
What can Programming Language Research

Learn from the Philosophy of Science?

Tomas Petricek1

Abstract. As a recent discipline, computer science, and program-

ming language research in particular, have so far eluded the eyes

of philosophers of science. However, we can gain interesting

insights by looking at classical works in philosophy of science and

reconsidering their meaning from the perspective of programming

language research.

This is exactly what I attempt to do in this essay – I will go

through the established theories of science and look what they can

say about programming language research. Then I suggest how

we can improve our scientific practice in the light of these obser-

vations.

First, I discuss how understanding the research programme is

important for evaluating scientific contributions. Second, I argue

that overemphasis on precise, mathematical models in early stage

of research may limit the creativity. Thirdly, I propose how to

design stand-alone (theory-independent) experiments in program-

ming language research and how this can help to integrate the vast

amount of knowledge gathered by software practitioners.

1 INTRODUCTION

Programming language (PL) research is, no doubt, an important

part of computer science. It raises many intriguing philosophical

questions, ranging from the nature of programming languages to

the scientific practice of programming language researchers.

This essay focuses on the latter question – what is the structure

of programming language research, how is it done and how should

it be done? Despite a number of pioneering works2 in the philo-

sophy of computer science, this is largely an unexplored domain.

This essay does not aim to present a comprehensive view.

Instead I choose a number of classic works in the philosophy of

science and look how their observations apply to programming

language research.

The basis for many of the classic works used as an inspiration

in this essay has been summarized by Chalmers as follows:

The undoubted success of physics over the last three hun-

dred years (…) is to be attributed to the application of (…)

‘the scientific method’. Therefore, if [other disciplines] are

to emulate the success of physics then that is to be achieved

by [understanding and applying this method]3.

This can be easily viewed as a too narrow approach. Following

the scientific method may not be the only (or the best) approach.

We can equally learn from the mathematical method, the artistic

1 Computer Laboratory, University of Cambridge, CB30FD, UK

 Email: tomas.petricek@cl.cam.ac.uk

2 Most prominently Turner [23] and a number of works in the ethics of
computer science and philosophy of artificial intelligence.

method or from social sciences4. Similarly, physic is not the only

successful discipline. However, this is the view adopted by the

classical works in philosophy of science that I take as an inspira-

tion and that I follow in this text.

My main goal is to demonstrate that taking the philosophical

perspective on programming language research is a worthwhile

effort that can lead to interesting ideas. With no doubt, future work

needs to take broader and more comprehensive view. In this short

essay, I look at the following questions:

 In what way is programming language research a science?

I look at Popperian falsificationism (§2.1), experimentalist

view (§2.2) and Feyerabend’s anarchistic perspective (§2.3).

 What is the structure of programming language research?

Are there different scientific paradigms (§3.1) or competing

research programmes (§3.2)?

 How can we use the above ideas to better judge contributions

(§4.1), support creative research (§4.2) and produce more

reusable experiments or software artifacts (§4.3 and §4.4).

This essay is intentionally written in a subjective and perhaps

provocative style. I believe that the questions posed in the first

two sections (and discussions they can trigger) are equally im-

portant as my answers suggested in the last section.

2 PL RESEARCH AS A SCIENCE

A commonsense understanding of science is that science starts

with an unprejudiced observation of reality, infers facts from these

observations and uses sound reasoning to derive scientific laws.

For a moment, I shall ignore the numerous problems with this

view and look what is the corresponding practice in programming

language research.

Do programming language researchers observe the reality? In

some cases, they do – they study programs written by the indu-

strial engineers or programs (artifacts) created as a result of earlier

research. However, just observation is not enough to obtain

relevant facts and so programming language researchers perform

experiments – they write compilers for their languages and use

them to write sample programs; they implement novel algorithms

and test their performance. Broadly speaking, such experiments

can be classified in two categories. The first kind is constructed to

confirm a specific theory (e.g. the performance of new garbage

collection algorithm in practice). Second kind is constructed for

3 Chalmers [2], xx
4 For example, Meyerovich and Rabkin [16] use sociologically grounded

approach to study language adoption

the experiment itself (e.g. using a new language to develop a sys-

tem is an interesting case study on its own).

What kind of facts do we derive from the observations? Some

observations, such as performance measurements, yield unques-

tionable facts in the form of statistics. However, the facts derived

from programming language experiments are less clear. Small-

scale examples often included in publications are sufficient to

demonstrate that a language is capable of expressing certain

abstractions or preventing certain bugs. However, they often do

not present a realistic study of how a language would be used in

practice. This is a separate challenge that has been explored in the

early days of programming language design by Sime et al. [21],

but is again becoming an interesting topic – see, for example the

workshop proceedings edited by Murphy-Hill et al. [17].

