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Abstract.  As a recent discipline, computer science, and program-

ming language research in particular, have so far eluded the eyes 

of philosophers of science. However, we can gain interesting 

insights by looking at classical works in philosophy of science and 

reconsidering their meaning from the perspective of programming 

language research.  

This is exactly what I attempt to do in this essay – I will go 

through the established theories of science and look what they can 

say about programming language research. Then I suggest how 

we can improve our scientific practice in the light of these obser-

vations. 

First, I discuss how understanding the research programme is 

important for evaluating scientific contributions. Second, I argue 

that overemphasis on precise, mathematical models in early stage 

of research may limit the creativity. Thirdly, I propose how to 

design stand-alone (theory-independent) experiments in program-

ming language research and how this can help to integrate the vast 

amount of knowledge gathered by software practitioners. 

1 INTRODUCTION 

Programming language (PL) research is, no doubt, an important 

part of computer science. It raises many intriguing philosophical 

questions, ranging from the nature of programming languages to 

the scientific practice of programming language researchers. 

This essay focuses on the latter question – what is the structure 

of programming language research, how is it done and how should 

it be done? Despite a number of pioneering works2 in the philo-

sophy of computer science, this is largely an unexplored domain. 

This essay does not aim to present a comprehensive view. 

Instead I choose a number of classic works in the philosophy of 

science and look how their observations apply to programming 

language research. 

The basis for many of the classic works used as an inspiration 

in this essay has been summarized by Chalmers as follows: 

The undoubted success of physics over the last three hun-

dred years (…) is to be attributed to the application of (…) 

‘the scientific method’. Therefore, if [other disciplines] are 

to emulate the success of physics then that is to be achieved 

by [understanding and applying this method]3. 

This can be easily viewed as a too narrow approach. Following 

the scientific method may not be the only (or the best) approach. 

We can equally learn from the mathematical method, the artistic 
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method or from social sciences4. Similarly, physic is not the only 

successful discipline. However, this is the view adopted by the 

classical works in philosophy of science that I take as an inspira-

tion and that I follow in this text.  

My main goal is to demonstrate that taking the philosophical 

perspective on programming language research is a worthwhile 

effort that can lead to interesting ideas. With no doubt, future work 

needs to take broader and more comprehensive view. In this short 

essay, I look at the following questions:   

 In what way is programming language research a science? 

I look at Popperian falsificationism (§2.1), experimentalist 

view (§2.2) and Feyerabend’s anarchistic perspective (§2.3).  

 What is the structure of programming language research? 

Are there different scientific paradigms (§3.1) or competing 

research programmes (§3.2)?  

 How can we use the above ideas to better judge contributions 

(§4.1), support creative research (§4.2) and produce more 

reusable experiments or software artifacts (§4.3 and §4.4).  

This essay is intentionally written in a subjective and perhaps 

provocative style. I believe that the questions posed in the first 

two sections (and discussions they can trigger) are equally im-

portant as my answers suggested in the last section. 

2 PL RESEARCH AS A SCIENCE 

A commonsense understanding of science is that science starts 

with an unprejudiced observation of reality, infers facts from these 

observations and uses sound reasoning to derive scientific laws. 

For a moment, I shall ignore the numerous problems with this 

view and look what is the corresponding practice in programming 

language research. 

Do programming language researchers observe the reality? In 

some cases, they do – they study programs written by the indu-

strial engineers or programs (artifacts) created as a result of earlier 

research. However, just observation is not enough to obtain 

relevant facts and so programming language researchers perform 

experiments – they write compilers for their languages and use 

them to write sample programs; they implement novel algorithms 

and test their performance. Broadly speaking, such experiments 

can be classified in two categories. The first kind is constructed to 

confirm a specific theory (e.g. the performance of new garbage 

collection algorithm in practice). Second kind is constructed for 
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the experiment itself (e.g. using a new language to develop a sys-

tem is an interesting case study on its own).  

What kind of facts do we derive from the observations? Some 

observations, such as performance measurements, yield unques-

tionable facts in the form of statistics. However, the facts derived 

from programming language experiments are less clear. Small-

scale examples often included in publications are sufficient to 

demonstrate that a language is capable of expressing certain 

abstractions or preventing certain bugs. However, they often do 

not present a realistic study of how a language would be used in 

practice. This is a separate challenge that has been explored in the 

early days of programming language design by Sime et al. [21], 

but is again becoming an interesting topic – see, for example the 

workshop proceedings edited by Murphy-Hill et al. [17]. 

