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Abstract.1 The relationship between the sensory signal of the 
photoreceptors and the language of color is completely unclear. A 
recent finding established a surprisingly accurate correlation 
between color terms and so-called singularities in the laws 
governing how sensory signals for different surfaces change across 
illuminations. The sensory signal depends on the reflectances of 
the surfaces, the illuminants, and the sensitivity profiles of the 
human photoreceptors. This paper examines the role played by 
reflectances, illuminants and cone sensitivities in determining the 
relationship between color terms and the singularities in laws of the 
sensory change. We found that this relationship holds for a wide 
range of illuminants, as long as these are predominantly broad-
band. The relationship also exists when using sensors that differ in 
important aspects from human photoreceptors, as long as these 
sensors cover the whole visual spectrum. According to our results, 
the characteristics of the reflectance spectra are the key factor that 
determines the relationship between the color terms and the 
sensory singularities. 

1 IN T R O DU C T I O N 

Which are the sensory characteristics of color vision that determine 
color language? This is an intriguing question because the 
relationship between the sensory characteristics of color vision and 
the color terms used to communicate color is a major, unresolved 
question. Answers to this question may elucidate the understanding 
of color vision as well as the general relationship between 
perception and language.  

1.1 Background and relevance 

Colors are communicated through color terms, such as red, pink 
and purple. These color terms categorize the multitude of 
perceivable colors into groups, the color categories. While color 
terms differ, the corresponding categories share some statistical 
regularities across languages [1-3]. The prototypes of red, yellow, 
green, and blue are particularly stable across languages [4, 5]. 
Since the prototypes of the categories are representative for the 
whole category, they are also called focal colors. However, the 
origin of color categories as well as their relationship to color 
perception remain unknown [6], in particular since color perception 
does not reflect the linguistic categories, at least not at a sensory 
level [7]. 

The sensory characteristics of human color vision are first and 
foremost defined by the activation of the 3 photoreceptors, the 
cones. Each cone is particularly sensitive in a specific region of the 
                                                                 
1 Laboratoire Psychologie der Perception, Université Paris Descartes, email: 

cwitzel@daad-alumni.de 

visible spectrum of light. Since one cone is particularly sensitive to 
comparatively short, one to comparatively long wavelengths, and 
one to wavelengths in between, they are called short-, middle-, and 
long-wavelength cones, or S-, M-, and L-cones. The combined 
excitation of these 3 cones carries the information about 
wavelength differences, and hence the color signal. To refer to a 
triad of cone excitations the term LMS signal will be used here. 
Further low-level stages of color processing are known, but the link 
to the ultimate appearance of colors and to color categorization 
remains a major question of color research [e.g. 8]. 

A new approach [9] 
discovered a property of the LMS signal that is strongly related to 
focal colors. This approach did not examine how a particular LMS 
signal is processed in the visual system. Instead, it inspected how 
the variation of LMS signals is constrained by the relationship 
between the human cones and the visual environment.  

The LMS signal is determined by the excitation of the cones 
through the light that impinges on the retina, the impinging light. 
More precisely, it depends on the wavelength composition (here 
spectrum) of the impinging light (henceforth impinging spectrum). 
Impinging light can come directly from a light source (emitted 
light), or it can be reflected off a surface (reflected light). In the 
latter, the impinging spectrum is the linear combination of the 
spectrum of the illumination, i.e. the illuminant, and the spectral 
reflectance properties of the surface, the reflectance spectra. The 
LMS signal can be determined by applying the sensitivities of the 
human photoreceptors (cone fundamentals) to the impinging 
spectrum.  

When the illumination changes, the reflected spectrum changes. 
Since the reflected light corresponds to impinging light for a given 
surface, the change of the reflected spectrum implies a change of 
the LMS signal.  

That new approach discovered that the way in which the LMS 
signal changes across a wide range of illuminations is particular for 
the focal colors that correspond to red, yellow, green, and blue. 

that the dimensionality of the variation in reflected light was 
reduced as compared to other surfaces. This finding implies that 
the color categories used in communication organize around colors 
that correspond to surfaces that have particular properties under 
changing illuminations. In the natural environment illuminations 
change mostly slowly by themselves, such as daylight from dawn 
to dusk. However, fast changes occur when the observer moves the 
surfaces, e.g. from shadow to sunlight or under a canopy of trees. 
They also happen when the observer tilts a surface under different 
simultaneous illuminations. Hence, those properties that relate 
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surfaces to color categories are mainly present when the observer 
interacts with objects so as to perceive their surfaces across 
different illuminations. According to this approach, color language 

eraction with the visual 
environment. The visual environment and the sensitivity of human 
photoreceptors have a certain stability across cultures and 
languages. Hence, this finding also explains why the focal colors of 
red, yellow, green, and blue are particularly stable across 
languages. 

