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Abstract. The main difficulty in all previous attempts to construct
a mathematical model for human intuition is the lack of explanation
wherefrom this outside help can come. If this help-message contains
a piece of information about the problem to be solved then it is unbe-
lievable that somebody sends such a help to us. If the help-message
contains no information then why this message can help anybody.
A possible mechanism of such a help based on finite automata is
proposed. In the proposed model the advice comes in a form of a
random sequence of symbols. It is quite possible that human organ-
ism can sometimes receive random signals from a non-living source
outside the organism. This help indeed contains zero information
about the problem but nonetheless it helps. Moreover, it turns out
that this mechanism is different from probabilistic, nondeterministic
and quantum computation.

1 INTRODUCTION
The Oxford English Dictionary defines intuition as the ability to ac-
quire knowledge without inference and/or the use of reason.

Sharon A. Klinger writes in [15]: ”You have probably heard a
dozen different terms describing the concept of ’intuition’. You may
call it instinct, second sight, a gut feeling, an inner voice, your sixth
sense, or even your soul. Whatever you call it, you have the oppor-
tunity to experience it every single day and use it to benefit your life
and your world.

The dictionary defines intuition as ’direct knowing or learning of
something without the conscious use of reasoning’. Clinical para-
psychologists have defined this ’knowing’ as the perceiving of in-
formation without the use of the physical senses (hence, the term
’extrasensory perception’). They have determined it to be a function
belonging to the vast ’unused’ portion of the brain. Still others (my-
self included) see it as the voice of our eternal (and consequently di-
vine) self, our spirit. And, finally, those who wish to stay away from
the more philosophical, clinical, spiritual or even technical interpre-
tations simply call any intuitive experience ’a hunch’. ”

No wonder, there is a serious difficulty to construct even a primi-
tive mathematical model for human intuition. This paper originated
from re-considering the notion of ”automata that take an advice”.
This notion was introduced by R.Karp/R.Lipton [14] for Turing ma-
chines, by T.Yamakami [29] for finite automata and in a different
way by R.Freivalds [8]. Theorems of this paper consider the case
when the advice is a random string of bits. It turns out that several
theorems from the author’s paper [11] can easily be used in this paper
as well.

The use of nonconstructive methods of proof in mathematics has
a long and dramatic history. In 1888 a young German mathemati-
cian David Hilbert presented to his colleagues three short papers on
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invariant theory. Invariant theory was the highly estimated achieve-
ment of Paul Gordan who had produced highly complicated con-
structive proofs but left several important open problems. The young
David Hilbert had solved all these problems and had done much-
much more. Paul Gordan was furious. He was not ready to accept
the new solutions because they provided no explicit constructions.
Hilbert merely proved that the solutions cannot fail to exist. Gor-
dan refused to accept this as mathematics. He even used the term
theology and categorically objected to publication of these papers.
Nonetheless the papers were published first in Götingen Nachrichten
and later, in final form, in [12]. In the nineteen-forties the situation,
however, changed. In spite of all philosophical battles the noncon-
structive methods found their way even to discrete mathematics. This
was particularly surprising because here all the objects were finite
and it seemed that no kind of distinction between actual infinity and
potential infinity could influence these proofs while most of the dis-
cussions between intuitionists and classicists were around these no-
tions. Paul Erdös produced many nice nonconstructive proofs, the
first paper of this kind being [5]. Many such proofs are considered in
a survey paper by Joel Spencer [25] and a recent monograph by Noga
Alon and Joel H. Spencer [1]. R. Karp and R. Lipton have introduced
in [14] a notion Turing machine that takes advice which is in fact a
usage of a nonconstructive help from outside in a process of compu-
tation. Later C. Damm and M. Holzer [3] have adapted this notion of
advice for finite automata. The adaptation was performed in the most
straightforward way (what is quite natural) and later extensively used
by T.Yamakami and his coauthors [21, 27, 28, 29].

Another version of the notion a finite automaton that takes advice
was introduced in [9, 10] under the name nonconstructive finite au-
tomaton. These notions are equivalent for large amounts of noncon-
structivity (or large amounts of advice) but, for the notion introduced
in [3] languages recognizable with polynomial advice are the same
languages which are recognizable with a constant advice. The no-
tion of the amount of nonconstructivity in [10] is such that the most
interesting results concern the smallest possible amounts of noncon-
structivity. A similar situation was in sixties of the 20th century with
space complexity of Turing machines. At first space complexity was
considered for one-tape offline Turing machines and it turned out that
space complexity is never less than linear. However, it is difficult to
prove such lower bounds. Then the seminal paper by R.E.Stearns,
J.Hartmanis and P.M.Lewis [26] was published and many-tape Tur-
ing machines became a standard tool to study sublinear space com-
plexity.

The essence of nonconstructive methods is as follows. An algo-
rithm is presented in a situation where (seemingly) no algorithm is
possible. However, this algorithm has an additional input where a
special help is fed in. If this help is correct, the algorithm works cor-
rectly. On the other hand, this help on the additional input does not
just provide the answer. There still remains much work for the al-



gorithm. Is this nonconstructivism merely a version of nondetermin-
ism? Not at all. Nondeterministic finite automata (both with 1-way
and 2-way inputs) recognize only regular languages while noncon-
structive finite automata (as defined in [3, 21]) can recognize some
nonregular and even nonrecursive languages. We will see below that
this notion is different also from probabilistic finite automata.

