A Self Adaptive Architecture for Hand-Tracked 3D
Authoring Interface

Fabrizio Nunnari

1

DFKI
Alexis Heloir?
DFKI and LAMIH

Abstract.

This paper presents a natural and intuitive interface that uses a
consumer-range 3D hand capture device to interactively edit objects
in 3D space. After assessing the potential benefit of 3D input inter-
action in a preliminary study, we propose a self-adaptive architec-
ture that supports intuitive and efficient 3D manipulation while ac-
counting for the user’s skills and instantaneous performance. While
running, the system monitors the user’s behavior and performance to
maintain a straightforward user model. This model then drives an on-
line re-arrangement and re-parameterization of a rule-based system
driving the interaction.

1 Introduction

Recent advances in consumer-range interaction devices like the
Kinect® or the Leap Motion* has opened the door to an unpreceded
range of new user interfaces, interaction modalities and metaphors
where gesture and bodily interaction are the cornerstones. Taking in-
spiration from these trends, we propose a self adaptive architecture
that has the potential to assist novice users in 3D authoring task while
improving the productivity of skilled users.

In a preliminary experiment we evaluated the performances of two
users performing 3D authoring tasks using a hand tracker and a clas-
sical keyboard. The experiment aimed at understanding how better
the performance could be when using a hand tracker instead of a
mouse. Additionally, we have been able to quantify the proportion of
time spent using the keyboard (to manage the interaction) over the
time spent accomplishing actual editing. We found cues indicating
that this proportion depends on the user’s experience. This experi-
ment allowed us to define a set of requirements and guidelines that
are addressed in a keyboard-less self-adaptive architecture presented
in the second half of this paper.

2 Preliminary Experiment

The goal of this preliminary experiment is to assess the benefit in-
troduced by using the Leap Motion controller in basic 3D authoring
tasks: positioning objects in 3D space and posing humanoid charac-
ters. Using a mouse-based interface or a multitouch screen, users can
control at most three to four degrees of freedom at the same time

1 e-mail:fabrizio.nunnari @dfki.de

2 e-mail:alexis.heloir@dfki.de

3 http://www.xbox.com/kinect (25 Feb 2014)
4 http://www.leapmotion.com (25 Feb 2014)

([X, Y, scroll] or [X, Y, pinch, rotate]). In contrast, a 3D input device
like the Leap Motion provides a direct mapping between the physi-
cal space of the user’s hand and the edit space along six degrees of
freedom (Rotation and Translation). In theory, users could simultane-
ously move and rotate objects in the 3D space, thereby perform edit
tasks faster. We thus expect direct 3D manipulation to perform better
than the mouse and keyboard, at least for 3D object positioning. For
single target selection, Sears and Shneiderman [1] have shown that
direct-touch outperforms the mouse.

2.1 Task and Experiment design

We compare the performance of a 3D positioning task across two in-
put conditions: 1) Mouse and Keyboard (M&K) and 2) novel input
system based on Hand-Tracker and Keyboard (HT&K). This compar-
ison, however, can only be performed on subjects who already have
experience with 3D software. Since we realized that novice subjects
are not capable of performing the 3D manipulation task using key-
board and mouse, in our experiment the novice subject only used
the HT&K mode. We could however compare the performance of
the novice subject using the 3D input versus the performance of the
experienced subject using the Keyboard and Mouse, as well as the
differences for the same experienced user across the two modalities.

The evaluation has been carried out on two contexts. The first con-
sisted in positioning a 3D brick (translation and orientation) in a 3D
environment. The second consisted in posing a humanoid figure in
the 3D environment using the handles and the inverse kinematics
(IK) provided by its animation rig. In this configuration, the user is
controlling the translation and orientation of the end effectors, while
the joints configuration of the manipulated character are automati-
cally inferred by the IK system.

The character’s pose editing context has been split into two scenes:
hands positioning (translation and rotation), and hands+elbows posi-
tioning. The subject had to accomplish five tasks per scene. For each
task the goal was to fit the brick or the character’s hands inside a
semi-transparent box. Additionally, for the second scene of the pose
editing, the elbows had to fit inside a semi-transparent sphere. Fig-
ure 1 shows examples of correct alignments for hand and elbow. The
containers were by default coloured red, when the hand or the el-
bow was correctly centred and aligned the container colour turned
into green. For elbows only position is taken into account. The size
of the box was set to 22x16x10cm, distance tolerance to 3.5cm and
rotation tolerance to 0.35 radians (~20 degrees). The radius of the
spheres was set to 0.8, distance tolerance at 3.5cm.