1.2 Objective 

However, the previous studies [9, 10] that provided evidence for 
this relationship between changes in the sensory signal and focal 
colors, employed particular kinds of illuminants, surfaces, and 
human photoreceptors to establish the observed patterns. More 
precisely, they used natural illuminants and a limited set of 
standard color chips (Munsell chips) with particular properties 
(maximal saturation). As we will explain in detail in the respective 
sections below, those illuminants, reflectance spectra, and the 
human sensors have particular properties that might be responsible 
for the relationship between the changes of the LMS-signal and the 
focal colors.  

The present study investigates whether that relationship between 
LMS signal and focal colors is due to the characteristics of the 
illuminations, the reflectances, or the sensors. For this purpose, we 
examine this relationship, first, when using fluorescent and random 
illuminants, second, when applying sensors with spectral 
sensitivities other than the human photopigments, and third, 
different sets of reflectance spectra that result in similar colors as 
Munsell chips under neutral illumination.  

2 G E N E R A L M E T H O D 

[9] about the relationship 
between changes of the LMS signal and focal colors were the 
reference for all our comparisons. For this reason, we used the 
same algorithms (i.e. Matlab programs) for all calculations, and the 
same illuminants, refeflectances, and sensors as a reference to 
evaluate how strongly the relationship between LMS signal and 
focal colors changes when using different illuminants, reflectances, 
and sensors, respectively.  

2.1 Mathematical approach 

Philipona a [9] approach consists of three 
observations.  

2.1.1 Relationships between LMS signals 

The first observation concerns the relationship between the LMS 
signal of the illuminations (illuminant signal) and the LMS signal 
of the light reflected from the surfaces (reflection signal) across 
those illuminations. The illuminant signal is the LMS signal that 
would result if the light of the illumination directly fell into the 
eye, that is, without being reflected by a surface. The reflection 
signal for a surface is the LMS signal that results when light from 
the illuminant is reflected off the surface. The colour of a surface is 
thus seen as a map that transforms an incoming illuminant LMS 
signal, into an outgoing reflection LMS signal. 

A priori, the maps that link illuminant LMS signals to reflection 
LMS signals could be arbitrary, taking illuminant LMS triples into 

(2006) observed was the surprising result that for most surfaces, 
the maps were very accurately linear. The linear transformation 
between the illuminant (i L MS) and reflection signals (r L MS) may 
be characterized by a 3 x 3 transformation matrix A  that converts 
the illuminant signal into the reflection signals of a given surface 
across all illuminants. The matrix A that does this with minimum 
error (maximum variance explained) can be obtained by linear 

variation that is not explained through the linear transformation is 
almost zero (no more than around 0.015 of the total variance) for 
each of the reflectances.  

Hence, reflection signals of a given surface across a wide range 
of illuminations may be approximated with almost perfect accuracy 
by a linear transformation of the LMS signal of those illuminations. 
The matrix A  that accomplishes the linear transformations is 
specific to a given surface reflectance. 

2.1.2 Sensory singularities 

The second observation concerns the properties of the matrix A  
that defines the linear transformation. The 3 cone excitations that 
make up the LMS illuminant and reflection signals may be 
represented in a three-dimensional space, the cone-excitation 
space. In general, a 3 x 3 matrix will take a point in three-
dimensional space, and project it into another point in three 
dimensional space. For a typical matrix A, when the illuminant 
varies over the whole cone excitation space, the reflected LMS 
signal will also be able to vary across the whole cone-excitation 
space. However, sometimes a matrix will take points in three 
dimensional space and project them into a two-dimensional, or 
one-dimensional subspace of three dimensional cone excitation 
space. Such matrices are called singular matrices. Surfaces 
corresponding to matrices A that are singular have the property that 
the reflection signal will be restricted to a plane or a line within the 
three-dimensional cone-excitation space. The degree to which this 
happens is measured by the singular values of the matrix, as 
calculated by the singular value decomposition of the matrix. 
When a singular value is near to zero, there is an axis along which 
the variation of the reflection signal will be very small. Illuminant 
signals transformed by matrices with one near-zero singular value 
are projected into reflected signals restricted to a plane in cone 
excitation space. When two singular values are close to zero, there 
are two axes along which the variation of the reflection signal is 
small. Illuminant signals transformed by matrices with two near-
zero singular values are projected into reflected signals restricted to 
a line in cone excitation space.  

