 5227200 3321000 756000 49500 7266600

Solvable (10 pts) 10871837 (91.22) 8905413 (95.21) 1966424 (76.66) 4971884 (95.12) 3195793 (96.23) 693971 (91.80) 43765 (88.41) 7126391 (98.07)
Solvable (7 pts) 913165 (7.66) 442114 (4.73) 471051 (18.36) 251637 (4.81) 123925 (3.73) 60969 (8.06) 5583 (11.28) 139292 (1.92)
Solvable (5 pts) 28805 (0.24) 3777 (0.04) 25028 (0.98) 2003 (0.04) 856 (0.03) 792 (0.10) 126 (0.25) 367 (0.01)

UnSolvable (0 pts) 104893 (0.88) 2396 (0.03) 102497 (4.00) 1676 (0.03) 426 (0.01) 268 (0.04) 26 (0.05) 550 (0.01)
Exp. Score 9.67 9.85 9.00 9.85 9.89 9.75 9.64 9.94

Easy 772172 (6.48) 740876 (7.92) 31296 (1.22) 352963 (6.75) 311845 (9.39) 72314 (9.57) 3754 (7.58) 642692 (8.84)
Medium 3209093 (26.92) 2875164 (30.74) 333929 (13.02) 1533042 (29.33) 1110115 (33.43) 221935 (29.36) 10072 (20.35) 2554972 (35.16)

Hard 7832542 (65.72) 5735264 (61.32) 2097278 (81.77) 3339519 (63.89) 1898614 (57.17) 461483 (61.04) 35648 (72.02) 4068386 (55.99)
Difficult 7808 (0.07) 7750 (0.08) 58 (0.00) 1471 (0.03) 2829 (0.09) 3013 (0.40) 437 (0.88) 1305 (0.02)
Isolated 408515 (3.43) 240961 (2.58) 167554 (6.53) 139166 (2.66) 69165 (2.08) 29517 (3.90) 3113 (6.29) 84259 (1.16)

Av. Max. Calc. 353.04 389.88 218.72 348.39 409.07 536.86 1238.37 372.56

Table 1. An analysis of the Countdown Numbers Game space of puzzles. Percentages are given in brackets where appropriate.

The analysis in table 1 matches that of [1], hence the two ap-
proaches corroborate each other. HR3’s search is similar to the
breadth first search used in [1], with one major difference: HR3’s
search is complete, whereas in [1], each problem solving event stops
as soon as a solution has been found. It is difficult to imagine how
the problem solving approach could determine the isolated or diffi-
cult instances without exhausting the space. Such information would
be valuable, if we wanted to present, say, a ‘champions’ version of
the Numbers Game with only the difficult instances (perhaps for so-
called brain training entertainment purposes). Similarly, if variants
of the game were to be investigated, for example one where two
completely distinct solutions are required, or all the input numbers
have to be included in the solution, or there is a bonus for using the
number 17, this would probably require a more exhaustive search.

Somewhat ironically, we can use the computational analysis to
highlight how good the Countdown Numbers Game is as a pen and
paper past-time. Gifted puzzlers should be rewarded with full points,
not held back by the design of the game itself, and given an anal-
ysis of the entire puzzle space, we can determine the value of the
game. From table 4, we see that for 104893 (0.88%) of the puzzles,
no score is possible. Hence, roughly one in a hundred games written
down would be futile. However, this risk is mitigated by ensuring that
at least one of the big numbers is chosen, as the probability of a fu-
tile game reduces to 0.03%. In addition, nearly 6.5% of the games are
classed as easy, hence there is often much thumb-twiddling3 on the
television show, as the puzzle is often no challenge for either contes-
tant. The best choice of numbers to reduce this is zero big numbers,
as only 1.22% of such puzzles are easy, but then the chances of scor-
ing the full 10 points drastically reduces.