Finally, what kind of laws do programming language re-

searchers arrive at? PL research often consists of building of 

simplified models (semantics) of languages and proofs of their 

properties. Much can be said about the nature and the meaning of 

proofs5, but there is a more important hidden assumption – we 

believe that proving facts about simplified model tells us 

important information about the applicability of the language in 

the “real world.” Perhaps a more interesting claim that is often 

implicit6 is that a language can capture some common mental 

model that its users use when thinking about problems. 

2.1 Falsificationism 

I suggested several laws (or results) that programming language 

researchers may claim, but I am not surprised if the readers find 

the examples unconvincing. Indeed, it is difficult to find program-

ming language research that makes explicit claims in the form of 

traditional scientific laws. 

What would a meaningful scientific claim look like? The most 

well-known answer is provided by Popper’s falsificationism:   

I shall certainly admit a system as (…) scientific only if it is 

capable of being tested by experience. These considerations 

suggest that not the verifiability but the falsifiability of a 

system is to be taken as a criterion of demarcation7. 

It is not necessary to prove that the claim is true, but it must be 

possible to refute it by an empirical test. Finding programming 

language claims that do not fail this criteria is difficult. A claim 

about mathematical model cannot be refuted by experience; a 

claim about language usability passes, but it cannot resist refu-

tation for a long time – it will hardly hold universally for all users. 

However, it is worth noting that Popper does not devise the 

above test as a test for worthwhile human activity, it is just a test 

(or demarcation) for empirical sciences: 
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The problem of finding a criterion which would enable us to 

distinguish between the empirical sciences on the one hand, 

and mathematics and logic as well as ‘metaphysical’ sys-

tems on the other, I call the problem of demarcation8.  

According to Popper’s theory, programming language research 

does not qualify as empirical science. Some aspects of program-

ming language research would clearly belong to the category of 

mathematics and logic, but a large proportion of work falls in the 

other category9. Let us now consider an alternative treatment.  

2.2 The new experimentalism 

Rather than defining what claim is scientific, we can sidestep the 

problem, focus on another aspect of science and take experiments 

as the basis of our philosophy of programming language research. 

As already discussed, PL researchers do make experiments. 

They implement compilers or interpreters, use them to develop 

sample applications or measure performance of systems. But do 

such experiments make sense only as part of a theory, or do they 

have a value on their own? 

Indeed, many scientific experiments are theory-dependent. For 

example, experiments designed to confirm the existence of an 

aether in 19th century10 became irrelevant once physics abandoned 

the idea of an aether. Similarly, an implementation of a compiler 

for a programming language is only relevant in the light of the 

given programming language11. A group of philosophers12 some-

times called new experimentalists believe that theory-independent 

experiments can form a foundation of the scientific method:  

According to its proponents, experiment can (…) have a 

“life of its own” independent of a large-scale theory. It is 

argued that experimentalists have a range of practical 

strategies for establishing the reality of experimental effects 

without needing recourse to large-scale theory13.  

Another interesting aspect of new experimentalism and its focus 

on experiments is that it provides a notion of scientific progress. 

Accumulated experimental knowledge remains valuable even 

when new theories appear. The same theory-independence also 

means that radically different theories can be compared, for 

example, by looking which established experiments they explain.  

As a programming language researcher who wants to subscribe 

to the “new experimentalist” approach I need to ask: “How to 

produce theory-independent experiments in PL?” In physics, an 

example of such experiment is Faraday’s motor (the first electrical 

motor to be built, also called homopolar)14 – it is an easy to build 

device that is not fallible (it usually works) and has obvious effects 

(rotation) that a theory needs to explain, be it the theory of 

electromagnetism or other theory that we may devise. 

9 That said, falsifiability can provide interesting insights from the 

programming language perspective (Forster 2008), just not as an  
overall scientific theory. 
10 Chalmers [2], 36 
11 Note that I am, by no means, suggesting that a compiler for a newly 
designed programming language is not a useful artifact. It is valuable in 

that it allows further experimentation. However, it is on its own not a 

theory (language) independent artifact that yields new insights not 
related to the particular programming language (or paradigm) studied. 
12 Pioneering work in this direction is Hacking [7] 
13 Chalmers [2], 194, quoting Hacking [7] 
14 Ibid., 196 



I return to the topic of theory-independent experiments in prog-

ramming language research later (§4.3). Briefly – I propose that a 

medium-scale practical case study is an experiment showing that 

certain problem can be solved with such and such properties. 