Singularities and focal colors 
The third observation consists in a relationship between the 

singularity and focal colors. In order to compare singularities of the 
matrices corresponding to different surfaces an index was needed 
to assess the singularity of a transformation matrix A  with a single 
number. As a result, the last value is closest to zero among all 
values. If this value is negligibly small compare to the other two 
values, the ratio between the second largest value and this last 
value will be large because the denominator is comparatively close 
to zero. However, if two values are close to zero, then the ratio 
between the first and the second value will be large, because only 



the first value is high, while the second value would be 
comparatively close to zero. As a result, the ratio between the first 
and the second largest singular values indicates whether the two 
dimensions are negligible and the transformation through matrix A 
is approximately one-dimensional. If this is not the case, the ratio 
between the second and third shows whether the one dimension is 
negligible and the transformation is approximately two-
dimensional.  

between cases when the reflectance signal was restricted to a one- 
or a two-dimensional subspace of cone excitation space. Instead 
they focused on whether the reflectance signal could occupy a 
three-dimensional region or not. They defined a singularity index 
in the following way. They sorted the three singular values in 
decreasing order (similar to what is done in a principal component 
analysis). They took the ratio of the first to the second of the sorted 
singular values (which will be large if there are two small singular 
values), and the ratio of the second to the third of the sorted 
singular values (which will be large if there is one small singular 
value). The maximum of the two ratios gives an indication of the 
degree to which the matrix compresses incoming illuminant signal 
into either a two-dimensional or a one-dimensional subspace of 
three-dimensional cone excitation space. The higher this 
singularity index, the less three-dimensional is the space occupied 
by the illuminant signal in cone excitation space. 

This singularity index allows comparing singularities across the 
reflectances. The singularities for the Munsell chips are illustrated 
by Figure 3.c.  

[9] observed that 
the pattern of singularities across Munsell chips (Figure 3.c) looked 
similar to the pattern of relative frequencies of focal color choices 
across those Munsell chips (Figure 3.b). In particular, high 
singularity indexes coincided with reflectances that are chosen 
most often and corresponded to focal red, yellow, green, and blue 
in English.   

2.2 Spectra 

[9], all spectra were normalized so 
that their maximum corresponds to 1.  

2.2.1 Illuminants 

[9] as well as Vazquez-Corral and 
colleagues [10] used measured and simulated daylight illuminants. 
As measured illuminants, they took 99 measurements of daylight 
spectra in Granda [11], and 238 daylight spectra of forests in 
Maryland [12]. The simulated daylight illuminants were based on 
the 3 basis functions specified by Judd and colleagues [13]. The 
parameters that combine these basis functions were fixed so that 
the resulting spectra produce a chromaticities within the area span 
by D45, D65, and D85. Examples of these illuminants are shown in 
Figure 1.a. 

 

F igure 1. Illuminants. Panel a.) Examples of daylight illuminants with red 
curves corresponding to 5 examples from the Grenada data base, green 

curves to the Maryland-forest illuminants, and blue curves to the simulated 
daylight spectra. Panel b.) shows the 12 illuminants F, where the blue 

curves correspond to the semi-broadbent illuminants F1-6, the black curves 
to the broadbent illuminants F7-9, and the red curves to the narrow, triband 

illuminant F10-12. Panel c.) illustrates 10 examples of random spline spectra. 

2.2.2 Photoreceptors 

In order to represent the sensitivity of the human photoreceptors, 
[9] applied 10-deg Stiles and Burch 

Color-Matching Functions [14], and Vazquez-Corral and 
colleagues [10] used the cone-fundamentals of Smith and Pokorny 
[15]. We employed the Stockman-Sharpe cone fundamentals of 
[16] for the simple reason that they directly refer to the sensitivity 
of the human photoreceptors and are particularly precise. In any 
case, results do not depend on whether cone fundamentals or color 
matching functions are applied (for details see SENSORS). The 
cone fundamentals are illustrated by Figure 2.a. 

