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Abstract.
In this paper we propose a new HMM-based framework for the

exploration of realtime gesture-to-gesture mapping strategies. This
framework enables the realtime HMM-based recognition of a given
gesture sequence from a subset of its dimensions, the covariance-
based mapping of the gesture stylistics from this subset onto the
remaining dimensions and the realtime synthesis of the remaining
dimensions from their corresponding HMMs. This idea has been
embedded into a proof-of-concept prototype that “reconstructs” the
lower-body dimensions of a walking sequence from the upper-body
gestures in realtime. In order to achieve this reconstruction, we adapt
various machine learning tools from the speech processing research.
Notably we have adapted the HTK toolkit to motion capture data and
modified MAGE, a HTS-based library for reactive speech synthesis,
to accommodate our use case. We have also adapted a covariance-
based mapping strategy used in the articulatory inversion process of
silent speech interfaces to the case of transferring stylistic informa-
tion from the upper- to the lower-body statistical models. The main
achievement of this work is to show that this reconstruction process
applies the inherent stylistics of the input gestures onto the synthe-
sised motion thanks to the mapping function applied at the state level.

1 INTRODUCTION

It is pretty straightforward to assume that we live in a technologi-
cal context where the capture, understanding and synthesis of human
gestures lead to unprecedented opportunities. Indeed motion capture
(mocap) technologies are finally moving out of the experimental era
and a growing amount of research groups and companies are now
putting their hands on very accurate and easy-to-use motion capture
systems. This intense development of body tracking solutions has
definitely brought Natural User Interaction (NUI) to the mainstream.

With this massive increase of NUI opportunities comes a grow-
ing demand for the further understanding of human gestures and the
leveraging of such advanced knowledge in new realtime applications.
Encountered issues are related to both the recognition of ongoing
gestures and the generation of humanlike motion sequences. In many
scenarios machine learning has become a very privileged way of ad-
dressing these issues and various classes of algorithms based on sta-
tistical models have emerged over the last decades [9]. Approaches
based on Hidden Markov Models (HMMs) are probably among the
most popular [4, 12] but human motion and action modelling is now
considered under an increasing amount of viewpoints.
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In our work we are very interested in gestures that require a cer-
tain level of motoric skills and for which the use of machine learning
can lead to better tracking, representation or query of those skills:
dance, musical practice, craftsmanship, gait, etc. Beyond the func-
tional classification of gestures, we put the focus on motion stylistics.
By styles, we mean the possible variations encountered in the reali-
sation of a gesture for an identical functional pattern: a step in gait,
grabbing an object, playing a musical phrase, etc. There are many
causes for the variability of a gesture: intra- or inter-personal differ-
ences, emotional state, school of practice (e.g. French vs. Russian
piano technique), etc. We think that considering these styles in both
the recognition of gestures and the synthesis of motion sequences can
greatly improve the expressivity of resulting applications.

In this project we have developed a realtime application that aims
at addressing several interesting questions about gesture stylistics.
As a proof of concept, our applications is “reconstructing” full-body
human gait motion in realtime. The reconstruction process relies on
three components using various machine learning concepts:

1. online gesture recognition: HMMs are used to recognise and fol-
low the ongoing step sequence from an input stream of mocap data
corresponding to the upper body joints (head, torso and arms);

2. covariance-based mapping: the full covariance matrices of HMM
emitting distributions are used to “project” the stylistics of the
upper-body HMMs onto the lower-body HMMs (hips and legs);

3. realtime motion synthesis: motion trajectories of the lower body
joints are synthesised in realtime from the lower-body HMMs.

In this paper we first give an overview of the literature in gesture
recognition and motion synthesis in Section 2. In Section 3 we de-
scribe our mocap data (a database of stylistic human gait) and our
motion model. Then we describe our gait reconstruction process in
Section 4. Finally we conclude and prospect about future works.

2 RELATED WORK
In Section 1 we have shown that our approach lies between two very
specific problems involving machine learning: the online recognition
of input gestures and the realtime synthesis of humanlike motion.
Here we give an overview of related work in these fields.

