Using R for data analysis

Daniel Müllensiefen
Goldsmiths, University of London

August 18, 2009
Introduction

What’s it good for?
R and its competitors
Core characteristics
History

Analysing data: The iris data example
Getting data in
Summarising data
R is good for

- Flexible Data Analysis (programmable)
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
- Numeric Accuracy
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
- Numeric Accuracy
- Rapid prototyping of analysis / process models
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
- Numeric Accuracy
- Rapid prototyping of analysis / process models
- Pre-processing data from different sources
 - textfiles (.txt) and binary files (e.g. SPSS .sav, Excel)
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
- Numeric Accuracy
- Rapid prototyping of analysis / process models
- Pre-processing data from different sources
 - textfiles (.txt) and binary files (e.g. SPSS .sav, Excel)
 - Audio files
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
- Numeric Accuracy
- Rapid prototyping of analysis / process models
- Pre-processing data from different sources
 - textfiles (.txt) and binary files (e.g. SPSS .sav, Excel)
 - Audio files
 - databases
R is good for

- Flexible Data Analysis (programmable)
- Using different analysis techniques
- Data Visualisation
- Numeric Accuracy
- Rapid prototyping of analysis / process models
- Pre-processing data from different sources
 - textfiles (.txt) and binary files (e.g. SPSS .sav, Excel)
 - Audio files
 - databases
 - texts (linguistic data)
R is considered less good for

- Graphical User Interfaces
R is considered less good for

- Graphical User Interfaces
- Internet programming
R is considered less good for

- Graphical User Interfaces
- Internet programming
- Low-level programming
R is considered less good for

- Graphical User Interfaces
- Internet programming
- Low-level programming
- ...

Overview
Introduction
Analysing data: The iris data example

What's it good for?
R and its competitors
Core characteristics
History
R compares to

- Matlab (open source, community driven, not commercial)
R compares to

- Matlab (open source, community driven, not commercial)
- SPSS, SAS, Stata (programming language, not program)
R compares to

- Matlab (open source, community driven, not commercial)
- SPSS, SAS, Stata (programming language, not program)
- Weka (driven by community, not individuals)
R compares to

- Matlab (open source, community driven, not commercial)
- SPSS, SAS, Stata (programming language, not program)
- Weka (driven by community, not individuals)
- SciPy and other software libraries (entire language specialised for data analysis)
Pros and Cons

- Huge community support
Pros and Cons

- Huge community support
- Cross-platform and command-line based
Pros and Cons

- Huge community support
- Cross-plattform and command-line based
- Interactive: interpreted not complied
Pros and Cons

- Huge community support
- Cross-platform and command-line based
- Interactive: interpreted not complied
- Mainly functional
How R came about

- 1976: John Chambers releases 1st version of S: Language for statistics, stochastic simulation and data visualisation
How R came about

- 1976: John Chambers releases 1st version of S: Language for statistics, stochastic simulation and data visualisation
- 1995: Ross Ihaka and Robert Gentleman release R as GPL
How R came about

- 1976: John Chambers releases 1st version of S: Language for statistics, stochastic simulation and data visualisation
- 1995: Ross Ihaka and Robert Gentleman release R as GPL
- 1998: Comprehensive R Archive Network (CRAN) founded
How R came about

- 1976: John Chambers releases 1st version of S: Language for statistics, stochastic simulation and data visualisation
- 1995: Ross Ihaka and Robert Gentleman release R as GPL
- 1998: Comprehensive R Archive Network (CRAN) founded
- 2001: R News published for 1st time
How R came about

- 1976: John Chambers releases 1st version of S: Language for statistics, stochastic simulation and data visualisation
- 1995: Ross Ihaka and Robert Gentleman release R as GPL
- 1998: Comprehensive R Archive Network (CRAN) founded
- 2001: R News published for 1st time
- 2004: 1st useR! conference
How R came about

- 1976: John Chambers releases 1st version of S: Language for statistics, stochastic simulation and data visualisation
- 1995: Ross Ihaka and Robert Gentleman release R as GPL
- 1998: Comprehensive R Archive Network (CRAN) founded
- 2001: R News published for 1st time
- 2004: 1st useR! conference
- 2009: More than 1000 packages available on CRAN
Basic data in and out

- Start R

Get the iris data from http://www.doc.gold.ac.uk/~mas03dm/teaching/r/iris.data.txt and save it in R's working directory using `getwd()`.