Furthermore, case study is an artifact that both PL researchers and 

practitioners can understand and learn from.  

2.3 Against method 

Programming language research does not seem to easily fit the 

commonsense view of science or the falsificationism approach. 

While experimentalism is an attractive alternative, it focuses only 

on one particular aspect of science. Is there a more appropriate 

view of science that better fits programming language research? 

To avoid future disappointment, even traditional sciences do 

not easily fit structures described by philosophers of science. This 

led Paul Feyerabend to formulate his anarchistic theory: 

To those who look at the rich material provided by history 

(…) it will become clear that there is only one principle that 

can be defended under all circumstances and in all stages 

of human development. It is the principle: anything goes15. 

Feyerabend says that scientific ideas are developed in much less 

organized manner than what its image suggests. He gives exam-

ples from history where newly proposed (later successful) theories 

contradict (the current understanding of) experimental results16 

and rely on ad-hoc approximations17. For example, theories 

developed by Galileo were in direct conflict with scientifically 

accepted “facts” of his time. In addition to intellectual reasons, 

Galileo employed propaganda18 to change such established natu-

ral interpretations. 

The brief example illustrates the point that Feyerabend makes 

in a more elaborate way. The history of science shows that there 

is no universal scientific method and “science is an essentially 

anarchic enterprise”. However, this is not a bad thing: 

[T]heoretical anarchism is more humanitarian and is more 

likely to encourage progress than its law-and-order alter-

natives.19 

Such view of science does not provide any guidelines for distin-

guishing “good science” and “bad science”. This is an interesting 

point for programming language researchers. Many languages 

used in practice do not qualify as “good science” according to 

commonsense PL research perspective. Yet, they are popular and 

widely used. The anarchistic perspective offers hints on how to 

take such languages into consideration and learn from them, even 

though they do not originate from the scientific method. 

This does not mean that we should study everything ever cre-

ated. Feyerabend comments his selection procedure as follows: 

I make my selection in a highly individual and idiosyncratic 

way. (…) Science needs people who are adaptable and in-

ventive, not rigid imitators of ‘established’ behavioural 

patterns20. 
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Many philosophers science view Feyerabend’s anarchistic per-

spective as too radical. Even for programming languages, where 

choice is often very subjective, it is difficult to imagine how a 

fully subjective approach could be employed. 

Chalmers [2] attempts to find a middle ground. He argues that 

there are some scientific standards, but these can change (which 

leaves enough room for the “anything goes” method). I take simi-

lar position when I argue that early work needs to be less mathe-

matically precise than work in more developed domains (§4.2). 

3 STRUCTURE OF PL RESEARCH 

Kuhn and Lakatos are two influential philosophers of science who 

attempt to capture the structure of scientific development by 

looking at the history of science and propose theories that capture 

well-known examples of scientific practice (such as Galilean and 

Newtonian revolutions in physics). Unlike the works discussed in 

the previous section, they do not dictate how science should be 

done. They merely attempt to describe the historic reality. 

Applying this methodology to the history of programming 

languages is an interesting problem, but one that I leave to future 

work. However, such treatment of science also explores assum-

ptions that remain hidden during regular scientific practice, but 

influence how science is done (e.g. which established “facts” can 

be questioned & revisited; in what circumstances and how). 

3.1 Scientific revolutions 

According to Kuhn [13], science (after initial pre-scientific phase) 

proceeds in cycles where a period of normal science is followed 

by a crisis and a scientific revolution that leads to a new period of 

normal science. A period of normal science is governed by pre-

dominant scientific paradigm: 

A paradigm is made up of the general theoretical assum-

ptions, laws and the techniques for their application that the 

members of a particular scientific community adopt21.  

The paradigm dominates and entire field (or a subfield) and its 

existence is what makes normal scientific work possible: 

When the individual scientist can take a paradigm for 

granted, he needs no longer, in his major works, attempt to 

build his field anew, starting from first principles and justi-

fying the use of each concept introduced22. 

The paradigm is what each aspiring scientist learns during his or 

her preparation. The assumptions of the paradigm are so ubiqui-

tous that “normal scientist will be unaware of and unable to arti-

culate the precise nature of the paradigm”23. 