Finally, what kind of laws do programming language re-

searchers arrive at? PL research often consists of building of

simplified models (semantics) of languages and proofs of their

properties. Much can be said about the nature and the meaning of

proofs5, but there is a more important hidden assumption – we

believe that proving facts about simplified model tells us

important information about the applicability of the language in

the “real world.” Perhaps a more interesting claim that is often

implicit6 is that a language can capture some common mental

model that its users use when thinking about problems.

2.1 Falsificationism

I suggested several laws (or results) that programming language

researchers may claim, but I am not surprised if the readers find

the examples unconvincing. Indeed, it is difficult to find program-

ming language research that makes explicit claims in the form of

traditional scientific laws.

What would a meaningful scientific claim look like? The most

well-known answer is provided by Popper’s falsificationism:

I shall certainly admit a system as (…) scientific only if it is

capable of being tested by experience. These considerations

suggest that not the verifiability but the falsifiability of a

system is to be taken as a criterion of demarcation7.

It is not necessary to prove that the claim is true, but it must be

possible to refute it by an empirical test. Finding programming

language claims that do not fail this criteria is difficult. A claim

about mathematical model cannot be refuted by experience; a

claim about language usability passes, but it cannot resist refu-

tation for a long time – it will hardly hold universally for all users.

However, it is worth noting that Popper does not devise the

above test as a test for worthwhile human activity, it is just a test

(or demarcation) for empirical sciences:

5 First section in Gold and Simons [12] discusses relevant questions:

Does the formalization of proofs increases the reliability? What is the
purpose of proofs? It is not just convincing the reader about the truth – it

is also an explanation of the problem, exploration yielding new insights

and justification of the definitions (in our case, programming language
design).
6 Implicit possibly because the predominant paradigm dictates that such

claim is “unscientific” when based just on the author’s introspection.
7 Popper [18], 18
8 Ibid., 11

The problem of finding a criterion which would enable us to

distinguish between the empirical sciences on the one hand,

and mathematics and logic as well as ‘metaphysical’ sys-

tems on the other, I call the problem of demarcation8.

According to Popper’s theory, programming language research

does not qualify as empirical science. Some aspects of program-

ming language research would clearly belong to the category of

mathematics and logic, but a large proportion of work falls in the

other category9. Let us now consider an alternative treatment.

2.2 The new experimentalism

Rather than defining what claim is scientific, we can sidestep the

problem, focus on another aspect of science and take experiments

as the basis of our philosophy of programming language research.

As already discussed, PL researchers do make experiments.

They implement compilers or interpreters, use them to develop

sample applications or measure performance of systems. But do

such experiments make sense only as part of a theory, or do they

have a value on their own?

Indeed, many scientific experiments are theory-dependent. For

example, experiments designed to confirm the existence of an

aether in 19th century10 became irrelevant once physics abandoned

the idea of an aether. Similarly, an implementation of a compiler

for a programming language is only relevant in the light of the

given programming language11. A group of philosophers12 some-

times called new experimentalists believe that theory-independent

experiments can form a foundation of the scientific method:

According to its proponents, experiment can (…) have a

“life of its own” independent of a large-scale theory. It is

argued that experimentalists have a range of practical

strategies for establishing the reality of experimental effects

without needing recourse to large-scale theory13.

Another interesting aspect of new experimentalism and its focus

on experiments is that it provides a notion of scientific progress.

Accumulated experimental knowledge remains valuable even

when new theories appear. The same theory-independence also

means that radically different theories can be compared, for

example, by looking which established experiments they explain.

As a programming language researcher who wants to subscribe

to the “new experimentalist” approach I need to ask: “How to

produce theory-independent experiments in PL?” In physics, an

example of such experiment is Faraday’s motor (the first electrical

motor to be built, also called homopolar)14 – it is an easy to build

device that is not fallible (it usually works) and has obvious effects

(rotation) that a theory needs to explain, be it the theory of

electromagnetism or other theory that we may devise.

9 That said, falsifiability can provide interesting insights from the

programming language perspective (Forster 2008), just not as an
overall scientific theory.
10 Chalmers [2], 36
11 Note that I am, by no means, suggesting that a compiler for a newly
designed programming language is not a useful artifact. It is valuable in

that it allows further experimentation. However, it is on its own not a

theory (language) independent artifact that yields new insights not
related to the particular programming language (or paradigm) studied.
12 Pioneering work in this direction is Hacking [7]
13 Chalmers [2], 194, quoting Hacking [7]
14 Ibid., 196

I return to the topic of theory-independent experiments in prog-

ramming language research later (§4.3). Briefly – I propose that a

medium-scale practical case study is an experiment showing that

certain problem can be solved with such and such properties.

Furthermore, case study is an artifact that both PL researchers and

practitioners can understand and learn from.

2.3 Against method

Programming language research does not seem to easily fit the

commonsense view of science or the falsificationism approach.

While experimentalism is an attractive alternative, it focuses only

on one particular aspect of science. Is there a more appropriate

view of science that better fits programming language research?

