
Stephanie Stuart Mawler
1

Abstract. Technosectarianism is a new term presented and

discussed in this paper, and intended to represent the group

definition actions taken by programmers through their

supposedly purely objective and technical interactions,

which are driven more by religious-like concepts including

orthodoxy, partisanship, apostasy, and heresy.1

1 INTRODUCTION

The passion held by programmers for their tools, products,

and practices can be viewed as a form of sectarian

competition within a technologically-dependent profession

– a situation that can be labeled technosectarianism. This

new term couples the traditional notion of sectarianism

with the technological systems and surrounding beliefs to

which a given community of programmers adheres.

Formally defined, technosectarianism is boundary

maintenance behavior within programming-related

communities, where such communities come together

around a particular technology system. Such behavior

requires a faction that defends the technology system by

establishing orthodoxies regarding any and all aspects of

that tool and the identification of partisans to defend the

established orthodoxies. However, the behavior also

requires an opposing faction driven by heretics and

apostates, with heretics openly questioning the entire

structure of orthodoxies and apostates who introduce

concepts that do not fit into established orthodoxies.

Technosectarian battles are waged in a wide variety of

locations, including written interactions within the

technology-focused communities. Typically, these

interactions occur in places that are visited almost entirely

by other highly-technical participants. These written

interactions are normatively believed to be objective,

identity-neutral, and purpose-oriented by the community

members. Contrary to this belief, technology-focused

communities rely on these interactions to become the

crusaders’ banners in the technosectarian conflicts.

Identification of technosectarianism provides a label for

what is often considered typical behavior of dedicated

technologies, and it also allows a greater understanding of

technology-focused communities. While such communities

possess a shared lexicon, the foundational structure for the

community is the technology system. The technology

1 Virginia Tech, Falls Church, Virginia, US, Department of

Science and Technology Studies, Virginia Tech, Falls Church, VA,
US. Email: smawler@gmail.com.

system itself is comprised of languages and lexicons, to

which a near sacred status is applied.

The adoption of religious metaphors, while intuitively

appealing, is also supported philosophically by [1] where

he discusses his concept of the alterity relation to

technology. This relationship highlights the similarity

between “a contemporary form of anthropomorphism” and

the sacred role of objects “in ancient or non-Western

cultures”.

Within the programming field, anthropomorphism is at

least as commonplace as it is in the rest of contemporary

society. Applying the concept to any programming

community, the sacred object is the language and/or its

syntax. Paraphrasing [1], a programming language does

not “simply ‘represent’ some absent power but is endowed

with the sacred”. In a very real sense, programming

languages no longer represent power, but actually contain

that power, which makes them “sacred” to their

practitioners. Continuing with [1], programmers will

“defend, sacrifice to, and care for the sacred artifact. Each

of these illustrations contains the seeds of an alterity

relation”. If the uninitiated assails the sacred language, the

language is defended. Specific syntactical arrangements

are also defended.

To expand upon the notion of technosectarianism, this

paper looks at two different interaction types: code

comments and newsgroup posts / threads. For the code

comments, programs were selected from the Linux kernel

and a real-time messaging user-interface called Pidgin. For

the newsgroups, a timeframe was selected for analysis

within comp.lang.c++ and comp.lang.lisp. First, however,

it is useful to look at programming languages more

generally, as these are the core sacred object.

2 PROGRAMMING LANGUAGES

There is an incredible diversity of programming

languages currently in active use, and programmers make a

choice among programming languages for as many

different reasons as the languages are originally created.

All other things being equal, the free selection of a given

programming language says more about the programmer

than it does about the task for which it will be used. A

programming language may be a metaphor for the social

organization of a community of programmers, and a shared

language is one of the foundations of an established

community and the programming language is the most

basic shared language of a given programming community.

Technosectarianism:

Applying Religious Metaphors to Programming

Importantly, as [3] said, “just as natural languages

constrain exposition and discourse, so programming

languages constrain what can and cannot easily be

expressed, and have both profound and subtle influence

over what the programmer can think”(emphasis in orig).