Figure 1. Screenshots of the 5 character arms positioning tasks: hands forward, hello, pray, sir yes sir!, and stop

2.2 Subjects and Apparatus

We conducted the preliminary study on two subjects. The first sub-
ject was an expert 3D modeller and animator who has been regu-
larly using Blender for modelling and animation for the last 4 years.
He accomplished the tasks with both traditional Mouse and Key-
board (M&K) input system and with the Hand-Tracker and Keyboard
(HT&K). A second subject had no prior knowledge nor experience in
3D editing and manipulation. He conducted the study using only the
HT&K only since he was not capable of accomplish the tasks using
M&K.

The study has been conducted on a Mac Book Pro Laptop (2.4
GHz Intel Core i7 CPU, 16GB Ram, OS X 10.8.4) connected to a 22
inches monitor (resolution 1680x1050) at about 60 cm of distance
from the eyes. An operator was sitting next to the subject, monitor-
ing the advancement of the experiment, switching between tasks and
(de)activation the logging system. The 3D editor was Blender ver-
sion 2.66.1. We developed a set of Python add-ons to map the leap
Motion input onto 3D objects position. We are publishing on-line’
the sources that are necessary to build and reproduce the described
experiment.

2.3 Preliminary Results

For each trial, we recorded the time spent by the subject while manip-
ulating the interface (hitting one of the G,T,R or F key). We started
the timer immediately after the subject touched the first edit key to
begin a trail (task) and stopped the timer as soon as the task was
done, fulfilled, performed. We distinguished between the time spend
while moving objects in the scene (i.e. re-locating and/or rotating an
object) from the time spent in switching between different editing
modes.

Figure 2 shows the average time each participant took to accom-
plish each scene. We take as base reference the time needed to ac-
complish the tasks by the Expert user using traditional M&K devices
(first column of each triplet). Results show that: i) the expert sub-
ject was able to accomplish the tasks faster using the HT&K (-40.6%
average time needed), and ii) the novice subject using the HT&K
needed +24.3% average time more. If we consider only scenes 6 and
7 (the longest and later ones) these percentages further converge in
favour of the HT&K approach, with values of -45% and +5.7% re-
spectively. In other words, using the HT&M approach the expert user
is performing almost at double speed, and the novice user almost
matches the speed of the expert with M&K. We found significant

5 http://slsi.dfki.de/software-and-resources/

difference between the experienced user using M&K and the expe-
rienced user using Leap in scene 1 (Brick Translation) and 3 (Brick
Rotation and Translation) (p < 0.05). We also found a tendency for
scenes 4 (Hands) and 5 (Hands and Elbow) p < 0.09. Test was a two
tailed t-test with a significance level (a) set at 0.05.

The more the target object was mis-aligned from the object to
place, the better was the performance with the HT&K. A closer
look to the results shows that the performance gains obtained by the
HT&K compared to M&K increase with the task complexity. The
great variance in the task duration by the expert subject using the
HT&K can be explained by his tendency to quickly moving the ob-
ject in space by performing large gestures, which were causing the
Leap Device to occasionally loose track of the expert’s hand, forcing
him to redo some editing actions.

2.4 Insights

We observed a number of phenomena suggesting that performance
editing with the HT&M approach can further improve together with
the reliability of tracking technologies. In the brick context the sub-
ject had a tendency to align the hand to more naturally grab the brick,
as we do with handheld devices. In the arms editing context we no-
ticed the tendency to start the editing action putting the hand in a
mirrored position of the virtual hand. This tendencies were conflict-
ing with the request for the subject to avoid extreme vertical or upside
down palm positions, leading the Leap Motion into detection errors.

Task Completion Time

& Expert User, M&K W Expert User, HT&K Novice User, HT&K

Brick R&T Hands Hands and Elbows

Brick Translation Brick Rotation

Figure 2. Average time (seconds) needed to accomplish the tasks.

Novice User, HT&K

W Editing Time M Switch Time

100% T —
. B -

80% | -
60% T —
40% 1 —
0% T T T T 1
Brick Brick Brick R&T Hands Hands and

Translation Rotation Elbows

Figure 3. Proportions between editing time vs switch time.

We also compared the time spend in editing with the time spent in
switching editing operation. Figure 3 shows for, for the HT&K ex-
periments, the proportion between the editing time vs the switching
time. The more complex is the task, the more time (up to 20%) the
subject spend in switching between actions rather than in editing.

This suggested us to design an interaction mode based solely on
the hand tracking device, aiming at increasing even more the perfor-
mance and eliminating the need to learn keyboard commands. Also,
we believe that self-adaptation can be useful not only among differ-
ent users, but also during a long working session of a single user, as
consequence of his fatigue condition. We describe such design in the
following section.