The only moment when scientists become aware of the assum-

ptions dictated by the paradigm is during the period of crisis. That 

is, when the paradigm is found insufficient for solving problems 

(puzzles) within the normal science. In that case, the predominant 

paradigm is replaced with another: 

20 Ibid., 163 
21 Chalmers [2], 108 
22 Kuhn [13], 19 
23 Chalmers [2], 112 



[S]cientific revolutions (…) [are] non-cumulative develop-

mental episodes in which an older paradigm is replaced in 

whole or in part by an incompatible new one24. 

Programming language research as a whole is likely too young for 

identifying such paradigm shifts (it would be a mistake to view 

programming language paradigms as Kuhnian paradigms). 

However, we can try to uncover the background assumptions 

commonplace in the PL research today.  

For a programming language researcher, this is, indeed, a diffi-

cult task! I believe that one such assumption is the reliance on 

simplified mathematical models – everyone agrees that such 

models provide useful insights. I do not want to doubt this, but the 

amount of trust in models is surprising when the aim is often to 

produce much larger industrial-scale implementations25.   

Aside from common assumptions, the paradigm also provides 

techniques that are employed when facing a problem. An example 

of such technique from programming language design might be 

the approach to rule out bugs using a type system. The paradigm 

also dictates what is required of such type system – for example 

the need for soundness. Yet, this requirement of the traditional 

research paradigm has been ignored in several recent program-

ming languages originated in the industry such as Dart26.  

3.2 Research programmes 

Another attempt to explain the structure of science has been made 

by Lakatos [14]. He looks how has falsification been used in 

science in the past and notes that the failure of a theory can be 

ascribed to different aspects of the theory – there is no single 

assumption to blame. Lakatos also notes that not all assumptions 

are equal. Scientists can always protect a theory they believe by 

ascribing failures to less fundamental assumptions. 

This is the basis for Lakatos’s theory of research programmes. 

Similarly to paradigms, research programmes specify the back-

ground assumptions. Unlike with paradigms, science consists of 

multiple competing research programmes formed by groups of 

scientists. A research programme develops as follows: 

Scientists can seek to solve problems by modifying the more 

peripheral assumptions (…). [T]hey will be contributing to 

the development of the same research program however 

different their attempts (…). Lakatos referred to the fun-

damental principles as the hard core27. 

The hard core is a defining characteristic of a research program-

me. It is augmented with a protective belt of auxiliary assumptions 

that can be freely modified. The assumptions forming the hard 

core are essentially unfalsifiable and all failures of theories are 

attributed to the protective belt. 

We can take a purely functional programming as an example 

of a research programme in PL research. The hard core is formed 

by concepts such as immutability, pure functions and the lack of 
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side-effects. An experimental failure (e.g. difficulty in imple-

menting an efficient algorithm) is attributed to the auxiliary 

assumptions, such as an insufficient optimization in the compiler, 

but not to the hard core assumptions like immutability.  

According to Feyerabend, this methodology is so lax that it can 

accommodate almost everything28. Lakatos himself claims that 

there is no instant rationality in science and he does not treat his 

philosophy as an advice to scientists29. The structure of research 

programmes can be fully reconstructed only in hindsight. 

Lakatos’s philosophy still provides some structure. It might not 

rule out “bad science”30, but it provides a way to navigate through 

the complex web of PL research that is otherwise ruled by the 

“anything goes” methodology. I suggest that acknowledging the 

hard core assumptions that a programming language researcher 

subscribes to can improve the practice of our field (§4.1). 

3.3 Beyond philosophy of science 

So far, we looked at programming language research through the 

scientific perspective that has been inspired by physics. However, 

there are other successful disciplines that have much to say about 

the structure of human enterprises. I briefly mention mathematics 

and social sciences. Devlin answers the question about the nature 

of mathematics as follows:  

[A] definition of mathematics (…) on which most ma-

thematicians now agree, and which captured the broad and 

increasing range of different branches of the subject [is]: 

mathematics is the science of patterns31. 

This sounds very familiar to programming language researchers. 

Such key concepts as abstraction32 are essentially patterns and PL 

design is about finding better ways to capture such patterns. The 

philosophy of mathematics can shed light on other aspects of 

programming language research, including the nature of models 

and their relation to reality.  

