Algorithmic Music As Intelligent Game Music

Anthony Prechtl and Robin Laney and Alistair Willis and Robert Samuels'

Abstract. Current game music systems typically involve the play-
back of prerecorded audio tracks which are crossfaded in response
to game events such as level changes. However, crossfading can
limit the expressive power of musical transitions, and can make
fine grained structural variations difficult to achieve. We therefore
describe an alternative approach in which music is algorithmically
generated based on a set of high-level musical features that can be
controlled in real-time according to a player’s progression through a
game narrative. We outline an implementation of the approach in an
actual game, focusing primarily on how the music system traces the
game’s emotional narrative by periodically querying certain narrative
parameters and adjusting the musical features of its output accord-

ingly.

1 INTRODUCTION

Modern computer games feature increasingly dynamic and non-
linear narratives. In many cases there is an entire game world
that evolves in different ways depending on player interaction and
choices. Like in films, music in games is generally used to help set
the mood and convey information about the narrative. However, in
games, the exact course and timing of the narrative are not known in
advance, so a fixed, prerecorded score is not particularly viable. To
address this, most game music systems utilize a set of looped audio
files which are crossfaded when the game state is changed [3]—for
example, during a transition to a new level, or from a state of safety
to one of danger—but it is not immediately clear how this can accu-
rately and expressively trace the more minute intricacies of a narra-
tive in the way that film scores can.

We will describe an alternative approach to game music whereby
music is algorithmically generated from a set of variable, high-level
musical features such as tempo and tonal/atonal. The features are
then interpolated in response to measurable changes in a game’s nar-
rative. This provides game designers with the ability to musically ex-
press different narrative situations, including even subtle variations,
as well as to make fluid musical transitions between them. At the
same time, it allows players to interact with the music through the
game narrative, with the music providing increased and finer grained
feedback compared to the traditional crossfading approach.

After further examining the problem and surveying some related
work, we will describe our approach by outlining an algorithmic mu-
sic system we have implemented in a simple computer game. We
will focus primarily on how the game’s internal logic monitors the
narrative and specifies desired musical features for the music gener-
ator, and how the music generator can respond to them in such a way
that it seems the music is tailored to the player’s real-time narrative
progression.

1 The Open University, UK, email: anthony.prechtl@open.ac.uk

2 BACKGROUND AND RELATED WORK

As we have suggested, most modern game soundtracks achieve non-
linearity by dynamically crossfading different audio files [3]. In this
approach, one or more audio files are assigned to each possible state
in the game narrative—however the game designer encodes it—and
when the game player moves from one state to another, the first
state’s music fades out while the second state’s music fades in. The
main problem with this approach is that at any time during the tran-
sition, as Berndt points out, the neighbouring audio files “have to
harmonise tonally and metrically with each other [...] in order to fa-
cilitate musically convincing cross-fades without unintended dishar-
mony and rhythmic stumbling” [2, pp. 356]. Put simply, it is rel-
atively easy for harmonies and rhythms to clash, so crossfading be-
tween two audio audio files that are “incompatible” in this regard can
lead to dissonances which may not be implied by the narrative. To
minimize this, there are several imperfect solutions: The crossfades
could be made relatively quickly, but this could be distracting or even
jarring for the game player, and would not strongly support smoother
and more gradual narrative transitions. Alternatively, the overall mu-
sical variation could be restricted so that each file has compatible
harmonies and rhythms, but this could limit musical and emotional
expression.

Miiller and Driedger [9] propose what is essentially an automatic
DJ system as a solution to the crossfading problem. In their proposed
system, there would be a database of audio files each tagged with a
tempo as well as encodings of its emotional and harmonic content.
When a transition to a new target emotional state is requested, the
system would find the audio file whose tagged emotion is nearest to
the target emotion, but with a similar tempo and similar harmonic
content as those of the initial audio file. The system would then time
stretch or compress the initial audio file so that its beat matches that
of the target audio file, while simultaneously crossfading to the new
file. Although this approach does address the problem of clashing
harmonies and rhythms, its ability to do so effectively hinges on
the harmonic and rhythmic similarity of the initial and target audio
files, or else they would clash during transitions in the same way as
they would while naively crossfading (albeit at least with their beats
aligned). The main problem with this requirement is that, as we have
previously suggested, restricting the range of harmonies and rhythms
would probably limit not only the potential for strong musical varia-
tions, but also the emotional capacity of the music.