3 Self-Adaptive Architecture

The overall architecture of our authoring system is summarized in
Figure 4. It follows a feedback-controlled loop model where the user
input (hand motion) is filtered out and analyzed by a component
called the Motion Analyzer. This component infers a set of mid-level
motion primitives and sends them to the interaction manager: a re-
configurable rule based system in charge of triggering the right inter-
action mode according to its input motion primitives. The interaction
manager delivers a flow of edit actions. This flow is continuously an-
alyzed by the Status and performance assessor. All the components
work at a high frequency (around 30 times per second), typically re-
quired by real-time interactive systems.

The system should also be capable of recognizing performance
level deterioration and take measures against it. Again, by enforcing
good practices or by suggesting pauses. Indeed gestural interaction,
when used extensively, might induce fatigue, sometimes called go-
rilla arm®. To avoid this, the assessor maintains a vector of descrip-
tors that could be viewed as a simplistic user model accounting for
proficiency and fatigue level. When the fatigue level increases too
much, the system suggests a short break to the user. Also, the Sta-
tus and Performance Assessor is continuously tuning the rules of the
interaction manager to improve the user’s comfort and level of per-
formance.

6 http://en.wikipedia.org/wiki/Touchscreen#.22Gorilla_arm.22 (25 Feb 2014)

Visual Feedback (e.g. object grabbed)
Mation i :
\ Hand Motion + Interaction | Edit action
Analyzer Primitives results
User —) Manager =
y (filter bank + (rule-based)
Leap SDK)
Rules Re-arrangement
Status and
Primitives Performance
Re-parameterization Assessor
(Stat. analysis)

Tips {e.g. have a break)

Figure 4. Our architecture is inspired by a feedback controller pattern

3.1 Motion Analyzer

The activity of the Motion Analyzer is based on the information
stream received from the hand tracking device. The Leap Motion
service provides data as a fast paced (30 Hz ca.) sequence of frames
through a web socket local connection. Each frame contains, among
others, information about the following elements: number of detected
hands and a set of data-structure instances storing the position and the
orientation of each palm and each detected fingertip.

The Motion Analyzer filters out and analyzes the flow of frames
streamed from the Leap. It consists of a set of primitive functions
performing the analysis on a time-sliding window buffer of the Leap
frames received in the last 2 seconds. All these functions are predi-
cates (they return true or false) and a selection of them can be viewed
as anonymous functions that are to be curryfied according to the pa-
rameterization instructions delivered by the Status and Performance
Assessor and used in the ruleset of the interaction manager.

3.2 Interaction Manager

The Interaction Manager is an online reconfigurable rule-based / pro-
duction system in charge of switching to the right interaction state
according to the values computed by the mid-level motion primitives
introduced in the previous section. The system handles three interac-
tion states, as depicted in the right side of Fig. 4:

e HOVER: this state is active when a hand has been detected by the
tracking system, but no editing action is actually carried on,

e GRAB: active when the user has selected an object and is moving
it (visual hint),

e IDLE: active when no hand is visible by the tracking device.

When defined, new motion analysis primitives are bound to a se-
lection of dynamic variables. They mostly represent time and dis-
tance thresholds. The value of these variables is updated on the fly
according to how the user performs.

The first rules govern the basic state transition triggered by the
presence/absence of the hand. When a new hand is detected the sys-
tem switches to state HOVER, regardless of its previous state. Sim-
ilarly, when a hand tracking is lost the system switches to the IDLE
state.

The rest of the interaction is based on the principle that when the
user wants to start an editing action he needs to stabilize her hand into

the sensor action space. When the hand is stable for enough time, the
selected 3D object will start following the hand. This rule requires
the user hand to be somehow far from the position where an object
was dropped (GRAB state exited) in order to avoid undesired re-
grabbing. Stabilizing the hand again terminates the editing action.

Two special cases are handled in order to limit edit errors and key-
board interaction. The first deals with an excessive hand speed move-
ment when editing the object. If the user moves her hand too fast, the
object will be dropped in the position it was when the high speed
was detected. This limits the possibility to accidentally “throw” the
object in an undesired position — with consequent need to undo the
operation (typically crtl-z) — when the user quickly removes the hand
from the action space for whatever reason. The second special case
helps the user in performing large repetitive movements of the ob-
ject in the 3D space. When the user is moving an object towards one
direction he might reach the limit of the action space or reach an un-
comfortable position. Continuing the movement of the object in the
same direction would require to stabilize the hand to drop the object
before moving it back to a more comfortable position. A similar be-
havior is experienced when the user drag the mouse out of the mouse
pad: he then needs to lift the mouse, bring it back to the center of
the pad and continue editing. We call this behavior “carriage return”
since we believe it evokes the carriage return operation that used to
be performed when the printing head of the typewriter reached the
end of a line. When the user is suddenly reverting the direction of
movement to go back to a comfortable position the object is immedi-
ately dropped (switch to HOVER state) without the need to wait for
hand stabilization.