Sherry Turkle agrees in [4], asserting that “different

computer languages and architectures suggested different

ways of thinking”. From a purely technological standpoint,

the language (and, to a large degree the environment

around the language) determines what can be thought and

programmed, but the culture that is built up around the

language also limits what can be thought of and executed

within that language.

Finally, while programming languages are metaphorical,

the metaphors also apply in the other direction, with the

language itself becoming a metaphor for the communities

that use them, proving that languages have yet to “retreat to

the background”, as suggested by [5], and remain a central

part of the programming discourse. In some senses,

arguments over language and semantics are both the root of

the discourse and a smokescreen around other substantive

issues (or lack thereof). The programming language

becomes a metaphor for the community that uses the

language, as in “C programmers are just so arcane and have

very little grasp of interpersonal relations,” or “UNIX

programmers just cannot GREP the solution,” or “BASIC

programmers are just a series of GOTO statements,” or

“COBOL programmers are just a series of MOVE

statements,” and many other statements that have formed a

part of my own personal experience.2

There are other ways that languages are used as

metaphors that help establish community. Each language

“entails different styles of programming and suggests

different modes for conceptualization,”, as [5] indicates,

and may also suggest entirely different ways of forming

communities around different metaphors embodied in the

language(s) used in that community, with a language’s

cultural implications, based in the technology and syntax of

the language, and sometimes even the name itself.

3 PROGRAMMER COMMENTS

Comments are natural language footnotes or in-text

commentaries that appear within individual programs.

Comments are for the benefit only of human readers and

have no bearing on the program execution.

So why include comments, when the code that actually

performs the operations is immediately available? At least

one author, [6], asserts that a readily available natural

language explanation of the code “will have a much larger

influence on the speed with which the programmer

2 I have personally worked in the IT field, alongside programmers

using various language and platforms for more than twenty (20)

years. In that time, I have heard statements like this so often that
they become an unacknowledged element of the culture.

understands the program than variations in the structure of

the program.”3 One of the most direct guides for creating

comments comes from [7], where comment authors are

requested to “put a comment on each function saying what

the function does”, including its arguments and anything

non-standard or unexpected.

Therefore, the normative purpose of comments is to

explain the code. Comments conforming to this purpose

are normatively “good” in that they support the stated

practices of the profession.

Beyond the normative definition of “good”, comments

perform many additional functions, including as a means to

prevent execution of a line of otherwise machine-ready

code by turning the code itself into a comment. The

practice is a part of the orthodoxy of given communities –

it is accepted in some and anathema in others.

“Commenting-out” code means that old code is visible

to later programmers, but the compiler does not convert it

into object code for the computer to use. Commented code

can, in theory, simply be “uncommented” to be resurrected

and adds a sense of history to the text of the program.

However, the concept has been parodied as a counter-norm

in [8], where the author writes that programmers should

“be sure to comment out unused code instead of deleting it

and relying on version control to bring it back if necessary.

In no way document whether the new code was intended to

supplement or completely replace the old code, or whether

the old code worked at all, what was wrong with it, why it

was replaced etc.” The parody here takes the position that

the commented code is merely chaff that makes a

subsequent developer’s job more like that of an

anthropologist or archaeologist.

In the Linux kernel, unlike the Pidgin source code, there

are absolutely no examples of code commented out, which

does not indicate a seamless development path free from

re-writes. Rather, the lack of code that has been

commented out points to a stylistic and ideological decision

that helps form the orthodoxy of the community. The old

code no longer represents knowledge for the Linux kernel

contributors and, to them, its presence would simply add

confusion. To view the changes over time, a person would

3 This assertion seems to conflict directly with another, much

more well-cited study. Weinberg cites an IBM sponsored

“experiment in which several versions of the same code are
produced, one with correct comments, one with one or two

incorrect comments and one with perhaps no comments at all”