To avoid future disappointment, even traditional sciences do

not easily fit structures described by philosophers of science. This

led Paul Feyerabend to formulate his anarchistic theory:

To those who look at the rich material provided by history

(…) it will become clear that there is only one principle that

can be defended under all circumstances and in all stages

of human development. It is the principle: anything goes15.

Feyerabend says that scientific ideas are developed in much less

organized manner than what its image suggests. He gives exam-

ples from history where newly proposed (later successful) theories

contradict (the current understanding of) experimental results16

and rely on ad-hoc approximations17. For example, theories

developed by Galileo were in direct conflict with scientifically

accepted “facts” of his time. In addition to intellectual reasons,

Galileo employed propaganda18 to change such established natu-

ral interpretations.

The brief example illustrates the point that Feyerabend makes

in a more elaborate way. The history of science shows that there

is no universal scientific method and “science is an essentially

anarchic enterprise”. However, this is not a bad thing:

[T]heoretical anarchism is more humanitarian and is more

likely to encourage progress than its law-and-order alter-

natives.19

Such view of science does not provide any guidelines for distin-

guishing “good science” and “bad science”. This is an interesting

point for programming language researchers. Many languages

used in practice do not qualify as “good science” according to

commonsense PL research perspective. Yet, they are popular and

widely used. The anarchistic perspective offers hints on how to

take such languages into consideration and learn from them, even

though they do not originate from the scientific method.

This does not mean that we should study everything ever cre-

ated. Feyerabend comments his selection procedure as follows:

I make my selection in a highly individual and idiosyncratic

way. (…) Science needs people who are adaptable and in-

ventive, not rigid imitators of ‘established’ behavioural

patterns20.

15 Feyerabend [5], 12
16 Ibid., 13
17 Ibid., 43
18 Ibid., 61
19 Ibid., 1

Many philosophers science view Feyerabend’s anarchistic per-

spective as too radical. Even for programming languages, where

choice is often very subjective, it is difficult to imagine how a

fully subjective approach could be employed.

Chalmers [2] attempts to find a middle ground. He argues that

there are some scientific standards, but these can change (which

leaves enough room for the “anything goes” method). I take simi-

lar position when I argue that early work needs to be less mathe-

matically precise than work in more developed domains (§4.2).

3 STRUCTURE OF PL RESEARCH

Kuhn and Lakatos are two influential philosophers of science who

attempt to capture the structure of scientific development by

looking at the history of science and propose theories that capture

well-known examples of scientific practice (such as Galilean and

Newtonian revolutions in physics). Unlike the works discussed in

the previous section, they do not dictate how science should be

done. They merely attempt to describe the historic reality.

Applying this methodology to the history of programming

languages is an interesting problem, but one that I leave to future

work. However, such treatment of science also explores assum-

ptions that remain hidden during regular scientific practice, but

influence how science is done (e.g. which established “facts” can

be questioned & revisited; in what circumstances and how).

3.1 Scientific revolutions

According to Kuhn [13], science (after initial pre-scientific phase)

proceeds in cycles where a period of normal science is followed

by a crisis and a scientific revolution that leads to a new period of

normal science. A period of normal science is governed by pre-

dominant scientific paradigm:

A paradigm is made up of the general theoretical assum-

ptions, laws and the techniques for their application that the

members of a particular scientific community adopt21.

The paradigm dominates and entire field (or a subfield) and its

existence is what makes normal scientific work possible:

When the individual scientist can take a paradigm for

granted, he needs no longer, in his major works, attempt to

build his field anew, starting from first principles and justi-

fying the use of each concept introduced22.

The paradigm is what each aspiring scientist learns during his or

her preparation. The assumptions of the paradigm are so ubiqui-

tous that “normal scientist will be unaware of and unable to arti-

culate the precise nature of the paradigm”23.

The only moment when scientists become aware of the assum-

ptions dictated by the paradigm is during the period of crisis. That

is, when the paradigm is found insufficient for solving problems

(puzzles) within the normal science. In that case, the predominant

paradigm is replaced with another:

20 Ibid., 163
21 Chalmers [2], 108
22 Kuhn [13], 19
23 Chalmers [2], 112

[S]cientific revolutions (…) [are] non-cumulative develop-

mental episodes in which an older paradigm is replaced in

whole or in part by an incompatible new one24.

Programming language research as a whole is likely too young for

identifying such paradigm shifts (it would be a mistake to view

programming language paradigms as Kuhnian paradigms).

However, we can try to uncover the background assumptions

commonplace in the PL research today.

For a programming language researcher, this is, indeed, a diffi-

cult task! I believe that one such assumption is the reliance on

simplified mathematical models – everyone agrees that such

models provide useful insights. I do not want to doubt this, but the

amount of trust in models is surprising when the aim is often to

produce much larger industrial-scale implementations25.