 

F igure 2. Real and artificial sensors. Panel a.) shows the cone fundamentals 
of Stockman and Sharpe [16], b.) the color matching functions of Stiles and 
Burch [14], c.) non-overlapping, orthogonal sensors, d-f) spectra consisting 

of random normal distributions, and g-i) random spline spectra. 

2.2.3 Reflectances 

The reflectances for glossy Munsell chips were retrieved from the 
data base of the University of Joensuu [17]. To establish the 
relationship between singularities and focal colors the reflectance 
spectra of a set of 320 maximally saturated Munsell chips (i.e. 
maximum Munsell Chroma) were used. The Munsell System 
arranges color chips by their hue (Munsell Hue), lightness 
(Munsell Value), and chroma (Munsell Chroma) [18]. The Munsell 



chips varied in 40 levels of hue and 8 levels of lightness (Munsell 
Value 2 to 9). Throughout this paper, the set of Munsell chips is 
arranged vertically by its 8 lightness and horizontally by its 40 hue 
levels. Figure 3.a illustrates the variation of Munsell Chroma 
across the 8 times 40 chips.  

This choice of Munsell chips allows to compare the singularities 
of these reflectances with the focal colors measured in the World 

Color Survey, a cross cultural study on color naming [4]. Figure 
3.b shows the relative frequency by which observers of 110 non-
industrialised societies chose focal colors. These modes of these 
choices coincide with the prototypes of red, yellow, green and blue 
in English.  

 

 
F igure 3. [9]. Graphics show Munsell chips arranged by their hue (x-axis) and lightness (y-

axis), which are defined as Munsell Hue and Munsell Value in the Munsell Color System [18]. In panel a contours refer to the singularity indices, in panel b 
to the relative frequencies of focal color choices in the World Color Survey (WCS [4]), and in panel c to Munsell Chroma. Red contours correspond to high, 

green to medium, and blue to low values. 

2.3 Analyses 

To evaluate the impact of changes to the settings (illuminants, 
reflectances, or sensors) on the pattern of singularities, we 
compared singularities for new settings (e.g. random illuminants) 

[9] 
settings (Figure 3.c). In order to quantify and to statistically 
evaluate the similarity between the patterns of singularities, we 
calculated correlations across the 320 Munsell chips. 

In order to assess the relationship between singularities and 
focal color choices we calculated the correlation between the 
relative frequencies of focal color choices and the singularities 

[9] settings, 
singularities explained 42% of the variance of focal color choices 
(Figure 3.b) (r=0.65, p<0.0001). This correlation quantifies the 
similarity between the patterns in panels b and c of Figure 3. 

3 I L L U M IN A T I O N 

[9], the effect of the 
spectra that may be decomposed into 3 basis functions can 
necessarily modeled by a three-dimensional transformation. The 
first question is, whether this transformation is as perfect as 
reported in figure 1 of P [9] when using 
illuminants that may not be decomposed into 3 basis functions. The 
second, main question is whether the same distribution of 
singularities are reproduced with these artificial illuminants, as 
those obtained with the natural ones. 

3.1 Method 

To test for the role of the distribution of illuminants, we inspected 
what happens to the singularity index, when using different kinds 
of artificial illuminants that cannot be decomposed into 3 basis 
functions. For this purpose, we used a set of 12 standard 
illuminants F1-12, which simulate fluorescent lights. The spectra are 
displayed in figure Figure 1.b. And we used a set of 100 random 

illuminants that were produced as follows: For each random 
spectrum, 10 data points (x = wavelength, y = relative intensity) 
were randomly created within the visual spectrum, i.e. between 400 
and 700nm. A random value along the y-axis (intensity) was 
determined at the beginning and end of the spectrum. A smooth 
curve was interpolated through cubic splines. The values at the 
beginning and end of the spectrum prevented that intensities 
systematically increase at the beginning and end of the spectrum, 
since cubic functions increase to positive or negative infinity. 10 
example random spectra are shown in figure Figure 1.c.  Apart 
from that Stockman-Sharpe cone fundamentals and maximally 

[9]. 

3.2 Results 

For all sets of illuminations, reflected signal calculated through the 
transformation matrices A were extremely similar to the actual 
reflected signal based on the convolution of spectra. The mean 
variance explained by the linear calculation with transformation 
matrix A was above 99% for fluorescent (R2=0.998) and random 
spline illuminants (R2=0.997). This was almost as high as for 
natural illuminants (R2=99985). This result indicates that the 
reflected signal can be approximated with high accuracy for 
fluorescent and random spline illuminants, too. 