There are some techniques similar in scope to crossfading, but
which involve the use of digital signal processing to morph the per-
ceptual features of one audio file into those of another, rather than
simply overlaying their amplitudes. Perhaps the most well-known ap-
proach is that of Serra [16], which he calls spectral modeling synthe-
sis (SMS). In short, SMS works by decoding multiple audio signals
into spectral frequencies frame-by-frame, then combining and recod-

ing them into one audio signal. A smooth morph is therefore achieved
by starting with only the frequencies of the initial audio file, and then,
between each frame, gradually interpolating towards the frequencies
of the target audio file. However, SMS and similar audio morphing
techniques aim to morph relatively low-level perceptual characteris-
tics (in Serra’s case, the frequency spectrum), rather than high-level,
structural musical features, which, to our knowledge, has not been
reported thus far.

3 GAME OVERVIEW

We have developed a simple game entitled Escape Point in order to
implement and test our approach. Escape Point is a first-person game
in which the player navigates and attempts to escape a 3D maze while
avoiding enemies. If the player reaches the maze exit, the game is
won; if any enemy collides with the player first, however, the game
is lost.

Both the graphics and the gameplay were designed to be minimal,
yet familiar to typical game players. Mazes—and more generally,
the task of navigating through large, complex spaces—are, of course,
common in computer games, as is the notion of enemies chasing the
player. We preferred simplicity in game design not only to minimize
development time, but also to make the game more accessible and
free of complicated rules, as well as to provide greater experimental
control when we later evaluate the approach empirically.

We wanted the music to express the emotional narrative of the
game. We define this in terms of how close the player is to the en-
emies, since this corresponds roughly to the degree of danger the
player faces of losing the game, as well as the degree of alarm a per-
son might feel in a similar real-life situation. Specifically, we wanted
the music to gradually become more or less intense as this variable
changes. For example, if the player slowly moves closer to an enemy,
pauses a certain distance away, and then quickly retreats, the mu-
sic will mirror the level of danger the player is in: the intensity will
slowly rise, continue briefly at the higher intensity, and then quickly
fall. Crucially, this would reinforce the fluctuating degree of alarm
the player would likely experience throughout the scenario, and ad-
ditionally provide the player with more or less immediate feedback
about the current state of the game.

4 MUSIC DESIGN

Escape Point was developed using the Unity game engine?, which is
widely used in both independent and commercial computer games.
The game logic was coded in C#, as is common in Unity games,
while the music engine was designed in Cycling 74’s Max®, with
communication between Unity/C# and Max occurring via UDP. Ad-
ditionally, the Max patch outputs MIDI data which is converted to
audio using IK Multimedia’s SampleTank", a popular software sam-
pler. We have found this configuration—specifically the use of Max
and SampleTank as opposed to working entirely in C#—optimal for
rapid prototype development and testing; it is worth noting, however,
that in commercial game development such a configuration would
not be considered standard.

This configuration hints at a strong separation between the game
logic and the music generator. We treat the music generator as an
independent module that runs autonomously, but which, through the
game’s internal logic, a game designer could control any way he or

2 http://www.unity3d.com
3 http://www.cycling74.com/products/max/
4 http://www.ikmultimedia.com/products/sampletank/

she sees fit. In the following subsections, we will describe specifi-
cally how this process works in Escape Point, and also discuss how
it can be generalized. A flowchart further illustrating the approach is
shown in Figure 1.

Game Engine
Game
logic

narrative parameters
player—enemy distance

Analyze

narrative

emotion parameters
alarm/danger

Define
music
params

musical features
tempo, mode, etc.

Music Generator

tempo Rhythm

generator

transition
matrix

Chord
generator

Figure 1. Flowchart showing how data progresses from the game engine to
the music generator

4.1 Game logic responsibilities

The game’s internal logic is responsible for controlling the music
generator by specifying what its output should sound like. Escape
Point does this by periodically analyzing the game narrative and
sending a set of desired musical features to the music generator.

