Testing Different Models of Melodic Contour

Daniel Müllensiefen, Melanie Bonometti, Lauren Stewart, Geraint Wiggins
Goldsmiths, University of London
This paper is about …

a comparison between different models of melodic contour and their cognitive usefulness.

We present

• some background and motivation,
• the four contour theories compared,
• the setup of the experiment, and
• results
Melodic Contour is important for …

- composing and structuring melodies (Toch, 1923; Jeppesen, 1935; Hindemith, 1940; Perricone, 2000; Kachulis, 2003; Bradford, 2005)
- analysing and classifying melodies (Meyer, 1956; Rosen, 1971; de la Motte, 1993)
Melodic Contour has been defined formally ...

- as contour classes (Huron, 1996)
- as Fourier coefficients (Schmuckler, 1999)
- as polynomial coefficients (Müllensiefen & Wiggins, submitted)
- as interpolation lines (Steinbeck, 1982; Zhou & Kankanhalli, 2003)
- as symbol sequences (Parson, 1975; Kim et al., 2000; Pauws, 2000; Müllensiefen & Frieler, 2004)
- as step curves (Juhasz, 2000; Eerola & Toiviainen, 2004)
- as matrix of interval relationships (Friedmann, 1985; Marvin & Laprade, 1987; Quinn, 1999)
Our motivation:

Compare different contour representations and find one that:

- can be implemented in a computer program
- has a level of abstraction comparable to what human listeners extract
- is useful for modelling human melody processing
- allows for a compact representation as a feature to characterise melodies and be part of the FANTASTIC* analysis toolbox

*http://www.doc.gold.ac.uk/isms/mmm/?page=Software%20and%20Documentation
The compared models

- **Huron’s Contour** (Huron, 1996)
- **Interpolation Contour** (Steinbeck, 1982; Müllensiefen & Frieler, 2004)
- **Polynomial Contour** (Müllensiefen & Wiggins, submitted)
- **Step Contour** (Eerola & Toiviainen, 2004)
• 1 parameter (categorical, 9 classes)
• Depends on: ordinal relation between p_1, mean(p_2,\ldots,p_{n-1}), p_n
Contour Categories

Melody 1
Interpolation Contour

- A variable number of parameter pairs (line gradient, length), usually 1 to 5.
- Depends on: Number of reversals of pitch direction and exclusion of change notes.
Polynomial Contour

- 8 numerical parameters (polynomial coefficients)
- Depends on: Capacity of pitch and onset data to be approximated by polynomial shapes
Step Curve Contour

- n numerical parameter pairs (pitch, IOI) for n notes
- Depends on: pitch values and IOIs of all notes
Experiment

• Paradigm:
 - Audio–visual shape assignment task
 - Assumption: Visual recoding of note sequence is inherent in cognitive contour processing (e.g. Balch & Muscatelli, 1986; Prince et al., 2009)
 - 4x10 practice trials
 - 4x20 trials, including 5 repetition trials
 - Complete randomisation, individual testing

• Participants:
 - 85 adults (mean age: 21.2, normal vision, hearing)
 - no selection for musical background (‘college population’)

• Dependent variables:
 - Response Times
 - Intra–subject consistency
 - Inter–subject consistency
 - Subject–Model consistency (i.e. accuracy)

• Independent Variable: Contour Representation (4–level factor)
Working definition of melodic contour in instructions:

“An image that represents the melody just heard”
Example Trial

1

2

3

4
Results
Results: Reaction Times

Reaction Times by Contour Model

Mean Response Times in Milliseconds, incl. 95% confidence intervals
Results: Subject–Model Accuracy

Response Accuracies by Contour Model

<table>
<thead>
<tr>
<th></th>
<th>Step</th>
<th>Huron</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td></td>
<td><.001*</td>
<td></td>
</tr>
<tr>
<td>Huron</td>
<td><.001*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curve</td>
<td><.001***</td>
<td>.614</td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td><.001***</td>
<td><.001***</td>
<td><.001*</td>
</tr>
</tbody>
</table>

Percentage of Correct Responses, incl. 95% confidence intervals
Results: Inter-Subject Agreement

Values of Fleiss' kappa by contour representation

<table>
<thead>
<tr>
<th>Contour</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve</td>
<td>0.298</td>
</tr>
<tr>
<td>Huron</td>
<td>0.254</td>
</tr>
<tr>
<td>Line</td>
<td>0.269</td>
</tr>
<tr>
<td>Step</td>
<td>0.303</td>
</tr>
</tbody>
</table>
Results: Intra-Subject Agreement

Intra-Subject Agreement by Contour Model

Correct Identical Answers as Proportions of Identical and Correct Answers

Proportions of Identical Answers for Repeated Items, incl. 95% confidence intervals
Summary

- Step Contour takes longest to process
- Step Contour significantly better in terms of
 - Model–Subject Agreement
 - Inter–Subject Agreement
 - Proportion of correct ∧ identical responses

⇒ supports assumption of contour as a representation for conscious processing (Dowling et al., 1995)
Next steps

• Look at individual differences
• Implement features characterising step contour curves (*FANTASTIC*):
 - Global Variation
 - Global Direction
 - Local Variation
• Create Contour Space
• Test: Distance in feature space ~ distance in cognitive space?
Testing Different Models of Melodic Contour

Daniel Müllensiefen, Melanie Bonometti, Lauren Stewart, Geraint Wiggins
Goldsmiths, University of London