Then, get the data into R using the `read.table` command. Use the `help(read.table)` and the assignment operator `←` to see what you can do with the data.

Change the species label of the 3rd observation to your own first name using the indexing function `[,]`. Save the altered dataset using `write.table()`.

Finally, remove the altered dataset using `rm()` and get the original dataset in again.
Basic data in and out

- Start R
- Save file from http://www.doc.gold.ac.uk/~mas03dm/teaching/r/iris.data.txt to R's working directory (using `getwd()`)
Basic data in and out

- Start R
- Save file from http://www.doc.gold.ac.uk/~mas03dm/teaching/r/iris.data.txt to R's working directory (using getwd())
- Get data into R using the read.table command (useful operations help(read.table) and assignment operator “←”)

Daniel Müllensiefen Goldsmiths, University of London

Using R for data analysis
Basic data in and out

- Start R
- Save file from http://www.doc.gold.ac.uk/~mas03dm/teaching/r/iris.data.txt to R’s working directory (using getwd())
- Get data into R using the read.table command (useful operations help(read.table) and assignment operator “←”)
- Change the species label of the 3rd observations to your own first name (using the indexing function [,]), save this dataset (using write.table())
Overview
Introduction
Analysing data: The iris data example

Getting data in
Summarising data

Basic data in and out

- Start R
- Save file from http://www.doc.gold.ac.uk/~mas03dm/teaching/r/iris.data.txt to R's working directory (using getwd())
- Get data into R using the read.table command (useful operations help(read.table) and assignment operator “←”)
- Change the species label of the 3rd observations to your own first name (using the indexing function [,]), save this dataset (using write.table())
- Remove the altered dataset (using rm()) and get the original dataset in again
Data summary and plots

> Summarise dataset (summary(), str())
Data summary and plots

- Summarise dataset \((\text{summary}(), \text{str}())\)
- Plot 1st column vs 2nd column \((\text{plot}())\)
Data summary and plots

- Summarise dataset (`summary()`, `str()`)
- Plot 1st column vs 2nd column (`plot()`)
- Attach dataset to search path (`attach()`)
Data summary and plots

- Summarise dataset (`summary()`, `str()`)
- Plot 1st column vs 2nd column (`plot()`)
- Attach dataset to search path (`attach()`)
- Plot `Species` vs `Petal.Width` and give graph a title and axes names
Data summary and plots

- Summarise dataset \((\text{summary()}, \text{str()}\))
- Plot 1st column vs 2nd column \((\text{plot()}\))
- Attach dataset to search path \((\text{attach()}\))
- Plot \textit{Species vs Petal.Width} and give graph a title and axes names
- Plot histogram of \textit{Petal.Length} \((\text{hist()}\))
Data summary and plots

- Summarise dataset (summary(), str())
- Plot 1st column vs 2nd column (plot())
- Attach dataset to search path (attach())
- Plot Species vs Petal.Width and give graph a title and axes names
- Plot histogram of Petal.Length (hist())
- Plot scattergram of full dataset (plot(dataset, col=Species))
Data summary and plots

- Summarise dataset (summary(), str())
- Plot 1st column vs 2nd column (plot())
- Attach dataset to search path (attach())
- Plot *Species* vs *Petal.Width* and give graph a title and axes names
- Plot histogram of *Petal.Length* (hist())
- Plot scattergram of full dataset (plot(dataset, col=Species))
- Add non-parametric smoother (plot(dataset, col=Species, panel=panel.smooth))
More plots and a function

Do `boxplot(Petal.Length, Species, notch=TRUE)`. What are the notches?
More plots and a function

- Do `boxplot(Petal.Length, Species, notch=TRUE)`. What are the notches?
- Set the graphical device to be split into a 2x2 panel: `op <- par(mfrow = c(2,2))`