4.1.1 Narrative analysis

The first step in our approach is to devise a system that periodically
queries the state of the game narrative, however the game designer
chooses to codify it. In Escape Point, we are interested in the emo-
tional narrative, which we consider to be the varying degree of dan-
ger or alarm that arises from proximity between the player and the
enemies. We define the level of danger as a function of the distance
between the player and the nearest enemy using the equation

dist — distmin
d’iStmaz — d’LStmzn

danger =1 — (1)
where danger is a value between 0 and 1, and dist is the distance
between the player and the nearest enemy, which is clipped to a value
between distmin and distaez, the minimum and maximum dis-
tances to take into consideration, respectively. We use distmin = 3

so that danger = 1 when the nearest enemy is within three metres of
the player, and distmar = 25 so that danger = 0 when the player
is more than 25 metres from the nearest enemy.

Although we have found that just determining danger as described
above is effective in capturing the relatively simplistic narrative of
Escape Point, more advanced games would likely benefit from a
more thorough narrative analysis. Strictly speaking, in Escape Point,
the player is always in some danger, since there are no clearly de-
noted safe zones. This contrasts with games that distinguish between
friendly and dangerous areas, for example, as well as games that have
different levels with different emotional overtones.

4.1.2 Musical feature mappings

The second step in our approach is mapping the results of the nar-
rative analysis to parameters for the music generation algorithm. We
will discuss our algorithm in the following subsection, but Table 1
briefly outlines the musical features it accepts as parameters.

Table 1. Parameters used in the stochastic chord generation algorithm, all
of which are continuous

Parameter Controls

Tempo The speed at which chords are generated
Velocity The velocity with which chords are sounded
Volume The overall volume of the synthesizer
Major chords The probability of a major chord occurring

Minor chords
Diminished chords
Dominant chords
Diatonic chords

The probability of a minor chord occurring

The probability of a diminished chord occurring
The probability of a dominant chord occurring
The probability of a diatonic (within the keys of
C major or A minor) chord occurring

The probability of a chord occurring that has an
obvious function in Western music theory (in-
cluding non-diatonic chords) instead of one that
does not

The probability of a chord transition that is con-
sistent with functional harmony instead of one
that is not

Changes whether the above parameter favours
the key of C major or A minor

Tonal chords

Functional transitions

Minor/major rules

In terms of the popular valence/arousal emotion space (see [14]),
in which an emotion is encoded with a certain valence (how posi-
tive or negative the emotion is) and arousal (how aroused or calm
the emotion is), we wanted the music to express increasingly neg-
ative valence and high arousal as the level of danger in the game
increases. Fortunately, there is a large body of research concerned
with correlating musical features with emotions that people perceive
in the music. An overview is provided in [7] for primarily structural
features such as mode and rhythm, and in [8] for primarily perfor-
mance features such as articulation and loudness. Based on these, we
decided that as danger increases, the following should occur:

The tempo increases.

The generated chords become louder.

Major chords become less likely to occur.

Diminished chords become more likely.

Diatonic and other functional chords become less favoured.
Functional chord transitions become less favoured.

Accordingly, a feature set is created with values for each of the
parameters outlined in Table 1. The final step within the game logic
is to send the set to the music generation algorithm, which, as we
have already mentioned, occurs via a UDP connection between the
game logic (C#) and Max.

4.2 Music generation

The core of the proposed approach is, of course, the music genera-
tor. It is responsible not only for being able to autonomously gener-
ate music, but also for being able to accept parameters in real-time
and adjust its output accordingly. We have designed ours so that the
parameters it accepts (shown in Table 1) are high-level musical fea-
tures, which makes it relatively easy and intuitive to control, as was
described in Section 4.1.2.

The generator uses a first-order Markov model to generate chords,
as well as a constraint-based algorithm to voice lead them based on
conventional rules in Western music theory. A Markov model is a
stochastic model primarily comprised of a transition matrix whose
elements describe the probabilities of each state in a system transi-
tioning to each other state (see [1] for a full explanation). In our case,
there are 48 states each representing a unique chord—for each of the
twelve chromatic notes there are major, minor, diminished, and dom-
inant seventh versions. Thus, the transition matrix is 48 rows by 48
columns, with each element [z, j] defining the probability that the
chord represented by ¢ will transition to the chord represented by j.
Whenever a new chord is requested, the system generates a pseudo-
random number and uses it to choose the new chord based on the
probabilities given by the row representing the currently sounding
chord.