Aside from common assumptions, the paradigm also provides

techniques that are employed when facing a problem. An example

of such technique from programming language design might be

the approach to rule out bugs using a type system. The paradigm

also dictates what is required of such type system – for example

the need for soundness. Yet, this requirement of the traditional

research paradigm has been ignored in several recent program-

ming languages originated in the industry such as Dart26.

3.2 Research programmes

Another attempt to explain the structure of science has been made

by Lakatos [14]. He looks how has falsification been used in

science in the past and notes that the failure of a theory can be

ascribed to different aspects of the theory – there is no single

assumption to blame. Lakatos also notes that not all assumptions

are equal. Scientists can always protect a theory they believe by

ascribing failures to less fundamental assumptions.

This is the basis for Lakatos’s theory of research programmes.

Similarly to paradigms, research programmes specify the back-

ground assumptions. Unlike with paradigms, science consists of

multiple competing research programmes formed by groups of

scientists. A research programme develops as follows:

Scientists can seek to solve problems by modifying the more

peripheral assumptions (…). [T]hey will be contributing to

the development of the same research program however

different their attempts (…). Lakatos referred to the fun-

damental principles as the hard core27.

The hard core is a defining characteristic of a research program-

me. It is augmented with a protective belt of auxiliary assumptions

that can be freely modified. The assumptions forming the hard

core are essentially unfalsifiable and all failures of theories are

attributed to the protective belt.

We can take a purely functional programming as an example

of a research programme in PL research. The hard core is formed

by concepts such as immutability, pure functions and the lack of

24 Kuhn [13], 92
25 Interestingly, programming language research is not the only discipline
that glorifies mathematical models. The same is the case for main-stream

economics. This has been noted by Sedlacek: “We economists are

frequently not even really aware of what we say with our models. This is
caused by devoting more attention to (mathematical) methods than to the

problems these models are being applied to.” (Sedlacek [19], 288)
26 See Brandt [1] for explanation and the motivation
27 Chalmers [2], 131

side-effects. An experimental failure (e.g. difficulty in imple-

menting an efficient algorithm) is attributed to the auxiliary

assumptions, such as an insufficient optimization in the compiler,

but not to the hard core assumptions like immutability.

According to Feyerabend, this methodology is so lax that it can

accommodate almost everything28. Lakatos himself claims that

there is no instant rationality in science and he does not treat his

philosophy as an advice to scientists29. The structure of research

programmes can be fully reconstructed only in hindsight.

Lakatos’s philosophy still provides some structure. It might not

rule out “bad science”30, but it provides a way to navigate through

the complex web of PL research that is otherwise ruled by the

“anything goes” methodology. I suggest that acknowledging the

hard core assumptions that a programming language researcher

subscribes to can improve the practice of our field (§4.1).

3.3 Beyond philosophy of science

So far, we looked at programming language research through the

scientific perspective that has been inspired by physics. However,

there are other successful disciplines that have much to say about

the structure of human enterprises. I briefly mention mathematics

and social sciences. Devlin answers the question about the nature

of mathematics as follows:

[A] definition of mathematics (…) on which most ma-

thematicians now agree, and which captured the broad and

increasing range of different branches of the subject [is]:

mathematics is the science of patterns31.

This sounds very familiar to programming language researchers.

Such key concepts as abstraction32 are essentially patterns and PL

design is about finding better ways to capture such patterns. The

philosophy of mathematics can shed light on other aspects of

programming language research, including the nature of models

and their relation to reality.

Another similarity between mathematics and programming

language research is that they both construct (and affect) the

structures that they study. For Lakatos, this is a reason why

theories of science derived from physics may not be applicable to

other disciplines – although he speaks of social sciences and, more

specifically, economics:

[F]or example, economic theories can affect the way in

which individuals operate in the market place, so that a

change in theory can bring about a change in the economic

system being studied33.

Aside from being self-referential, economics is similar to pro-

gramming language research in its emphasis on mathematical

models. In his recent book, Sedlacek rethinks economics from a

broader perspective that does not focus just on this aspect, but

includes long history of myths and religions:

28 Ibid., 154
29 Ibid., 144
30 Lakatos distinguishes between progressive and degenerating research

programmes, but he does not say that scientists should abandon the latter

ones, because new research can always bring them back to life.
31 Devlin [4], 293.
32 Turner and Eden [23] discus abstraction from the philosophical view
33 Chalmers [2], 47

It would be foolish to assume that economic inquiry began

with the scientific age. At first, myths and religions ex-

plained the world to people who ask basically similar

questions as we do today34.

While learning from myths and religion may be a bit far-fetched

for programming language design, there is another source of

knowledge that is often ignored and can provide enormous value.

I am, of course, speaking of the skills and practices of a broad

programmer community.

While programming language researchers often aim to solve

the problems that are faced by the IT community, we tend to

dismiss “commonsense wisdom” of software developers as un-

scientific. We are throwing out the baby with the bath water and I

consider how to remedy this problem in the next section (§4.4).