(Okimoto, 1970, in Weinberg, p. 164), concluding that “for certain
types of code, at least, correct interpretation of what the program

does can be obtained more reliably and faster without any

comments at all” (Weinberg, p. 164). This same 1970 IBM study
continues to be cited into the second half of the 1990s, with

authors using it as a basis to conclude, similar to Weinberg, that

“studies of short programs show that comments in code interfere
with the process of understanding, [and] if not up to date, can be

misleading and cause errors in the semantic representation of the

code” (Rugaber).

need to compare previous versions of the same file, or use

the tools of version control, as implied in the quip about

unmaintainable code. While removing the old code does

tend to lend clarity, it also might create a false sense of

inevitability, as though the edits needed to bring the code to

its current state were less extensive than they might

actually have been.

The text of one comment within [9] is illustrative of the

boundary defense and the group identification being

performed by a programmer within the context of the code.

The text reads, without original formatting:

setuid() is implemented like SysV with SAVED_IDS

Note that SAVED_ID's is deficient in that a setuid root

program like sendmail, for example, cannot set its uid to be

a normal user and then switch back, because if you're root,

setuid() sets the saved uid too. If you don't like this, blame

the bright people in the POSIX committee and/or USG.

Note that the BSD-style setreuid() will allow a root

program to temporarily drop privileges and be able to

regain them by swapping the real and effective uid.

In the actual comment presented above, a programmer

(unidentified in the context of the comment) provides an

explanation of how the code works in the first line. That

first line is short-hand intended to let later readers

understand the intention of the code, should there be

changes or problems that might require changes.

The subsequent lines of text (seven in the original) do

not actually explain the code to which they refer, instead

performing several additional, counter-normative functions.

First, the author provides background to his/her argument

regarding the effectiveness of the solution, while explaining

possible downfalls of the solution. Second, the author

takes aim at those s/he considers to be the driving factors

behind the change, clearly implying that they do not have

sufficient knowledge to shape the solution in this way.

Thirdly, the author provides an alternative solution,

explaining the source of the solution, and its benefits.

Finally, and most importantly, the author uses the comment

to distance him/herself from the solution – noting that s/he

considers the solution “deficient”, placing “blame” onto an

outside party, and claiming preference for a completely

different approach fostered by a different brand of Linux

with which our author is clearly intimately familiar. The

implication of this distancing is that other programmers,

whose opinions would matter to the author, might question

the change and how it was implemented – the comment lets

these other readers know that the author understands the

situation within the code and beyond and would make

different (and better) choices if s/he could.

The comment sets up an opposition between insider and

outsider, through the use of a grammatical construction: the

use of “you”. This form implies that some readers require

education in the ways of the industry and that questioning

the programming decisions made in this section is

inappropriate and not something done by those on the

inside—in the know. In this case, the outsider is a special

case, since they can read the code. The outsider is likely a

new or potential member of the Linux contributor

community.

The author also invites the reader to come inside the

core Linux boundary, as a means to deflect criticism from

his/her “deficient” code. The author’s rhetoric can be seen

as an attempt to create solidarity between him/herself and

the reader (“you”) by speaking to an assumed distaste for

an external bureaucratic enemy (“the POSIX committee

and/or USG”), who exist beyond an additional boundary

and who should be blamed for the problem. In a sense, the

author invokes political savvy to redeem a technical

shortcoming, using his/her expertise to shift the boundary,

potentially deflecting criticism.

Technosectarianism in this case is realized as orthodoxy

and partisanship. The author of the comment is strongly in

“agreement with the doctrines, opinions, or practices

currently held to be right or correct”, quoting [10] in

application to this instance. The belief system is evident in

the language directed at the POSIX committee specifically,

where the committee’s beliefs are clearly seen to be

incorrect / wrong. In the representation of the orthodoxy,

the author is clearly “an adherent of a cause”, paraphrasing

[11] in reference to the instance, where the cause is

simultaneously systems programming and the Linux project

itself.