The singularity indices for natural illuminants and random 
illuminants were highly correlated across the 320 Munsell chips 
(r=0.89; p<0.001). Fluorescent illuminants yielded much lower, but 
still significant correlations with the SI of natural (r=0.36, p<0.001) 
and random spline illuminants (r = 0.48, both p < 0.0001). These 
results imply that random spline illuminants produced similar 
singularities across Munsell chips as natural illuminants, but 
singularities calculated for fluorescent lights differed from both. 

Since the singularities calculated for the transformations under 
random spline illuminants were similar to the one under natural 
illuminants, they also explained 32% of the variance of the focal 
color choices (r = 0.56, p < 0.001). In contrast, singularities for 
fluorescent illuminations explained only 8% of the variance of 



focal colors (r=0.29, p<0.001). According to these results, the 
relationship between singularities and focal colors is slightly 
affected when using random instead of natural illuminants. Using 
fluorescent illuminants undermines this relationship.  

 

F igure 4. Singularity indices for different types of illuminants. Panel a.) 
[9]; panel b.) Fluorescent 

illuminants; panel c) Random spline illuminants. Format as in Figure 3.c. 

3.3 Discussion 

While random spectra produced similar singularities as natural 
illuminants, singularities for fluorescent illuminants differed from 
both. Moreover, the correlation between singularities and focal 
colors is also much lower for fluorescent than for the other 
illuminants. A particularity of fluorescent spectra is that they have 
a few pronounced peaks in their spectral power distributions (cf. 
Figure 1.b). Hence, they have rather narrow-band spectra compared 
to natural illuminants. It might be that this peakiness is the reason 
for the particularity of the singularity indices for fluorescent lights. 
Hence, the bandwidth of illuminants may play an important role for 
the relationship between singularities and focal colors.  

However, random spline illuminants also include both very 
narrow-band, peaky and broad-band spectra (cf. Figure 1.c). The 
observation that random spline illuminations produced a similar 
singularity pattern as the one found with natural illuminants 
strongly indicates that the type of illumination is not the major 
source of variation of singularities across colors  as long as they 
are predominantly broadband. 

In the natural environment most illuminations are produced by 
filtered and scattered daylight. As mentioned above, daylight may 
be approximated by 3 basis functions [13], and is predominantly 
broad-band (Figure 1.a). As a result, most illuminants in the natural 
environment should be predominantly broadband, if not strong 
filtering occurs. For this reason, the relationship between 
singularities and focal colors most probably holds in the natural 
visual environment.  

4 SE NSO RS 

The color signal may be mathematically represented by color 
matching functions for arbitrary, virtual RGB sensors, Tristimulus 
values (XYZ) and cone fundamentally (LMS).  
The Stockman-Sharpe cone fundamentals and the Stiles Burch 
color matching functions are illustrated in Figure 2.a-b. The 
singularity index is largely invariant as to this kind of 
representation. This is illustrated by the Sis in Figure 5.a-b, 
respectively. These SIs correlate with r = 0.999 across Munsell 
chips. The tiny deviations of SIs between the two sensors are 
probably due to differences in the empirical measurements that 
underlie the respective color matching functions. Koenderinck [19] 
argued that the constraints of the cone sensitivities may be at the 

source of invariances in the distribution of object colors. We tested 
this idea by using artificial sensors. 

4.1 Method 

To check whether the correlations between the spectral sensitivities 
affects the singularity index, we produced three equally spaced 
spectral sensitivities that do not overlap (Figure 2.c). This was 
done through three normal distributions that were distanced by 6 
standard deviations, so that less than 0.3% overlap, and the 
overlapping 0.3% were set to zero. Then we produced 3 random 
Gaussian spectral sensitivity functions that could overlap, but 
would converge towards zero within the visible spectrum. The 
peaks of each function in terms of wavelenghts as well as their 
respective width (standard deviations) were determined randomly 
(Figure 2.d-f). And finally, we produced 3 random spectral 
sensitivities based on cubic spline interpolations (Figure 2.g-i).  
These overlapped and did not converge towards 0. To test the 
impact of the sensors on the SI, the original Munsell chips and 
natural illuminations were used as illuminants and reflectances 
here [9]. 