4 LEARNING FROM PHILOSOPHIES

The previous two sections were an exploration of – following

Feyerabend’s criteria for selection – subjectively chosen works in

philosophy of science and an attempt to demonstrate their rele-

vance to programming language research. In this section I go

further and make three concrete suggestions how to improve the

scientific practice of PL research.

First, Feyerabend’s anarchic presentation of history follows the

slogan “anything goes”. Even if we ignore Feyerabend’s huma-

nistic motivations35, his historic account shows that this is how

science proceeds. We need to accept this and make our practice

more flexible to support the development of competing theories.

Second, such flexibility (or plurality) in programming langu-

age research should accommodate theories in their early stages.

According to both Kuhn and Feyerabend, theories start imprecise

and only develop fully formal methods at later stage.

Third, PL research develops competing theories (programming

languages) that are difficult to compare. I believe that Hacking’s

new experimentalism might be a pathway towards the solution.

By focusing on theory-independent experiments, we can compare

different theories, but also integrate “non-scientific” knowledge

developed by software practitioners.

4.1 Anything goes: A case for plurality

Feyerabend’s slogan “anything goes” should not be interpreted as

a license to treat anything as science. It means that there is no

universal scientific method, but there are still scientific standards:

I argue that all rules have their limits and that there is no

comprehensive ‘rationality’, I do not argue that we should

proceed without rules and standards36.

While we cannot accommodate all possible standards (we cannot

know what the standards are until we look at science in hindsight),

we can certainly identify several different standard in program-

ming language research. Some work is focused on theory (with

proofs) while other emphasizes practical implementation (with

performance measurements). However, the classification can be

more fine-grained.

34 Sedlacek [19], 4
35 According to Feyerabend, his anarchistic account of science “increases

the freedom of scientists by removing them from methodological
constraints and, more generally, leaves individuals freedom to choose

One language feature or PL theory is approached with different

interpretations and goals. This is nicely captured by Lakatos’s

research programmes. Depending on the programme, researchers

will work by modifying different auxiliary assumptions.

It is important to understand that different work follows from

different hard core assumptions. By respecting this difference and

making it more explicit (to a certain possible extent), we can avoid

judging contributions of a research using incompatible criteria.

Such incompatibility is an inherent part of science. Feyerabend

argues that the consistency condition (which requires that new

hypothesis agrees with accepted theories) is overly restrictive:

[T]he methodological unit to which we must refer [is] a

whole set of partly overlapping, factually adequate, but

mutually inconsistent theories37.

In other words, judging new work from the perspective of an exi-

sting (incompatible) theory may rule out result that is important

from the view of a different theory. While I do not advocate fully

subjective approach (as Feyerabend does), I argue that we should

try to judge research work from the right perspective.

Furthermore, if we evaluate a hypothesis that subscribes to a

certain theory from the perspective of multiple different theories

(which can easily occur in a typical review process), we may find

it inacceptable if it modifies the hard core of any of the alternate

theories. This is demonstrated in Figure 1 – the hard cores of three

theories overlap. Each of them would accept hypotheses that fall

outside its own hard core. However, hypotheses that are accep-

table to all of them can only modify auxiliary assumptions that fall

outside of the union of the three research programmes – and so

researchers need to be much more conservative in their contri-

butions than their own research programme requires.

The historical evidence discussed by Feyerabend shows that

hypotheses inconsistent with established theories (and even gene-

rally accepted “facts”) can lead to scientific progress. It might not

be possible to see which inconsistent theories are worthwhile in

advance, but we should, at least, better accommodate the plurality

of multiple competing theories.

If we openly allow multiple incompatible theories in our prac-

tice, we can also be more honest about our approach. We do not

need to conceal the fact that – as put by Feyerabend – “science is

much more ‘sloppy’ than its methodological image”38.

Feyerabend also demonstrates that new theories often take step

back and do not necessarily have increased content (they do not

add new results). Instead they define new problems or give a new

perspective. We can easily find historical evidence from the

between science and other forms of knowledge (Chalmers [2], 156).
36 Feyerabend [5], 242
37 Ibid., 20
38 Ibid., 160

Figure 1. Overlapping cores of competing research programmes

programming language field where it would have been unwise to

reject a novel theory early just because it suffered from problems

solved by the established theory.

The example I have in mind is purely functional programming.

When first developed, purely functional languages did not have a

good way for dealing with I/O and it took time until this problem

was solved with linear types and later monads. We needed to

“wait and ignore large masses of critical observations”39 until it

has been supplemented by the necessary auxiliary techniques.

Aside from ignoring limitations of a new theory, we should

also accept the fact that new theories are initially less precise:

A new period in the history of science commences with a

backward movement that returns us to an earlier stage

where theories are more vague and have smaller empirical

content40.