2.1 Gesture recognition
There is an inherent variability in the realisation of human gestures.
Literature mentions several classes of approaches to deal with such
variability in gesture recognition, depending on the considered ap-
plication. Particularly, online detection of human activity appears to



be a difficult problem. One popular approach is the Dynamic Time
Warping (DTW) process and its numerous variants [2]. DTW con-
sists in the realignment and distance evaluation between the ongoing
gesture and a series of reference gestures. Another very successful
class of algorithms use HMMs to “summarise” the time series cor-
responding to the reference gestures, taking into account their inher-
ent variability. Then the likelihood of the ongoing gesture is com-
puted from these models to recognise the reference gesture. Run-
ning HMM-based recognition in realtime is not trivial. The Gesture
Follower [3] lies somewhere between DTW- and HMM-based ges-
ture decoding. Indeed a single occurrence of the reference gesture
is captured and used to build a giant HMM. Then subsequent oc-
currences are simultaneously realigned and evaluated with the like-
lihood measure, as the gesture is happening. We can also find ges-
ture recognition approaches based on Hidden Conditional Random
Forests (HCRF), where motion is modelled as a fixed amount of
poses represented by hidden states [17]. Other approaches include,
for instance, particle filtering, condensation algorithms, Deep Neu-
ral Networks (DNN), etc. Exhaustive reviews of the literature can be
found in [9, 5].

If we think beyond motion, the area where time series recognition
is the most advanced is speech processing. Indeed speech recognition
has brought very sophisticated and matured toolkits, especially using
HMMs (see for instance HTK, the Hidden Markov Model Toolkit
[16]). In this research we have taken the approach of considering that
speech and motion exhibit similar trends. Therefore we use HMM-
based speech recognition tools for gesture recognition.

2.2 Motion synthesis
Machine learning has brought several representations and generative
models for trajectory generation. Some techniques exhibit interesting
properties for handling styles, such as the automatic separation of the
stylistic component in the model: PCA [15], Conditional Restricted
Boltzmann Machine (CRBM) [10] or Dynamic Bayesian Network
[8] can be found in the literature. HMMs have also widely been
used for motion synthesis [4]. In previous work about gait synthesis,
we have also proved that HMM-based generative approaches pro-
posed in the speech processing research – like HTS, the HMM-Based
Speech Synthesis System [14] – could advantageously be adapted to
motion synthesis and handle stylistic information in a flexible way
[12].

3 MOTION MODELLING WITH HMM
Our approach towards HMM-based gesture recognition and motion
synthesis is to adapt the advanced speech recognition and synthesis
toolkits so that the phonetic sequence is replaced by motion segments
and the algorithms take mocap data as their feature vectors. In HMM-
based speech processing, the synthesis task has “emerged” from the
recognition research, with the complementarity between HTS and
HTK. So we do with motion data, i.e. we train HMMs on a corpus of
motion-captured data and we use these trained models both for the
recognition and the synthesis steps. As described in Section 4, only
working within this unified recognition/synthesis framework allows
us to achieve the reconstruction process, i.e. generate new motion
trajectories from realtime-recognised gestures.

Our proof-of-concept application benefits from previous work in
gait synthesis and the availability of the Mockey database [13]. In the
Mockey database, one actor performs eleven different styles arbitrar-
ily chosen for their recognisable expressivity, such as proud, macho,

Figure 1. Topology of the HMMs that we have used to model walking
sequences: left-to-right with no skip with Gaussian distributions in emitting
states. In this example, we use 3 states instead of 5 for readability reasons.

afraid, drunk, etc. The data was recorded with an inertial motion cap-
ture suit: the Animazoo IGS 190 [1] and acquired at 30 frames per
second. The skeleton is represented by 18 3D joints, hence giving 54
dimensions to the motion data which consists in 3D angles parame-
terised as exponential maps. The human walk is labelled as an alter-
nate sequence of left and right steps. We use one HMM for each step.
The topology is five-state left-to-right with no skip and observations
are modelled by one multidimensional full-covariance Gaussian dis-
tribution. This setup is similar to the ones used in speech processing.
Figure 1 illustrates this topology for a simplified case of three emit-
ting states instead of five, for readability reasons. In this use case,
each HMM encounters all the stylistic variations, as performed by
the actor in the inertial suit. Therefore we end up with two HMMs,
corresponding to a clustering of the gait space in two steps.