We can also use the analysis to make gamesmanship suggestions.
Recall that in the UK game show, contestants can choose 0, 1, 2, 3
or 4 big numbers for the inputs. Stronger players may make differ-
ent choices than weaker players for strategic reasons, especially if
they know the rough ability of their opponent (which is sometimes
the case on the game show). For instance, a strong player playing
against a weak player might choose zero big numbers, as 81.77% of
instances are likely to be too hard for their opponent, while the num-
ber of difficult puzzles (perhaps too hard even for a strong player) is
negligible. However, they should be aware that their expected score
will reduce to 9.00 from 9.67, and there is a 4% chance that they will
score zero. At the other end of the spectrum, if – like the contestant
in figure 1 – they choose four big numbers, their expected score will
remain high, but nearly 1 in 100 puzzles will be difficult, and the
maximum intermediate calculation will rocket to 1238 on average.

3 A commentator on a recent newspaper article [11]: “They should change
the random number thingy so it doesn’t come up with a really easy target
number, meaning the contestants sit there like stiffs for nearly 30 seconds”

5 Conclusions and Future Work
We described how HR3 found optimal solutions to each of the nearly
12m Countdown Numbers Game puzzles. With the data we have cal-
culated, there is no need for TV viewers or online players to endure
futile (i.e., no scoring solution) or thumb-twiddling (i.e., too easy)
events. Of the ten online and handheld Countdown puzzle generators
and solvers we found, none could tailor the problem to the ability of
the player, and our data would enable such enhancements. In addi-
tion to providing an analysis of the Numbers Game, and suggesting
enhancements, this has been a suitable test for our software, showing
that HR3 is able to contribute in game solving and analysis.

We plan to use HR3 to invent new puzzles in a similar way to how
HR2 constructed puzzle instances [3], and Browne’s Ludi system
invented new and interesting board games [2]. We will investigate
sampling the puzzle space of new game designs, rather than solving
them entirely, to enable the exploration of more designs, and we will
look at different rulesets, mathematical operators and scoring mech-
anisms. To investigate the potential for this, we invented and solved
‘Primedown’, which replaces the numbers available for the input list
with two copies of the prime numbers between 2 and 37 inclusive.
As we see from the final column in table 1, as a pen-and-paper game,
Primedown has a higher expected score, far fewer futile instances,
and a more equal spread over easy, medium and hard puzzles than
any variant of Countdown, which we find very encouraging.

Acknowledgements
This work has been supported by EPSRC grants EP/J004049 and
EP/I001964, and EC FP7 grant 611553 (COINVENT). Many thanks
to the anonymous reviewers for their useful comments.

REFERENCES
[1] J-M Alliot, ‘(The Final) Countdown’, alliot.fr/COMPTE/compte.html,

alliot.fr/papers/compte.pdf, (2013).
[2] C Browne and F Maire, ‘Evolutionary game design’, IEEE Transac-

tions on Computational Intelligence and AI in Games, 2(1), (2010).
[3] S Colton, ‘Automated puzzle generation’, in Proceedings of the AISB

Symposium on AI and Creativity in the Arts and Science, (2002).
[4] S Colton, Automated Theory Formation in Pure Maths, Springer, 2002.
[5] S Colton and S Muggleton, ‘Mathematical applications of Inductive

Logic Programming’, Machine Learning, 64, (2006).
[6] S Colton and G Wiggins, ‘Computational Creativity: The final fron-

tier?’, in Proceedings. of the 20th ECAI, (2012).
[7] S Colton, R Ramezani and T Llano, ‘The HR3 Discovery System’, in

Proceedings of the AISB Symposium on Scientific Discovery, (2014).
[8] D Defays, ‘Numbo: A study in cognition and recognition’, J. for the

Integrated Study of AI, Cog. Sci. and App. Epistemology, 7(2), (1990).
[9] D Hofstadter, Fluid Concepts & Creative Analogies,Basic Books,1995.

[10] J Schaeffer, N Burch, Y Björnsson, A Kishimoto, M Müller, R Lake,
P Lu, and S Sutphen, ‘Checkers is solved’, Science, 317(5844), (2007).

[11] G Virtue, ‘Countdown is 70: Three cheers for the nation’s favourite
comfort blanket’, Guardian, (7th January 2014).

	Introduction
	The HR3 System
	Solving the Countdown Numbers Game
	Setting Up and Running HR3

	An Analysis of the Puzzle Space
	Conclusions and Future Work