The increase vagueness of novel theories in early stages leads to

the second point of this essay. Is there a room for vagueness and

imprecision in programming language research?

4.2 Early stages: A case for inexactness

It is widely accepted that programming languages should be based

on solid foundations and precise mathematics. I do not wish to

dispute this – the role of mathematics in guaranteeing safety and

robustness of languages is unquestionable.

However, the history of science provides a strong argument for

including inexact hypotheses and other works as part of the

scientific practice. There is a rare agreement among philosophers

of science mentioned in this essay that early phases of science (be

it paradigms, research programmers or science in general) are

often vague and inexact.

The following quotes by Feyerabend and by Chalmers (when

describing the work of Kuhn and Lakatos) illustrate the point:

Logically perfect versions (if such versions exist) usually

arrive long after imperfect versions have enriched science

by their contributions41.

A case could be made to the effect that the typical history of

a concept (…) involves the initial emergence of the concept

as a vague idea, followed by its gradual clarification as the

theory (…) takes a more precise (…) form42.

Early work in a research program is portrayed as taking

place without heed or in spite of apparent falsifications by

observation43.

The history also shows that such “early phases” of scientific

hypotheses or a research programmes are often surprisingly long.

I believe that the same is the case for programming language

research and that rejecting imperfect or unmathematical versions

of research is not beneficial for the field.

So, what form of early or vague research might be interesting?

Here are some examples we can learn from. Kuhn suggests that

Galileo’s early efforts “involved thought experiments, analogies

39 Ibid., 112
40 Ibid., 112
41 Feyerabend [5], 8
42 Chalmers [2], 106
43 Ibid., 135
44 Ibid., 106

and illustrative metaphors rather than detailed experimenta-

tion”44. According to Lakatos, an important aspect of early stages

of research programmes are confirmations – cases where the

programme succeeds at predicting phenomena (or explaining an

important problem), despite apparent falsification of other aspects

of the programme.

Similarly, I argue that analogies, illustrative metaphors and

thought experiments are equally worthwhile for programming

language research. Case studies that show the applicability of a

language in an important domain, as advocated later (§4.3), can

fill the role of early confirmations.

Another motivation for adopting more lax rules in early stages

of research programmes is that the focus on precise mathematics

and clarity changes the perspective and can draw the attention

away from the original motivations. In other words, it means that

different problems matter. Feyerabend says the following about

the undesirable consequences of an early clarity requirements:

The course of investigation is deflected into the narrow

channels of things already understood and the possibility of

fundamental conceptual discovery (…) is considerably

reduced45.

I very much agree with this quote and believe that programming

language research needs to start with the focus on fundamental

(non-technical) questions and then gradually evolve – including

the clarification and the development of mathematical theory.

Interestingly, very similar words have been recently said about

other disciplines. Sedlacek writes the following about mathema-

tical models in economics:

It appears to me that we have given lawyers and mathe-

maticians too large a role at the expense of poets and

philosophers. We have exchanged too much wisdom for

exactness (…)46.

Even more interestingly, the call for freer and more liberal rea-

soning has also been made by mathematicians themselves:

Too strong an emphasis on proof may thus be more of an

impediment than an aid to the development of new

mathematical theories. To become more efficient (…) ma-

thematics should follow the lead of physics and permit freer

use of intuitive methods of thinking47.

The form of freer and more intuitive methods of thinking in prog-

ramming language research will certainly vary. One possible form

that I wish to discuss in more detail is the form of a case study.

4.3 Experimentalism: A case for case studies

There has been a number of calls recently in computer science48

as well as in programming language research49 to increase the

focus on experimentation and artifacts. The goal of such mo-

vements is to follow other sciences and enable programming

language researchers to learn from empirical observations. Fur-

thermore, the publication of artifacts (reproducible experiments)

45 Feyerabend [5], 200
46 Sedlacek [19], 321
47 Detlefsen [3], 9 discussing Jaffe, Quinn [10]
48 For example, see Feitelson [20]
49 Hauswirth [8]

should also enable further research. Quoting from the call for

artifacts at OOPSLA 2013:

The high level goal of the Artifact Evaluation (AE) process

is to empower others to build upon the contributions of a

paper50.

According to the call, artifacts should be consistent with the pre-

sented theory, as complete as possible, well documented and easy

to reuse. Such artifacts allow confirmation of experimental claims

but they are not necessarily a good experiment per se:

That [experiments] are adequately performed is necessary

but not sufficient condition for the acceptability of experi-

mental results. They need also to be relevant and signi-

ficant51.

What does it mean for a software artifact to be relevant and

significant? A relevant artifact should be an empirical confir-

mation of its claims – this is partly the purpose of aforementioned

artifacts, but the (confirmable) claims need to be explicitly stated,

be it performance or the ability encode some mathematical pattern

without cognitive overhead.

There is a difference between an artifact (or an experiment) that

is relevant to a single research programme and an artifact (expe-

riment) that is relevant to the programming language research as

a whole. I argue that only the latter kind is significant.