4 PROGRAMMING NEWSGROUPS

A programming language is a lexicon; hence, any two

people using the same language inherently share a lexicon,

or repertoire refined through discussions. Many

programmers come to a specific language by accident, but

there are those who choose the language and thus become

advocates – partisans – for the language. Shared

vocabularies are literacies that can be used for behavioral

monitoring and self-regulation, as [12] argue, and this is

exactly the sort of activity that is found within technical

community newsgroups. 4

According to [13], USENET began in 1979 as a

somewhat informal “news exchange system between Duke

and the University of North Carolina, using dial-up

connections”. USENET was divided up into separate

newsgroups devoted to particular topics and, notably,

“users could create newsgroups on any topic they wanted to

discuss”. All newsgroups are oriented around threads,

established when an individual submits a comment or

question with a subject and all responses are organized

under that original message. Computer users were early

4 This study is based on analysis of two newsgroups:
comp.lang.lisp and comp.lang.c++

adopters of USENET, forming newsgroups “focused on

practical matters of using and operating computers”.

So why do people post to programming-related

newsgroups? The normative use of a newsgroup post

within most technical communities is to pose or answer

vexing or intractable technical questions. These problems

may be related to a general concept, a specific code snippet,

or an interpretation of details within a standards document,

but they are essentially problem-related. Within each

interaction, participants can be assigned one of two roles,

‘original posters’ (“OP”) who initiate threads and

respondents. Each role has different styles, genres, and

tropes, following the work of [14]. In general, community

members establish themselves nearly exclusively in only

one of these roles, conforming to the normative purposes of

the newsgroup post as an interaction event around problem-

solving.

Questions in a newsgroup can take many forms and

levels of complexity, from “how do I get started” to “how

does one interpret this paragraph of a standard”.

Correspondingly, solutions have different forms.

Participants who provide answers express many different

justifications for their participation. One particularly

common justification, used in [15], says that those who

provide solutions are “here for the newbies” (those new to

the language).

However, the very assertion of these norms and attempts

to adhere to them hide equally important examples of

technosectarian behavior within these same interaction

events. Besides simply posing and answering difficult

technical questions, newsgroup posts determine what

counts as knowledge within a particular programming

community; they create and maintain group mythologies;

they pass along shared histories; they validate and maintain

programming practices; they maintain and strengthen

boundaries with other languages and partisan feelings for

the language at hand; and they establish the identity and

credibility of individuals within the community. In

addition, participants are also active in the groups because

they feel strongly about the language to which the group is

devoted – they are partisans.

Within [16], we have a potentially normative thread that

quickly becomes counter-normative. From the normative

perspective, this thread might be seen as a discussion of

difficulties experienced by the OP in working with Lisp,

the language to which the newsgroup is devoted. In this

interpretation, the counter-normative aspect of the OP can

be seen in the tone, which might be considered

confrontational, if based only on the subject: “The

Fundamental Problems of Lisp”.

However, the OP makes clear that the post is not a

question, but an assertion. The author asserts that the

language is deficient in several key ways, including

inherent flaws in the basic syntax of the language. These

problems are defined by the author as “damages lispers has

done to themselfs” (sic). The author spends much time

comparing Lisp to a very different language and platform,

to which there are other newsgroups devoted.5

The subsequent discussion results in the longest single

thread in the newsgroup with nearly 120 responses.

Despite the counter-normativity of the OP, many of the

responses might be considered normative – the authors

consider the assertions and provide reasoned responses

with potential solutions and/or alternative views. However,

the majority of the responses assail the OP. One suggests

that the OP should consider using the language to which

Lisp was most often compared. One branch of the

discussion even changes the subject to “The Fundamental

Confusion of Xah” (the OP).