Another similarity between mathematics and programming 

language research is that they both construct (and affect) the 

structures that they study. For Lakatos, this is a reason why 

theories of science derived from physics may not be applicable to 

other disciplines – although he speaks of social sciences and, more 

specifically, economics:  

[F]or example, economic theories can affect the way in 

which individuals operate in the market place, so that a 

change in theory can bring about a change in the economic 

system being studied33. 

Aside from being self-referential, economics is similar to pro-

gramming language research in its emphasis on mathematical 

models. In his recent book, Sedlacek rethinks economics from a 

broader perspective that does not focus just on this aspect, but 

includes long history of myths and religions: 

28 Ibid., 154 
29 Ibid., 144 
30 Lakatos distinguishes between progressive and degenerating research 

programmes, but he does not say that scientists should abandon the latter 

ones, because new research can always bring them back to life.  
31 Devlin [4], 293.  
32 Turner and Eden [23] discus abstraction from the philosophical view 
33 Chalmers [2], 47 



It would be foolish to assume that economic inquiry began 

with the scientific age. At first, myths and religions ex-

plained the world to people who ask basically similar 

questions as we do today34. 

While learning from myths and religion may be a bit far-fetched 

for programming language design, there is another source of 

knowledge that is often ignored and can provide enormous value. 

I am, of course, speaking of the skills and practices of a broad 

programmer community.  

While programming language researchers often aim to solve 

the problems that are faced by the IT community, we tend to 

dismiss “commonsense wisdom” of software developers as un-

scientific. We are throwing out the baby with the bath water and I 

consider how to remedy this problem in the next section (§4.4). 

4 LEARNING FROM PHILOSOPHIES 

The previous two sections were an exploration of – following 

Feyerabend’s criteria for selection – subjectively chosen works in 

philosophy of science and an attempt to demonstrate their rele-

vance to programming language research. In this section I go 

further and make three concrete suggestions how to improve the 

scientific practice of PL research. 

First, Feyerabend’s anarchic presentation of history follows the 

slogan “anything goes”. Even if we ignore Feyerabend’s huma-

nistic motivations35, his historic account shows that this is how 

science proceeds. We need to accept this and make our practice 

more flexible to support the development of competing theories. 

Second, such flexibility (or plurality) in programming langu-

age research should accommodate theories in their early stages. 

According to both Kuhn and Feyerabend, theories start imprecise 

and only develop fully formal methods at later stage. 

Third, PL research develops competing theories (programming 

languages) that are difficult to compare. I believe that Hacking’s 

new experimentalism might be a pathway towards the solution. 

By focusing on theory-independent experiments, we can compare 

different theories, but also integrate “non-scientific” knowledge 

developed by software practitioners.  

4.1 Anything goes: A case for plurality 

Feyerabend’s slogan “anything goes” should not be interpreted as 

a license to treat anything as science. It means that there is no 

universal scientific method, but there are still scientific standards: 

I argue that all rules have their limits and that there is no 

comprehensive ‘rationality’, I do not argue that we should 

proceed without rules and standards36. 

While we cannot accommodate all possible standards (we cannot 

know what the standards are until we look at science in hindsight), 

we can certainly identify several different standard in program-

ming language research. Some work is focused on theory (with 

proofs) while other emphasizes practical implementation (with 

performance measurements). However, the classification can be 

more fine-grained.  
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One language feature or PL theory is approached with different 

interpretations and goals. This is nicely captured by Lakatos’s 

research programmes. Depending on the programme, researchers 

will work by modifying different auxiliary assumptions. 

It is important to understand that different work follows from 

different hard core assumptions. By respecting this difference and 

making it more explicit (to a certain possible extent), we can avoid 

judging contributions of a research using incompatible criteria.  

Such incompatibility is an inherent part of science. Feyerabend 

argues that the consistency condition (which requires that new 

hypothesis agrees with accepted theories) is overly restrictive: 

[T]he methodological unit to which we must refer [is] a 

whole set of partly overlapping, factually adequate, but 

mutually inconsistent theories37. 

In other words, judging new work from the perspective of an exi-

sting (incompatible) theory may rule out result that is important 

from the view of a different theory. While I do not advocate fully 

subjective approach (as Feyerabend does), I argue that we should 

try to judge research work from the right perspective.  

