What’s a word in harmony?

Can Statistical Language Models be used for the Analysis of Harmonic Progressions?
What’s this about?

› Find a symbolic harmony feature whose type sparseness resembles that of types in natural language.

› Results Sneak Preview

› Single chords don’t do the job.

› Longer chord sequences resemble words in language more closely.

Mauch, Müllensiefen, Wiggins, Dixon

... - sparseness in the language sense: most words (types) appear very rarely
Motivation: Music IR

example 1:
“find similar song given chord transcriptions” (Query By Example)

latent semantic analysis

example 2:
“extract chords from complex audio”

Chords sequential (like words)

HMM with chords as states

Mauch, Müllensiefen, Wiggins, Dixon

here are two examples which illustrate what we think the new knowledge can be used for ...
example 3:

“extract chords from complex audio”

- Chords sequential (like words)
- NLP methods work so well ...
- HMM with chords as states
example 3:

“extract chords from complex audio”

Chords sequential (like words)

NLP methods work so well...

HMM with chords as states

Alternative to chord as basic unit?
- Community Corpus: (1) chord “lead sheets” shared by users of the commercial software “Band in a Box”, (2) checked by relistening via the program.
- Automatic Corpus: (1) chords automatically extracted from MIDI.
Choice of harmonic feature

- compare word distribution to **chord sequence** distribution
- 8 kinds of chord sequences

- from the chord data we construct 8 different kinds of harmonic feature:
 - chord sequences
 - different lengths (ranging from a single chord to sequences of ...)
 - another parameter is: consider harmonic rhythm or not (by considering duration info or not)

- Let me quickly show you some examples for such chord sequence types
- chord sequences overlap
- explain for example setting “without duration information”, “chord sequence length 3”
- representation as chords with relative root distances in semitones
- sequences obtained by a sliding window
- benefit: key-independent, would be the same in a different key
Sequence extraction example

with duration information

without duration information

chord change

chord sequence length 3

chord sequence length 4

C Dm Bb C F C

maj → min → maj → maj → maj → maj

- explain for example setting “without duration information”, “chord sequence length 3”
- representation as chords with relative root distances in semitones
- sequences obtained by a sliding window
- benefit: key-independent, would be the same in a different key
Sequence extraction example

- explain for example setting “without duration information”, “chord sequence length 3”
- representation as chords with relative root distances in semitones
- sequences obtained by a sliding window
- benefit: key-independent, would be the same in a different key

Mauch, Müllensiefen, Wiggins, Dixon
- explain for example setting “without duration information”, “chord sequence length 3”
- representation as chords with relative root distances in semitones
- sequences obtained by a sliding window
- benefit: key-independent, would be the same in a different key
what we base our comparison on is the Frequency Spectrum:
- this one: text corpus example
- “most words appear only once (frequency class V_{m})"
- smooth shape, can be modeled by a parametric model (next slide)
The frequency spectrum from a corpus can be modelled by so-called finite Zipf-Mandelbrot model of the frequency spectrum.

\[g(\pi) = \begin{cases}
 C \cdot \pi^{-\alpha} & A \leq \pi \leq B \\
 0 & \text{otherwise}
\end{cases} \]

\(g(\pi) \) is a normalising factor.

- following a power law
- wondering: if we did the same for chord sequences...

Mauch, Müllensiefen, Wiggins, Dixon
Best-fitting Harmonic Elements

- settings closest to text corpus
- length 3 (metric duration)
- length 4 (no duration)

Mauch, Müllensiefen, Wiggins, Dixon
Chord Sequence Distribution

Mauch, Müllensiefen, Wiggins, Dixon

– one of the “winning” chord sequence configurations: “duration information”, “chord sequence length 3”
Interpretation of Results

- Single chords don’t do the job.
- Longer chord sequences resemble words in language more closely.
- Even more so if considering durations.

Mauch, Müllensiefen, Wiggins, Dixon
Future Work

- different harmonic elements
- root progression
- degree (with respect to key)
- variable length chord progressions (determine using collocation measure)
- different language elements
- letter sequences
- other languages? Chinese?

Mauch, Müllensiefen, Wiggins, Dixon
Thanks

... looking forward to your suggestions!

Mauch, Müller, Wiggins, Dixon