The new experimentalism, introduced in an earlier section,

makes a similar call. The crucial claim is that “experiment can

have a life of its own” and can be independent of theory (or a

research programme). Chalmers presents historical evidence that

such experiments are possible and summarizes:

The production of controlled experimental effects can be

accomplished and appreciated independently of high-level

theory52.

If we treat programming languages or language features as the-

ories then a theory-independent experiment needs to be an artifact

that uses a particular language, but has an observable value

regardless of the particular language details. Recall the example

of Faraday’s motor – it may have been constructed to demonstrate

electromagnetic theory, but it has a clear and interesting observa-

ble effect (rotation).

Similarly, artifacts in PL research could be systems that solve

some non-trivial problem and show that the solution can have

certain properties (e.g. is provably correct, closely corresponds to

some mental model or has other notable properties that cannot be

easily achieved using other languages).

As mentioned earlier, I argue that case studies provide a way

for constructing such theory-independent artifacts. Let us examine

this in light of the following definition of a case study:

Case study is an in-depth exploration from multiple per-

spectives of the complexity and uniqueness of a particular

project, (…), program or system in a “real life” context53.

The most common artifact provided when discussing a novel

language, feature or a tool is an implementation (e.g. a compiler

or a library). While this is sufficient “to empower others to build

50 Hauswirth [9]
51 Chalmers [2], 37
52 Ibid., 197

upon the contributions”, it does not offer multiple perspectives

and “real life” context. These can be added by applying the tool

to a number of practical problems (such as development of non-

trivial system) and the analysis of such implementations.

Indeed, programming language research often aim to improve

the practice in a “real life” context. However, this is difficult to

express as a scientific claim and so it often remains implicit or

unacknowledged. I believe that we need to accept that PL research

is not just mathematics and learn from social sciences. We should

accept the need for a more holistic approach that can be employed

in case studies.

Another key aspect of the new experimentalism is that theory-

independent experiments can be used to compare radically diffe-

rent theories or, in our case, programming languages:

Implicit in the new experimentalist’s approach is the denial

that experimental results are invariably “theory” or “pa-

radigm” dependent to the extent that they cannot (…)

adjudicate between theories54.

I believe this should also be the case for case studies in PL

research. Artifact such as compiler implementation is clearly

insufficient for comparison of multiple theories (languages).

However, if we had case studies solving related problems (e.g.

implementing similar systems) in different languages, we would

be able to compare properties of the languages for one particular

scenario. This gives us a way to contrast the experience with

earlier work – even if the comparison is going to be more sub-

jective than in formal mathematical treatment.

4.4 Practical experience: A case for inclusiveness

Finally, the evaluation of programming languages in a “real life”

context also means that such case studies could provide a common

language between programming language researchers and prac-

titioners. I already mentioned the importance of the history and

experience of practitioners when discussing how myths and

history are important for economics.

For Feyerabend, such wider collaboration is a historical fact

and it is necessary for science:

[A scientist] who wants to understand as many aspects of

his theory as possible (…) will adopt pluralistic methodo-

logy (…). For the alternatives (…) may be taken from the

past as well. As a matter of fact, they may be taken from

wherever one is able to find them – from ancient myths and

modern prejudices; from the lucubrations of experts and

from the fantasies of cranks55.

This is even more the case for programming language research –

there is hardly any field of science where the collaboration

between scientists and non-scientists is more important and so

finding a common language is crucial.

I am not the first one to make such call in the field of

programming language research. Meyerovich and Rabkin noted

that programming languages are often created by people outside

of the programming language research community and discuss the

importance of communication:

53 Simons [22], 21
54 Chalmers [2], 205
55 Feyerabend [5],27

[P]rogramming language community should not only focus

on justifying features to programmers. We should focus on

better consulting with the wider software development

community to see what is relevant and communicating our

findings to new language designers, who usually come from

outside of our community56.

To summarize, we need to focus on theory-independent experi-

ments, both to make our research more honest (by acknowledging

implicit claim that we improve the practice) and to make it more

useful (by providing value to practitioners). There are surely

multiple approaches towards this goal, but I propose case studies

as a form of experiments with “life of their own”.

This focus has a number of benefits. It allows comparison of

radically different theories, it allows us to evaluate our work in a

wider “real life” context. Finally, it also encourages involvement

of people outside of the narrow PL research field. In other words,

we should not “discard the immense treasures of knowledge and

wisdom that are contained in the traditions”57.

5 CONCLUSIONS

This essay serves two purposes. Firstly, I argue that philosophy of

science is a valuable source of ideas and inspirations for prog-

ramming language research practice. Secondly, I give a concrete

(subjective) answer to the question: “What can programming lan-

guage research learn from the philosophy of science?”