Furthermore, if we evaluate a hypothesis that subscribes to a 

certain theory from the perspective of multiple different theories 

(which can easily occur in a typical review process), we may find 

it inacceptable if it modifies the hard core of any of the alternate 

theories. This is demonstrated in Figure 1 – the hard cores of three 

theories overlap. Each of them would accept hypotheses that fall 

outside its own hard core. However, hypotheses that are accep-

table to all of them can only modify auxiliary assumptions that fall 

outside of the union of the three research programmes – and so 

researchers need to be much more conservative in their contri-

butions than their own research programme requires.  

The historical evidence discussed by Feyerabend shows that 

hypotheses inconsistent with established theories (and even gene-

rally accepted “facts”) can lead to scientific progress. It might not 

be possible to see which inconsistent theories are worthwhile in 

advance, but we should, at least, better accommodate the plurality 

of multiple competing theories. 

If we openly allow multiple incompatible theories in our prac-

tice, we can also be more honest about our approach. We do not 

need to conceal the fact that – as put by Feyerabend – “science is 

much more ‘sloppy’ than its methodological image”38. 

Feyerabend also demonstrates that new theories often take step 

back and do not necessarily have increased content (they do not 

add new results). Instead they define new problems or give a new 

perspective. We can easily find historical evidence from the 

between science and other forms of knowledge (Chalmers [2], 156). 
36 Feyerabend [5], 242 
37 Ibid., 20 
38 Ibid., 160 

 

Figure 1. Overlapping cores of competing research programmes 



programming language field where it would have been unwise to 

reject a novel theory early just because it suffered from problems 

solved by the established theory.  

The example I have in mind is purely functional programming. 

When first developed, purely functional languages did not have a 

good way for dealing with I/O and it took time until this problem 

was solved with linear types and later monads. We needed to 

“wait and ignore large masses of critical observations”39 until it 

has been supplemented by the necessary auxiliary techniques. 

Aside from ignoring limitations of a new theory, we should 

also accept the fact that new theories are initially less precise: 

A new period in the history of science commences with a 

backward movement that returns us to an earlier stage 

where theories are more vague and have smaller empirical 

content40. 

The increase vagueness of novel theories in early stages leads to 

the second point of this essay. Is there a room for vagueness and 

imprecision in programming language research?  

4.2 Early stages: A case for inexactness 

It is widely accepted that programming languages should be based 

on solid foundations and precise mathematics. I do not wish to 

dispute this – the role of mathematics in guaranteeing safety and 

robustness of languages is unquestionable.  

However, the history of science provides a strong argument for 

including inexact hypotheses and other works as part of the 

scientific practice. There is a rare agreement among philosophers 

of science mentioned in this essay that early phases of science (be 

it paradigms, research programmers or science in general) are 

often vague and inexact.  

The following quotes by Feyerabend and by Chalmers (when 

describing the work of Kuhn and Lakatos) illustrate the point: 

Logically perfect versions (if such versions exist) usually 

arrive long after imperfect versions have enriched science 

by their contributions41. 

A case could be made to the effect that the typical history of 

a concept (…) involves the initial emergence of the concept 

as a vague idea, followed by its gradual clarification as the 

theory (…) takes a more precise (…) form42.  

Early work in a research program is portrayed as taking 

place without heed or in spite of apparent falsifications by 

observation43. 

The history also shows that such “early phases” of scientific 

hypotheses or a research programmes are often surprisingly long. 

I believe that the same is the case for programming language 

research and that rejecting imperfect or unmathematical versions 

of research is not beneficial for the field. 

So, what form of early or vague research might be interesting? 

Here are some examples we can learn from. Kuhn suggests that 

Galileo’s early efforts “involved thought experiments, analogies 
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and illustrative metaphors rather than detailed experimenta-

tion”44. According to Lakatos, an important aspect of early stages 

of research programmes are confirmations – cases where the 

programme succeeds at predicting phenomena (or explaining an 

important problem), despite apparent falsification of other aspects 

of the programme. 

Similarly, I argue that analogies, illustrative metaphors and 

thought experiments are equally worthwhile for programming 

language research. Case studies that show the applicability of a 

language in an important domain, as advocated later (§4.3), can 

fill the role of early confirmations. 