4 REALTIME GAIT RECONSTRUCTION
Our work with motion stylistics draws attention towards two differ-
ent approaches. In previous work we have explored the idea that ges-
ture styles can be labelled explicitly [11]. This differentiation leads
to a large amount of small clusters in the motion space (Figure 2 left).
This choice impacts on application design in various ways. Notably
it suggests that any new gesture, to recognise or generate, should be
seen as a combination of these small stylistic leaves in which it is dif-
ficult to navigate. In this work we adopt an implicit approach towards
style control since no explicit tagging of the styles is achieved. Each
gesture is a large cluster in the motion space and navigating inside
the cluster is made possible with an appropriate mapping function
(Figure 2 right).

Figure 2. Comparaison between an explicit labelling of motion styles
(many clusters and no mapping possible) and an implicit approach towards

the same question (few clusters and an in-cluster mapping required).

Our realtime gait reconstruction application was built to validate
the concept of the exploration of a stylistic motion space using a
subset of the motion dimensions to recognise the motion and its



style in realtime and drive the stylistic synthesis of the remaining
dimensions in realtime. We have built a prototype that will synthe-
sise the stylistic gait (motion + style) of the legs of a virtual char-
acter using, as an input, the gestures captured from the upper part
of the body during the gait sequence. The process is hence split into
three realtime-performed tasks: online HMM-based gesture recog-
nition, covariance-based mapping and reactive HMM-based synthe-
sis. The whole process is illustrated in Figure 3. An illustration of
the realtime stylistic walk reconstruction can be found at http:
//youtu.be/gB2Bz5Nx8oU.

Figure 3. Illustration of the overall process used in the gait reconstruction
example: continuous inputs are decoded with a realtime Viterbi algorithm.

This decoding generates an ongoing state sequence that is used for synthesis
of the outputs. Before emitting distributions are used for synthesis, means

are modified by a mapping function based on covariance.

4.1 Online Gesture Recognition
The first task in the gait reconstruction process is the decoding of
the input gestures. For testing our application, we simulate the input
motion by sending a realtime data stream with the upper-body joints
to the recognition module. In the current stage, this module performs
a simple realtime Viterbi algorithm. Indeed it only performs the for-
ward step of the standard Viterbi procedure, as illustrated in Figure 4.
In this forward-only algorithm, the probability of being in each state
at each time t is computed in the same way as for the standard Viterbi
algorithm. However at each time t, a decision is taken and the most
likely state is considered as the decoded state. The path is hence de-
fined at each increment in the input sequence.

Figure 4. Realtime Viterbi decoding: illustration of the forward-only
approach on a simplified five-state model. The “best” state sequence is

determined for each increment in the Viterbi lattice.

Since the decoding is performed on a subset of the dimensions of
the original data, we implemented a mask vector that inhibits the di-
mensions corresponding to the outputs of the reconstruction process.
The realtime Viterbi decoding provides the most likely HMM (and
hence label) that corresponds to the streamed data and the most likely
current state of the model. Once the most likely current state has been

decoded, it can be used to build the state sequence for the synthesis
stage. Before the stack of observation density functions can be ac-
cumulated for the synthesis step, the means are modified in order to
take into account the style of the incoming streamed data, which is
the next step of the reconstruction procedure.

4.2 Covariance-Based Mapping
Once the underlying model and state is determined for each observa-
tion of the input gesture (in our case: upper-body motion), our sys-
tem owns two important pieces of information. On the one hand,
we can associate one lower-body emitting distribution (multivariate
Gaussian of the lower-body joints) for each sample of the recognised
upper-body gesture. It is important to highlight that these queried
means and covariances correspond to the large clusters described in
Figure 2 and therefore to a gait model summarising the eleven styles.
On the other hand, we can compare the queried upper-body Gaus-
sians with the ongoing upper-body motion values. This “distance”
between the average motion statistics and the ongoing input motion
conveys information about the motion stylistics, i.e. it informs about
where the ongoing input motion is located in its cluster.