4.2 Results 

Panels c-i of Figure 5 show the distribution of the singularity index 
when using artificial sensors. Orthogonal, non-overlapping sensors 
(Figure 5.c) produced extremely similar singularity indices as 
Stockman-Sharpe cone fundamentals (Figure 5.a), and Stiles-Burch 
color matching functions (Figure 5.b). In fact, SIs based on the 
orthogonal sensors correlated with r = 0.97 and 0.96 the SI for the 
human photopigments as measured by Stockman-Sharpe and 
Stiles-Burch, respectively. Given the high similarity in 
singularities, it is no wonder that the SIs of orthogonal sensors 
yielded correlations (r=0.62, p<0.001) with the focal colors that 
were almost as high as those for the human photoreceptors (both r 
= 0.65). These results show that the overlaps among spectral 
sensitivities and the resulting correlations among the color signals 
are irrelevant for the distribution of the singularity index across 
colors, and their relationship to focal colors. 

The singularities for the random normal sensors in panels d and 
f were also highly correlated with the singularities of the 
photoreceptors (r=0.87 and r=0.91) and the focal colors (r=0.57 
and r=0.63). However, the random normal distribution in Figure 
1.e did not yield a significant correlation with the singularities for 
the photopigmens (r=-0.05, p=0.38) and the focal colors (r=0.03, 
p=0.60). 

Singularity indices with random spline sensors (last row, panels 
g-i) were correlated with those of the photopigments (r = 0.59, r = 
0.66, and r = 0.78, respectively, all p < 0.0001). Moreover, they 
yielded correlations with the focal colors r=0.37, r=0.31, r=0.50, 
respectively, all p<0.001), explaining 14%, 10% and 25% of the 
variance.  



 

F igure 5. Singularity Indices for different sensors. a.) cone fundamentals of 
Stockman Sharpe; b.) color matching functions (CMF) of Stiles and Burch; 

c.) orthogonal sensors. Format as in Figure 1.c. 

4.3  Discussion 

 
In sum, singularities were surprisingly stable across different 

sensors. The fact that they barely changed when using orthogonal 
sensors instead of photopigments illustrates that the correlation of 
L- and M-cones (red and green curve in Figure 2.c) does not play 
any role for the distribution of singularities across the color chips, 
and their relationship to focal colors.    

In contrast the random normal spectra in Figure 2.d all overlap 
strongly, and in Figure 2.f one of the sensors is extremely narrow-
band. The observation that these sensors yield similar singularities 
as the photopigments suggests that it does not matter whether the 
sensitivity spectra overlap, or whether some of the sensors have 
extremely narrow-band spectra. The fact that even the singularities 
for the random spline sensors yield considerable correlations with 
those of the photopigments and even with the focal colors implies 
that the shape of the sensitivity functions is not a major factor 
either.  

In contrast to all the other sensors, the random normal sensors in 
Figure 2.e did not yield such correlations. The sensors do not cover 
the whole visual visible. Additional analyses with more randomly 
generated normal and spline sensors showed that sensors that do 
not cover the whole visible result in much lower correlations with 
the singularities of the photopigments and the focal color choices. 
These observations suggest that the main characteristic of the 
sensors that matters for the relationship between singularities and 
focal colors is whether their spectra are distributed over the whole 
visible spectrum or not.  

5 SUR F A C ES 

There are 2 critical questions concerning the surfaces. First, the 
maximally saturated Munsell chips used by Philippona and 

[9] to establish a relationship with focal colors had 
different Munsell Chroma because the Munsell system does not 
provide the same range of Chroma for all chips. In fact, their 

singularity index correlated as much (or even more) with Munsell 
Chroma (r=0.70, p<0.0001) as with focal color choices (r=0.65, 
p<0.0001). At the same time, it has been observed that focal color 
choices also coincide with the most saturated Munsell chips [20, 
21]. In fact, focal color choices correlate with Munsell Chroma 
(r=0.41, p<0.0001). Consequently, the question arises of whether 
the singularity index is related to Chroma, and whether the 
relationship between singularity index and focal colors is due to the 
differences in Chroma of the chips. To test this idea, we examined 
Munsell chips that are more uniform in chroma.  