3.3 Self-adaptivity — Status and Performance
Assessor

In the previous section, we saw how the state-transition was governed
by a set of rules in the Interaction Manager. These rules are can be
modified by reparameterizing the primitive functions composing the
rules and their arrangement. Such changes have an influence on the
interaction dynamics and the goal of the Status and Performance As-
sessor is to guarantee that the current rule arrangement and parame-
terization maximize the user’s comfort and efficiency.

We monitor aspects of the user interaction, such as her ability to
keep her hand still, to control the velocity profile of the movement,
as well as the reaction time to visual cues. This architecture is user-
agnostic, which means that it does not build and track a model of the
user, it rather tracks the short-term evolution of the user interaction
and apply adaptation strategies in order to either increase the user’s
efficiency or to limit the decrease of performance level.

We now present how the Status and Performance Assessor moni-
tors the user’s performance level. Table 1 lists the variables we use
to measure user performances. The values of the variables are calcu-
lated through the observation of the last N, = 25 recognized actions.
In the following we describe each assessment variable and its influ-
ence on the interaction manager’s ruleset parameterization.

The value e is the exponential moving average of the last 25 edit
actions.

The evolution of the resulting e value gives us a hint about the
user’s ability to perform faster or slower edit actions. If e decreases,
we assume that the user needs a more responsive system. Practically,
e is used as an adjustment for a feedback gain that multiplies GRAB_
START/STOP_STABILITY _TIME by (1 + e;) at each iteration.

m is computed exactly the same way as e on the cumulative dis-
tance that is traveled by the hand during an action. Since an experi-

Table 1. List of variables used to assess user performance

[Name [meaning

action edit time

action linear hand movement
cancelled actions

lost hand tracking

fast hand movement detected

~~0o 3o

enced user is capable of accomplishing an edit with only a few large
actions (GRABS) of the hand in space, A decreasing value of m in-
dicates the user tendency to perform longer movements, including
large positioning (hand is fast) and fine positioning (hand is slow)
of the manipulated object. This suggests that the user is gaining in
efficiency and that the interactions rules must be accommodated.

The value of ¢ depends on how many of the last N, operations
have been canceled. An operation is canceled when the user presses
the ESC key in order to restore the 3D object in its initial position.
For each operation with 1 < ¢ < N,, we consider ¢; = 0 if the
operation has not been canceled and ¢; = 1 id it did. We calculate
the tendency by interpolating a line among the sampled results. The
tendency ¢’ is calculated as the tangent of the interpolated line. We
consider a positive tendency as the fact that that too many operations
started when the user didn’t really mean to do.

The value of [is calculated, similarly to ¢, by counting how many
times the hand tracking has been lost while performing the last N,
operations. A positive tendency tells us that the user hand is exiting
too often from the editing space. This means that the user hardly feel
uncomfortable in extreme hand positions. We use this as hint that we
can increase the sensitivity of the overall system, i.e., increase the
ratio between the quantity of motion performed by the dragged 3D
object with respect to the same quantity of motion performed by the
hand in real world.

The value of f is calculated similarly to c and [, by counting how
many times the GRAB state has exited because a fast hand movement
has been detected.

If this occurs too frequently, the system may suggest the user to
have a short break so that she could recover from the fatigue that
might be induced by the gorilla arm effect. We are conducting further
tests involving long edit session to correctly adjust this variable.

4 Conclusion and Future Work

We first showed in a preliminary user study that a straightforward
combination of hand tracking and keyboard interaction has the poten-
tial, on the one hand, to enable novice users to accomplish non-trivial
3D authoring tasks and on the other hand, to increase the productivity
of experienced users. Capitalizing on this preliminary result, we pro-
pose a self-adaptive system that considerably limits keyboard input
while maintaining the highest reactivity level. Such behavior plastic-
ity is enforced by tuning the rules driving the interaction according to
the parameters of a basic user model that are inferred at runtime from
the user’s behavior. This system will be tested on a dozens of skilled
student from a renowned design institute. Results of the evaluation
campaign will be available and presented during the workshop.

REFERENCES

[1] Andrew Sears and Ben Shneiderman, ‘High precision touchscreens: de-
sign strategies and comparisons with a mouse’, International Journal of
Man-Machine Studies, 34(4), 593-613, (April 1991).