Another motivation for adopting more lax rules in early stages 

of research programmes is that the focus on precise mathematics 

and clarity changes the perspective and can draw the attention 

away from the original motivations. In other words, it means that 

different problems matter. Feyerabend says the following about 

the undesirable consequences of an early clarity requirements: 

The course of investigation is deflected into the narrow 

channels of things already understood and the possibility of 

fundamental conceptual discovery (…) is considerably 

reduced45. 

I very much agree with this quote and believe that programming 

language research needs to start with the focus on fundamental 

(non-technical) questions and then gradually evolve – including 

the clarification and the development of mathematical theory.  

Interestingly, very similar words have been recently said about 

other disciplines. Sedlacek writes the following about mathema-

tical models in economics:  

It appears to me that we have given lawyers and mathe-

maticians too large a role at the expense of poets and 

philosophers. We have exchanged too much wisdom for 

exactness (…)46.  

Even more interestingly, the call for freer and more liberal rea-

soning has also been made by mathematicians themselves: 

Too strong an emphasis on proof may thus be more of an 

impediment than an aid to the development of new 

mathematical theories. To become more efficient (…) ma-

thematics should follow the lead of physics and permit freer 

use of intuitive methods of thinking47. 

The form of freer and more intuitive methods of thinking in prog-

ramming language research will certainly vary. One possible form 

that I wish to discuss in more detail is the form of a case study. 

4.3 Experimentalism: A case for case studies 

There has been a number of calls recently in computer science48 

as well as in programming language research49 to increase the 

focus on experimentation and artifacts. The goal of such mo-

vements is to follow other sciences and enable programming 

language researchers to learn from empirical observations. Fur-

thermore, the publication of artifacts (reproducible experiments) 

45 Feyerabend [5], 200 
46 Sedlacek [19], 321 
47 Detlefsen [3], 9 discussing Jaffe, Quinn [10] 
48 For example, see Feitelson [20] 
49 Hauswirth [8] 



should also enable further research. Quoting from the call for 

artifacts at OOPSLA 2013: 

The high level goal of the Artifact Evaluation (AE) process 

is to empower others to build upon the contributions of a 

paper50. 

According to the call, artifacts should be consistent with the pre-

sented theory, as complete as possible, well documented and easy 

to reuse. Such artifacts allow confirmation of experimental claims 

but they are not necessarily a good experiment per se:  

That [experiments] are adequately performed is necessary 

but not sufficient condition for the acceptability of experi-

mental results. They need also to be relevant and signi-

ficant51. 

What does it mean for a software artifact to be relevant and 

significant? A relevant artifact should be an empirical confir-

mation of its claims – this is partly the purpose of aforementioned 

artifacts, but the (confirmable) claims need to be explicitly stated, 

be it performance or the ability encode some mathematical pattern 

without cognitive overhead.  

There is a difference between an artifact (or an experiment) that 

is relevant to a single research programme and an artifact (expe-

riment) that is relevant to the programming language research as 

a whole. I argue that only the latter kind is significant. 

The new experimentalism, introduced in an earlier section, 

makes a similar call. The crucial claim is that “experiment can 

have a life of its own” and can be independent of theory (or a 

research programme). Chalmers presents historical evidence that 

such experiments are possible and summarizes: 

The production of controlled experimental effects can be 

accomplished and appreciated independently of high-level 

theory52.  

If we treat programming languages or language features as the-

ories then a theory-independent experiment needs to be an artifact 

that uses a particular language, but has an observable value 

regardless of the particular language details. Recall the example 

of Faraday’s motor – it may have been constructed to demonstrate 

electromagnetic theory, but it has a clear and interesting observa-

ble effect (rotation). 

Similarly, artifacts in PL research could be systems that solve 

some non-trivial problem and show that the solution can have 

certain properties (e.g. is provably correct, closely corresponds to 

some mental model or has other notable properties that cannot be 

easily achieved using other languages). 

As mentioned earlier, I argue that case studies provide a way 

for constructing such theory-independent artifacts. Let us examine 

this in light of the following definition of a case study: 

Case study is an in-depth exploration from multiple per-

spectives of the complexity and uniqueness of a particular 

project, (…), program or system in a “real life” context53.  

The most common artifact provided when discussing a novel 

language, feature or a tool is an implementation (e.g. a compiler 

or a library). While this is sufficient “to empower others to build 

                                                                 
50 Hauswirth [9] 
51 Chalmers [2], 37 
52 Ibid., 197 

upon the contributions”, it does not offer multiple perspectives 

and “real life” context. These can be added by applying the tool 

to a number of practical problems (such as development of non-

trivial system) and the analysis of such implementations. 