The order of a Markov model describes the number of previous
states it takes into consideration for transitions to a new state. We use
a first-order model—that is, the next chord is dependent only on the
current chord—for several reasons: Compared to higher-order mod-
els, it requires a much smaller transition matrix, since the number of
rows in the matrix increases exponentially as the order increases. Ad-
ditionally, as Roads [13] points out, high-order Markov models “ex-
tend the window of local coherence over several events” (pp. 878).
While this may sound desirable, it can lead to the system becoming
“locked” into, and repeating, sequences of events, which might not
be ideal when attempting to convey a dynamically changing narra-
tive. On the other end, as opposed to a so-called zeroth-order model
(i.e., not taking any chords into consideration when generating a new
chord), a first-order model can encompass some of the conventions
of Western chord progressions. For example, music theorist Walter
Piston, in his “Table of Usual Root Progressions” [12, pp. 17], lists
each of the seven diatonic scale degrees of a given key’, describing
roughly how often chords built on each one transition to chords built
on other ones, which implies a first-order model. For example, he
states that a I chord usually transitions to IV, sometimes to V, and
less often to II or III. Similarly, composer Arnold Schoenberg [15]
implies a first-order model by classifying intervals—in terms of the
number of scale degrees—between neighbouring chords into three
types of chord transitions: strong (or ascending), descending, and
superstrong. Table 2 outlines these transition types and associated
intervals.

Table 2. Schoenberg’s [15] three types of chord transitions

Transition type Interval

Strong (or ascending)
Descending
Superstrong

Four scale degrees up or three down
Four scale degrees down or three up
One scale degree up or down

5 For example, in the key of C major, the scale degrees are C, D, E, F, G, A,
B, each labeled from I-VII, respectively.

Markov models have been used extensively in music computing
for a variety of tasks, including composition/generation (e.g., [1],
[17], [5]), style imitation (e.g., [6], [4]), and interaction with a live
performer (e.g., [11]). They are commonly created by analyzing a
corpus or stream of music, counting the number of occurrences of
each transition, and then constructing a transition matrix of prob-
abilities or weights at which each transition occurs. One difficulty
with using this approach for dynamic game music is that it is not
immediately clear how to alter a trained Markov model so as to re-
flect a specific set of musical features, since it would already exhibit
certain features of its own. A potential solution is to train multiple
Markov models from different corpora, each with a unique set of mu-
sical features, and either interpolate the models or simply use the one
whose features are closest to the desired musical features. However,
we have found it simpler to instead generate Markov models directly
(i.e., from scratch) from a given set of desired musical features. We
do this by starting with a transition matrix in which all elements have
an equal weight (in other words, the matrix implies entirely random
transitions), and then filtering it based on the desired musical fea-
tures. For example, if the major chords parameter is set to 0.25, then
the weights of all transitions to major chords are multiplied by 0.25
so that—everything else being equal—there is relatively little chance
of the system generating a major chord instead of a minor, dimin-
ished, or dominant one.® This process occurs consecutively for each
parameter that directly affects the transition matrix (tempo, velocity,
and volume do not).

The transition matrix of the Markov model varies over time de-
pending on the parameters passed to the music generator. That is,
whenever a new set of musical features is requested, the system dis-
cards the old transition matrix, creates a new one using the approach
described above, and uses that one going forward. Of course, if the
game narrative is idle, the system will simply remain in a steady state,
outputting chords with the same probabilities. Otherwise, however,
the probabilities will continuously change, always reflecting the cur-
rent state of the game narrative. Similarly, the parameters of the mu-
sic generator that do not directly affect the transition matrix—tempo,
velocity, and volume—all vary in real-time.

Although we use a relatively simple Markov model, there are
many other ways to generate music algorithmically (an extensive
overview is provided in [10]). In theory, any algorithm with param-
eters that can be varied over time could be suitable. However, one
major benefit of Markov models is that they are relatively intuitive
in the sense that it is clear from a compositional standpoint exactly
how their parameters—the probabilities that comprise the transition
matrix—control the output, as opposed to, say, the parameters of
a neural network. In practice, an algorithmic game music system
would likely benefit from being both intuitive to control and suffi-
ciently flexible so as to be able to convey a wide variety of emotional
states, as well as to smoothly move between them.

5 CONCLUSION AND FUTURE WORK

We have shown how an algorithmic music system can respond in
real-time to input from a game narrative: The state of the narrative is
periodically analyzed and encoded, then mapped to musical features
that are expressive of that state. The musical features are then sent

6 1t is worth noting the slight distinction here between probabilities and
weights: probabilities by definition must sum to 1, whereas weights need
not. When filtering the transition matrix we treat the elements as weights,
and afterwards convert to them to probabilities by ensuring all rows in the
transition matrix sum to 1.

to the music system, which updates its output accordingly. We have
described a specific implementation of this approach that allows for
both immediate and fine grained feedback, as well as for controlled
transitions, all of which are difficult, if not impossible, in the cur-
rently conventional approach of crossfading audio files.