Second, the reflectance properties of Munsell chips may be 
particular because they are made out of particular artificial 
pigments. The question arises of whether surfaces that look the 
same or at least highly similar under the most common 
illuminations produce similar singularities. For example, does a 
surface with the same red as the perfectly red Munsell chip, but 
with a different reflectance spectrum also have a particularly high 
singularity? To investigate this question we examined surfaces that 
produce the same LMS signal when they reflect white light. When 
light produces exactly the same LMS signal, it is called metameric. 
While it is true that these surfaces will not be metameric under 
different illuminations, they look still similar under a wide range of 
neutral illuminations, i.e. a red surface would still be red under 
daylight and a tungsten bulb (whether this is due to color constancy 
or insensitivity to small changes is not of importance here). 
However, in order to assess potential differences resulting from 
small changes in illumination, we used two kinds of light, white 
light and daylight. 

5.1 Method 

In order to make Munsell chips more uniform in chroma, we 
simply replaced all Munsell chips with a Munsell Chroma above 6 
in the set of maximally saturated Munsell chips by chips with a 
Munsell Chroma equal to 6. However, some particularly light or 
dark Munsell chips (Munsell Value = 2 or 9) are not available at 
this Munsell Chroma. Hence, even our set of Munsell chips with 
uniform Munsell Chroma still involved differences in Munsell 
Chroma across Munsell chips. This was barely avoidable since 
some dark and light colors were only available with a Munsell 
Chroma of 2, and at this level of chroma all colors tend to be called 

desaturated colors to focal color choices. For the sake of simplicity, 
uniformly 

back to this issue when discussing results.  
To obtain sets of reflectances that are metameric with the 

Munsell chips under neutral illuminations, we determined surface 
reflectances that produce metameric LMS signals, when reflecting 
equal energy white or daylight. For this purpose, we calculated the 
spectra reflected off the surfaces of the Munsell chips under equal 
energy light (CIE standard illuminant E) and simulated daylight 
(CIE standard illuminant d65). Then we calculated the fundamental 
metamers for the spectra of the scattered light [22]. A fundamental 
metamer is the part of the impinging spectrum that is common to 
all metameric impinging spectra. Finally, we determined the 
reflectances that would reflect these lights under those illuminants 
(Note that for illuminant E the fundamental metamer for the 
impinging spectra are the same as calculating the fundamental 
metamer directly for the surface reflectance). This provides us with 
two sets of surfaces for each set of Munsell chips (maximally and 



uniformly saturated), namely one that reflects metameric light 
under illuminant E, and one that reflects such light under 
illuminant d65.    

As before, the set of natural illuminants and the human cone 
fundamentals were used to calculate LMS signals and singularity 
indices.   

5.2 Results 

More uniform Munsell Chroma (Figure 6.b) changed the 
distribution of singularity indices as compared to the maximally 
saturated Munsell chips (panel a). However, the correlation 
between both sets of singularity indices explained only 30% of the 
variance; however, it was still significant, indicating that some 
similarities between the two distributions (r=0.55, p<0.001). There 
is no data available for focal color choices of uniformly saturated 
Munsell chips. These chips are never chosen as focal colors for red, 
yellow, green, and blue, but they might be chosen for brown and 
pink. At the same time, the singularity indices of these chips are 
barely correlated to the focal color choices for the maximally 
saturated chips (r=0.14, p<0.01). These results indicate that the 
singularities of the surfaces are strongly related to saturation and 
chroma. Moreover, changes in chroma affect the relationship 
between focal colors and singularities. 

Using fundamental metamers also affected the patterns of 
singularities across colors (second and third row compared to first 
row in Figure 6). The singularities for the fundamental metamers of 
the maximally saturated Munsell chips under illuminant E (panel c) 
and D65 (panel e) were still fairly similar to those of the real 
Munsell chips (panel a). Correlations between the singularity 
indices of the original chips and the ones of the fundamental 
metamers under illuminant E and D65 explained 60% (r=0.77, 
p<0.001) and 33% of the variance (r=0.57, p<0.001), respectively. 
Moreover, the SIs of the fundamental metamers under illuminant E 
and D65 explained 21% (r=0.46, p<0.001) and 10% of the focal 
color choices (r=0.32, p<0.001).  

The pattern of singularities was still more different between the 
uniform Munsell chips (panel b) and their fundamental metamers 
(panels d and f). There correlations explained only 12% for the 
metamer under illuminant E (r=0.35, p<0.001) and 10% for the 
metamer under D65 (r=0.32, p<0.001). These results show that the 
pattern of similarities is not the same across surfaces that are 
metameric under white light and natural daylight.  