Then we need a mapping function in order to convert this esti-
mated distance in the upper-body space into a model transformation
in the lower-body space, transformation that we aim at being stylis-
tically consistent. In their work on articulatory inversion for the cre-
ation of silent speech interfaces, Hueber et al. have suggested the ba-
sics of such a mapping function [7]. The algorithm proposes to shift
the means and variances of the target models (in our case: lower-body
motion) according to the evaluated distance between input models (in
our case: upper-body motion) and ongoing input data. The mapping
function uses the covariance between input and target data as a way
of projecting the distance evaluated in the input space onto the target
space. Once the distance vector has been projected, we can shift the
means of the target models accordingly. In the silent speech interface,
it enables the speech sound to drive the articulatory models of the jaw
and the tongue. In the preliminary results of our gait reconstruction
prototype, we show that it allows the style of the upper-body to get
transferred on lower-body motion.

4.3 Reactive HMM-Based Synthesis
Every time a state model is generated by the two previous steps of
the reconstruction, it is then pushed into a queue that we name the
state queue. We already use the state queue for reactive HMM-based
synthesis with MAGE and it is introduced in [6]. Each element of the
state queue corresponds to an analysis frame of the upper part of the
body that has been recognized and for which we are going to use the
state models to synthesize a set of features for the lower part of the
body. The state queue is implemented as a ring buffer, as illustrated
in Figure 5 and between its tail and its head, it contains the last N
states pushed. These states are divided into three groups:

• past states (QP ): the first P state models in the queue (i.e. the
oldest models) correspond to frames of lower features that have
already been computed in previous iteration(s)

• current states (QC ): the next C state models corresponds to frames
of lower features that will be computed with the current iteration

• future states (QF ): the last F state models corresponds to frames
of lower features that will be computed in upcoming iteration(s)

QP and QF give some contextual information around QC neces-
sary to compute the C current frames in a smooth continuity with
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Figure 5. State queue implemented as a ring buffer. Showing two
iterations of the process, past iteration shown in dim colours and current

iteration shown in bright.

the past and future frames and, as such, large values of P and F
ensure a better reconstruction. However, increasing P and F also
increases the cost of computing the current set of features. Besides,
each “future” state in the queue actually corresponds to a frame of
input features that has already been recorded and recognized. Thus,
using F future states creates a delay of F frames between the time a
set of features from the upper part of the body is input in the system
and the time its corresponding set of lower features is output. Also
note that state sequences recognized a few seconds in the past have
generally no impact on the result of the computation of the current
features, therefore large values of P are unnecessary.

In the case at hand, we want to minimize the delay between the
input and the output to be as reactive as possible. Therefore, we set
P = 20 and F = 0 to set the state queue at a zero-frame delay.2

As for C, the relatively low frame rate allows us to make the whole
computation one frame at a time and we set C = 1. Note however
that for higher frame rate (or more computationally expensive cases)
we may need to compute blocks of several frames per iteration (C >
1) instead.

From the P+C+F state models, C frames containing the features
of the lower part of the body are computed [6]. Once these C output
frames have been computed, the oldest C frames are dropped from
the state queue, thus advancing in the state queue with a hopsize
equal to C, and the next iteration can begin with insertion of C new
state models.

5 FUTURE WORK & CONCLUSIONS

In this paper we have proposed a proof-of-concept prototype for the
realtime reconstruction of stylistic gait motion which outputs a subset
of motion dimensions given the other dimensions of the same motion
as input. The stylistic control of the synthesis is performed thanks to
a realtime recognition of the motion and of its state-by-state evo-
lution, combined with a covariance-based stylistic mapping adapted
from speech processing. This mapping function modifies the synthe-
sis model parameters in order to correspond to the incoming style.
We have shown that an implicit stylistic control is possible since the
output motion style could be controlled without any explicit tagging,
directly from stylistic input. The present use case involves stylistic
gait reconstruction, but we aim at testing it on other use cases in
the near future, involving expert gestures, like dance, craftsmanship,
musical gestures, and combined modalities such as the control of

2 The influence of upcoming states is lost, but using past frames still ensures
that the transitions between frames remain smooth, although a small degra-
dation might be observed compared to using non-zero values of F .

sound based on a realtime implicit mapping from stylistic gestures.
Other use cases such as the synthesis of smooth optical mocap like
data driven by noisier Kinect skeleton data are also envisioned. Fu-
ture work also involves the testing of different realtime approaches to
Viterbi decoding, as well as the testing of different mapping strate-
gies. We are also planning the realisation of user studies.
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