Our future work includes empirically evaluating the effectiveness
of the proposed approach in comparison to more traditional ap-
proaches to game music. Perhaps most importantly, what remains
to be seen is how it affects player enjoyment and perception of the
game. Additionally, we wish to further develop our music generator,
incorporating control over both melodies and rhythms elements in-
stead of just harmonies, so as to allow for a greater range of musical
and emotional expression.

ACKNOWLEDGEMENTS

We would like to thank Dr. Andrew Milne at The MARCS Institute
for helpful and insightful discussions.

REFERENCES

[1] Charles Ames, ‘The Markov Process as a Compositional Model: A Sur-
vey and Tutorial’, Leonardo, 22(2), 175-187, (1989).

[2] Axel Berndt, ‘Musical Nonlinearity in Interactive Narrative Environ-
ments’, in Proceedings of the International Computer Music Confer-
ence (ICMC 2009), eds., G Scavone, V Verfaille, and A da Silva, pp.
355-358, Montreal, Canada, (2009).

[3] Karen Collins, Game Sound, The MIT Press, Cambridge, Mas-
sachusetts, 2008.

[4] Tom Collins, Robin Laney, Alistair Willis, and Paul H. Garthwaite,
‘Chopin, mazurkas and Markov’, Significance, 8(4), 154-159, (2011).

[S] Arne Eigenfeldt and Philippe Pasquier, ‘Realtime Generation of Har-
monic Progressions Using Controlled Markov Selection’, in Proceed-
ings of the First International Conference on Computational Creativity,
Lisbon, Portugal, (2009).

[6] Mary Farbood and Bernd Schoner, ‘Analysis and Synthesis of
Palestrina-Style Counterpoint Using Markov Chains’, in Proceedings of
the International Computer Music Conference, Havana, Cuba, (2001).

[7] Alf Gabrielsson and Erik Lindstrom, ‘The role of structure in the musi-
cal expression of emotions’, in Handbook of Music and Emotion: The-
ory, Research, Applications, eds., Patrik N. Juslin and John A. Sloboda,
367400, Oxford University Press, Oxford, England, (2010).

[8] Patrik N. Juslin and Renee Timmers, ‘Expression and communication
of emotion in music performance’, in Handbook of Music and Emo-
tion: Theory, Research, Applications, eds., Patrik N. Juslin and John A.
Sloboda, 453-489, Oxford University Press, Oxford, England, (2010).

[9] Meinard Miiller and Jonathan Driedger, ‘Data-Driven Sound Track
Generation’, in Multimodal Music Processing, eds., Meinard Miiller,
Masataka Goto, and Markus Schedl, volume 3, 175-194, Dagstuhl Pub-
lishing, Saarbriicken/Wadern, Germany, (2012).

[10] Gerhard Nierhaus, Algorithmic Music: Paradigms of Automatic Music
Generation, Springer-Verlag/Wien, New York, 2009.

[11] Frangois Pachet, “The Continuator: Musical Interaction With Style’, in
Proceedings of the International Computer Music Conference, Gothen-
burg, Sweden, (2002).

[12] Walter Piston, Harmony, Victor Gollancz Ltd, London, 1959.

[13] Curtis Roads, The Computer Music Tutorial, The MIT Press, Cam-
bridge, Massachusetts, 1996.

[14] James A. Russell, ‘A Circumplex Model of Affect’, Journal of Person-
ality and Social Psychology, 39(6), 1161-1178, (1980).

[15] Arnold Schoenberg, Structural Functions of Harmony, Faber and Faber,
London, second edn., 1983.

[16] Xavier Serra, A system for sound analysis/transformation/synthesis
based on a deterministic plus stochastic decomposition, Ph.D. disser-
tation, Stanford University, 1989.

[17] Karsten Verbeurgt, Michael Dinolfo, and Mikhail Fayer, ‘Extract-
ing Patterns in Music for Composition via Markov Chains’, in
IEA/AIE’2004: Proceedings of the 17th International Conference on
Innovations in Applied Artificial Intelligence, pp. 1123—1132. Springer-
Verlag, (2004).