Finally, the singularity indices for these fundamental metamers 
of the uniformly saturated chips barely correlated with the 
singularity indices of the original maximally saturated chips (panel 
a) (r=0.07, p<0.21; r=0.11, p<0.06) and not correlated with the 
focal color choices (r=-0.11, p=0.06; r=-0.07, p=0.24). Only the 
results for the fundamental metamers under the two kinds of 
illuminants were almost the same for maximally (panel c and e; 
r=0.92), and uniformly saturated Munsell chips (panel d and f, 
r=0.95). The high similarity between the singularities for the two 
kinds of fundamental metamers is not surprising since illuminant E 
and D65 are very similar. While illuminant E is maximally 
broadband (equal energy), D65 is also a broadband spectrum. 
Consequently, the LMS signals of the same surfaces will be very 
similar under these illuminants, and as a consequence singularity 
indices must be similar. 

 

F igure 6. Singularity index for real and artificial Munsell chips. The panels 
on the left and right sides, respectively, correspond to Munsell chips with 

maximal and uniform Munsell Chrom. The first row (panels a-b) 
corresponds to the original reflectance spectra of the Munsell chips, the 
second row (panels c-d) to the reflecatances that reflect lights that are 

metameric with the Munsell chips under illuminant E, and the third row 
(panel e-f) to reflectances that reflect metameric lights under illumination 

D65. 

5.3 Discussion 

In sum, results with different levels of Munsell Chroma show that 
the singularity index and its relationship to focal colors depends on 
chroma. However, it must be kept in mind that even our set with 
uniform Munsell Chroma did not result in the same Munsell 
Chroma for all Munsell chips. Moreover, Munsell Chroma is not a 
reliable control for perceived chroma in the first place [23, 24], i.e. 
even if Munsell Chroma was the same across chips this would not 
mean that the actual perceived chroma would be perfectly equal. 
Given the relationship between singularities and chroma, 
inequalities in chroma may explain some of the small, but 
significant correlations between singularity indices across all the 
reflectances tested here, i.e. including the ones in the set with 
uniform chroma. The results with fundamental metamers show that 
not all surfaces that look like the typical red, yellow, green, or blue 
yield particularly high singularity indices.  

These findings suggest that there is something particular about 
the reflectances of Munsell chips that produces the strong 
relationship between singularities and focal colors. For example, it 
might be that pigments are particularly pure for the chips that 
correspond to focal colors. In this case, these chips would have 
reflectances with narrower bandwidth. These narrow bandwidths 
might be the origin of both, highest ranges of available chroma in 
the Munsell system, and pronounced singularities.  

6 C O N C L USI O N 

The present study investigated whether characteristics of 
illuminants, reflectances, or sensors are the main determinants of 
the relationship between focal colors and the singularities in the 
variation of LMS signals across changes in illumination. We found 



that the relationship between singularities and focal colors is stable 
across a wide range of illuminations, including random 
illuminations, as long as they are predominantly broadband. It is 
also stable across variations of the sensors as long as the 
sensitivities of these sensors cover the whole range of the visual 
spectrum. In contrast, the characteristics of the reflectances 
strongly affected the distribution of singularities across colors, and 
hence was crucial for the relationship between singularities and 
focal colors.   

It would be important to determine precisely which 
characteristics of the reflectance spectra modulate singularities. 
Once we know this, we can answer two important question. Once 
we can characterize the reflectances according to the singularities 
they produce, we can investigate how these characteristic of the 
reflectances are related to perceived attributes of color, such as 
perceived chroma, hue, lightness, variability of colors and color 
constancy. The perceptual correlates of singularities may give 
insight into how the properties reflected by singularities are 
translated into the perception of a human observer. 

Moreover, the visual system and color categories might be 
mainly determined by the natural visual environment human 
observers experience. Hence, the question arises whether the 
characteristics of the reflectances that link singularities to focal 
colors, such as in the case of Munsell chips, also occur in with 
reflectances in our natural visual environment. Such reflectances 
are mainly determined by natural pigments and filtering through 
layers of other material, e.g. cellulose filtering light reflected by 
chlorophyll. The question is whether these pigments have those 
particular reflectance properties that produce singularities, which 
are related to focal colors and color categories. In this case, focal 
colors would not simply emerge from sensory singularities of all 
kinds of surfaces under all kinds of illumination changes. Instead, 
they would be the result of seeing surfaces under changing 
illuminations as they occur in the visual environment. Hence, color 
language would be related to objects, with which human observers 
interact under changing illuminations in the natural environment.    
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