I started with an exploration of classic theories known from

philosophy of science. I introduced theories that suggest what

methodologies should (or should not) be followed including

Popper’s falsificationism, new experimentalism and Feyerabend’s

anarchic theory. I also discussed theories that ascribe some struc-

ture to history of science – namely Kuhn’s scientific revolutions

and Lakatos’s research programmes.

In the second part of the essay, I made a case for three ways of

improving the established methodology of programming language

research. I argued for plurality – that is, we should acknowledge

the fact that there are multiple research programmes that consider

different problems important and have different aims. I argued for

inexactness – history shows that early stages of scientific theories

and paradigms are inexact. Requiring early precision limits the

creativity and may shift attention from crucial problems of the

theory. Finally, I argued for case studies as a way to produce

theory-independent experiments that make it possible to compare

radically different theories and can serve as a common language

between researchers and software practitioners.

56 Meyerovich, Rabkin [16]

REFERENCES

[1] Brandt, E. (2011). Why Dart Types Are Optional and Un-sound.
Online at: http://www.dartlang.org/articles/why-dart-types

[2] Chalmers, A. F. (1999). What is this thing called science? Open

University Press. ISBN 0335201091.
[3] Detlefsen, M. (2008). Proof: Its nature and significance. In Proof

and other Dilemmas (Gold, B., Simons, R. A., eds.) pp291-311.

The Mathematical Association of America.
[4] Devlin, K. (2008). What will count as mathematics in 2100? In

Proof and other Dilemmas (Gold, B., Simons, R. A., eds.) pp291-

311. The Mathematical Association of America.
[5] Feyerabend, P. (2010). Against method. Verso (4th edition). ISBN

1844674428.

[6] Forster, T. (2008). Falsifiability: what Popper got right.
Unpublished. http://www.dpmms.cam.ac.uk/~tf/falsifiability.pdf

[7] Hacking, I. (1983). Representing and Intervening: Introductory

Topics in the Philosophy of Natural Science. Cambridge University
Press. ISBN 0521282462.

[8] Hauswirth, M. et al. (2013a). Experimental Evaluation of Software

and Systems in Computer Science: Letter to PC chairs. Online.
http://evaluate.inf.usi.ch/letter-to-pc-chairs

[9] Hauswirth, M., Blackburn, S. (2013b). OOPSLA Artifacts: Call for

papers. Online: http://splashcon.org/2013/cfp/665
[10] Jaffe, A., Quinn, F. (1993). Theoretical mathematics: Towards a

cultural synthesis of mathematics and theoretical physics. Bulletin

of the American Mathematical Society 29, pp.1-13
[11] Gabriel, R. P., Sullivan, K. J. (2010). Better science through art. In

proceedings of OOPSLA 2010.

[12] Gold, B., Simons, R. A. (2008). Proof and other Dilemmas:
Mathematics & Philosophy. The Mathematical Association of

America. ISBN 0883855674.

[13] Kuhn, T. S. (1970). The Structure of Scientific Revolutions. The
University of Chicago Press (2nd edition). ISBN 0226458040.

[14] Lakatos, I. (1975). Falsification and the Methodology of Scientific

Research Programmes in Can Theories be Refuted? Essays on the
Duhem-Quine Thesis (ed. Harding, S. G.), pp205-259. ISBN

9789027706300.

[15] Lorenz, K. (1984). Die acht Todsünden der zivilisierten
Menschheit. Piper Verlag, Munich.

[16] Meyerovich, L. A., Rabkin, A. S. (2012). Socio-PLT: Principles for
programming language adoption. In proceedings of Onward! 2012.

[17] Murphy-Hill, E., Sadowski, C., Markstrum, S., eds. (2012)

Proceedings of the ACM 4th annual workshop on Evaluation and
usability of programming languages and tools.

[18] Popper, K. (2005). The Logic of Scientific Discovery. Taylor &

Francis eLibrary. ISBN 0-203-99462-0
[19] Sedlacek, T. (2011). Economics of good and evil: the quest for

economic meaning from Gilgamesh to Wall Street. Oxford

University Press. ISBN 9780199767205.
[20] Feitelson, D. G. (2006). Experimental Computer Science: The

Need for a Cultural Change. Unpublished note. Available online:

http://www.cs.huji.ac.il/~feit/papers/exp05.pdf
[21] Sime, M. E., Green, T. R. G., Guest, D.J. (1973). Psychological

evaluation of two conditional constructions used in computer

languages. International Journal of Man-Machine Studies, Volume
5, Issue 1, January 1973, pp105-113

[22] Simons, H. (2009). Case study research in practice. Sage

Publications. ISBN 076196424X.
[23] Turner, R., Eden, A. (2011). The Philosophy of Computer Science.

In The Stanford Encyclopedia of Philosophy (Zalta, E. N. eds.).

http://plato.stanford.edu/entries/computer-science/

57 Lorenz [15] as quoted by Feyerabend [5], 131 footnote 16