Technosectarianism is realized in this case primarily as

heresy and apostasy. The OP clearly maintains opinions

that are “at variance with those generally accepted as

authoritative” quoting [17], where participation in the

newsgroup is a matter of choice, involving elevation of the

language itself to a sacred object. These assertions,

therefore, are simply heretical. Furthermore, by active

participation in the Lisp newsgroup over an extended

period of time, these controversial assertions act as a form

of apostasy, where the OP has gone beyond heresy and

appears to have “forsake[n] his allegiance”, applying [18].

5 CONCLUSION

The two instances above, code comments and

programming-related newsgroup discussions, display, at

the very least, that supposedly objective and purely

technical interactions contain far more meaning and use

than the community norms would indicate. Understanding

these non-normative uses exposes new source materials for

those researching technology practitioners. For

practitioners, identifying the non-normative uses might

result in different approaches to either creating or using

unexamined tools, processes, or standards. Programming

teams might change the way they create or use comments.

Mentors, teachers, and professors might reflect on their

own approaches to guiding teams or students by either

avoiding or leveraging the non-normative uses of their

various interactions.

Technosectarianism provides a means to identify a

whole set of behaviors and beliefs that lend themselves

particularly well to such religious metaphors, while helping

those on the inside and on the outside of technology-

oriented communities appreciate the degree to which a

technology system is, itself, the foundational structure for

such communities.

5 The language of comparison is Mathematica.

REFERENCES

[1] D. Ihde, “A Phenomenology of Technics,” in

Philosophy of Technology: The Technological

Condition: An Anthology, R. C. Scharff and V.

Dusek, Eds. Blackwell Publishing, 2003.

[2] E. Semino, J. Heywood, and M. Short,

“Methodological problems in the analysis of

metaphors in a corpus of conversations about

cancer,” J. Pragmat., vol. 36, pp. 1271–1294, 2004.

[3] M. L. Scott, Programming Language Pragmatics,

3rd ed. Burlington, MA: Morgan Kaufmann

Publishers, 2009.

[4] S. Turkle, The Second Self: Computers and the

Human Spirit, Twentieth Anniversary Edition.

Cambridge, MA: MIT Press, 2005.

[5] J. Pflüger, “Language in Computing,” in

Experimenting in Tongues: Studies in Science and

Language, M. Dörries, Ed. Stanford, CA: Stanford

University Press, 2002.

[6] R. Brooks, “Using a Behavioral Theory of Program

Comprehension,” in Proceedings of the 3rd

International Conference on Software Engineering,

IEEE Press, 1978, pp. 196–201.

[7] R. Stallman, “GNU Coding Standards,” Free

Software Foundation, 08-Feb-2006. [Online].

Available: http://www.gnu.org/prep/standards/.

[Accessed: 16-Feb-2006].

[8] R. Green, “Unmaintainable Code,” Canadian Mind

Products, 2006. [Online]. Available:

http://mindprod.com/jgloss/unmain.html. [Accessed:

14-Apr-2006].

[9] Linux Kernel Organization, sys.c. 2006.

[10] “orthodoxy, n.,” OED Online. Oxford University

Press, Jun-2012.

[11] “partisan, n.2 and adj.,” OED Online. Oxford

University Press, Jun-2012.

[12] D. Barton and M. Hamilton, “Literacy, reification,

and the dynamics of social interaction,” in Beyond

Communities of Practice: Language, Power, and

Social Context, D. Barton and K. Tusting, Eds.

Cambridge, UK: Cambridge University Press, 2005.

[13] J. Abbate, Inventing the Internet. Cambridge, MA:

MIT Press.

[14] N. Fairclough, Analysing Discourse: Textual

analysis for social research. New York: Routledge,

2003.

[15] “comp.lang.lisp,” comp.lang.lisp. 01-Jul-2008.

[16] X. Lee, “The Fundamental Problems of Lisp,”

comp.lang.lisp. 13-Jul-2008.

[17] “heresy, n.,” OED Online. Oxford University Press,

Jun-2012.

[18] “apostasy, n.,” OED Online. Oxford University

Press, Jun-2012.