Indeed, programming language research often aim to improve 

the practice in a “real life” context. However, this is difficult to 

express as a scientific claim and so it often remains implicit or 

unacknowledged. I believe that we need to accept that PL research 

is not just mathematics and learn from social sciences. We should 

accept the need for a more holistic approach that can be employed 

in case studies. 

Another key aspect of the new experimentalism is that theory-

independent experiments can be used to compare radically diffe-

rent theories or, in our case, programming languages:  

Implicit in the new experimentalist’s approach is the denial 

that experimental results are invariably “theory” or “pa-

radigm” dependent to the extent that they cannot (…) 

adjudicate between theories54. 

I believe this should also be the case for case studies in PL 

research. Artifact such as compiler implementation is clearly 

insufficient for comparison of multiple theories (languages). 

However, if we had case studies solving related problems (e.g. 

implementing similar systems) in different languages, we would 

be able to compare properties of the languages for one particular 

scenario. This gives us a way to contrast the experience with 

earlier work – even if the comparison is going to be more sub-

jective than in formal mathematical treatment.  

4.4 Practical experience: A case for inclusiveness 

Finally, the evaluation of programming languages in a “real life” 

context also means that such case studies could provide a common 

language between programming language researchers and prac-

titioners. I already mentioned the importance of the history and 

experience of practitioners when discussing how myths and 

history are important for economics.  

For Feyerabend, such wider collaboration is a historical fact 

and it is necessary for science: 

[A scientist] who wants to understand as many aspects of 

his theory as possible (…) will adopt pluralistic methodo-

logy (…). For the alternatives (…) may be taken from the 

past as well. As a matter of fact, they may be taken from 

wherever one is able to find them – from ancient myths and 

modern prejudices; from the lucubrations of experts and 

from the fantasies of cranks55. 

This is even more the case for programming language research – 

there is hardly any field of science where the collaboration 

between scientists and non-scientists is more important and so 

finding a common language is crucial. 

I am not the first one to make such call in the field of 

programming language research. Meyerovich and Rabkin noted 

that programming languages are often created by people outside 

of the programming language research community and discuss the 

importance of communication: 

53 Simons [22], 21 
54 Chalmers [2], 205 
55 Feyerabend [5],27 



[P]rogramming language community should not only focus 

on justifying features to programmers. We should focus on 

better consulting with the wider software development 

community to see what is relevant and communicating our 

findings to new language designers, who usually come from 

outside of our community56. 

To summarize, we need to focus on theory-independent experi-

ments, both to make our research more honest (by acknowledging 

implicit claim that we improve the practice) and to make it more 

useful (by providing value to practitioners). There are surely 

multiple approaches towards this goal, but I propose case studies 

as a form of experiments with “life of their own”.  

This focus has a number of benefits. It allows comparison of 

radically different theories, it allows us to evaluate our work in a 

wider “real life” context. Finally, it also encourages involvement 

of people outside of the narrow PL research field. In other words, 

we should not “discard the immense treasures of knowledge and 

wisdom that are contained in the traditions”57. 

5 CONCLUSIONS 

This essay serves two purposes. Firstly, I argue that philosophy of 

science is a valuable source of ideas and inspirations for prog-

ramming language research practice. Secondly, I give a concrete 

(subjective) answer to the question: “What can programming lan-

guage research learn from the philosophy of science?”  

I started with an exploration of classic theories known from 

philosophy of science. I introduced theories that suggest what 

methodologies should (or should not) be followed including 

Popper’s falsificationism, new experimentalism and Feyerabend’s 

anarchic theory. I also discussed theories that ascribe some struc-

ture to history of science – namely Kuhn’s scientific revolutions 

and Lakatos’s research programmes. 

In the second part of the essay, I made a case for three ways of 

improving the established methodology of programming language 

research. I argued for plurality – that is, we should acknowledge 

the fact that there are multiple research programmes that consider 

different problems important and have different aims. I argued for 

inexactness – history shows that early stages of scientific theories 

and paradigms are inexact. Requiring early precision limits the 

creativity and may shift attention from crucial problems of the 

theory. Finally, I argued for case studies as a way to produce 

theory-independent experiments that make it possible to compare 

radically different theories and can serve as a common language 

between researchers and software practitioners.  
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