What is a random string of bits? Are we to demand a correct result
for arbitrary ”random” string, including a string consisting only of
zeros? We are to answer all these questions before we propose a for-
mal definition. In our case, the advice is supposed to be an arbitrary
infinite Martin-Löf random sequence [18] but the finite automaton
can use only a finite initial fragment of this sequence. The length
of the used fragment of the random sequence is up to the finite au-
tomaton. We demand that the result is to be correct with arbitrary
Martin-Löf random sequence used. We demand also that no other re-
strictions on the randomness are used. Moreover, we notice that this
our ”naive” definition allows to simulate an additional counter, and
it is well-known that automata with one counter can recognize non-
regular languages. To avoid this additional possibility, we make our
definition more complicated demanding that our sequence of random
bits is 2-infinite ( i.e., infinite to both ends). One no more can simu-
late a counter but still our determnistic finite automaton with random
bits written on a separate tape can recognize languages not recogniz-
able by probabilistic finite automata. Martin-Löf’s original definition
of a random sequence was in terms of constructive null covers; he de-
fined a sequence to be random if it is not contained in any such cover.
Since then it is discovered that Martin-Löf random sequences can be
equivalently defined in many different ways. This is a convincing ar-
gument proving that ”random sequences” are Martin-Löf sequences.
M.Li and P.Vitanyi’s book [19] is an excellent introduction to these
ideas.

It is important to note that the theorems below are not valid if the
advice string is not random. This proves that randomness is indeed
a resource of computation. Artists, especially visual artists have no-
ticed this effect long ago.

Deterministic, nondeterministic and alternating 2-way finite au-
tomata recognize only regular languages. On the other hand, it was
proved in [7] that 2-way probabilistic finite automata with bounded
error can recognize nonregular languages.

Definition 1 A deterministic finite automaton with written random
bits (shortly: wrb) is a deterministic non-writing 2-tape finite au-
tomaton one tape of which contains the input word , and the other
tape contains a 2-infinite primitive Martin-Löf random sequence, the
automaton is 2-way on every tape, and it stops producing a the cor-
rect result in a finite number of steps for arbitrary input word. Ad-
ditionally it is demanded that the head of the automaton never goes
beyond the markers showing the beginning and the end of the input
word.

C. Dwork and L. Stockmeyer proved in [4] a theorem on lim-
itations of 2-way probabilistic finite automata (shortly: 2pfa) with
bounded error. This theorem is useful for us:

Theorem A. [4] Let L ⊆ Σ∗. Suppose there is an infinite set I
of positive integers and, for each m ∈ I , an integer N(m) and sets
Wm = {w1, w2, · · · , wN(m)},
Um = {u1, u2, · · · , uN(m)} and Vm = {v1, v2, · · · , vN(m)} of
words such that

1. | w |≤ m for all w ∈Wm,

2. for every integer k there is an mk such that N(m) ≥ mk for all
m ∈ I with m ≥ mk, and

3. for all 1 ≤ i, j ≤ N(m), ujwivj ∈ L iff i = j.

Then L /∈ AM(2pfa).
We use this result to prove

Theorem 1 1. The language L = {x2x | x ∈ {0, 1}∗} cannot
be recognized with a bounded error by a probabilistic 2-way finite
automaton, 2. The language L = {x2x | x ∈ {0, 1}∗} can be
recognized by a deterministic finite automaton with wrb.

Proof. (1) Let m be an arbitrary integer. For arbitrary
i ∈ {0, 1, 2, · · · , 2m − 1} we define the word xi(m) as the word
number i in the lexicographical ordering of all the binary words of
the lengthm. We define the words ui, wi, vi in our usage of Theorem
A as {�, xi(m), 2xi(m)}.

(2) Let the input word be x(r)2z(s) where r and s are the lengths
of the corresponding words. At first, the 2-tape automaton finds a
fragment 01111 · · · which has the length at least r and uses it as
a counter to test whether r = s. Then the automaton searches for
another help-word. If the help-word turns out to be y then the au-
tomaton tests whether x(r) = y and whether z(s) = y.©

2 SEARCH FOR A SUITABLE DEFINITION

The definition used in the second item of Theorem 1 is our first
(but not final) attempt to formalize the main idea of the notion of
help from outside bringing zero information about the problem to be
solved. Unfortunately, this definition allows something that was not
intended to use. Such automata can easily simulate a counter, and
2-way automata with a counter, of course, can recognize nonregu-
lar languages. On the other hand, the language L in our Theorem 1
cannot be recognized by a finite automaton with one counter. Hence
we try to present a more complicated definition of help from out-
side bringing zero information to avoid the possibility to simulate a
counter.

Martin-Löf’s original definition of a random sequence was in
terms of constructive null covers; he defined a sequence to be random
if it is not contained in any such cover. Leonid Levin and Claus-Peter
Schnorr proved a characterization in terms of Kolmogorov complex-
ity: a sequence is random if there is a uniform bound on the com-
pressibility of its initial segments. Schnorr gave a third equivalent
definition in terms of martingales (a type of betting strategy). Li and
Vitanyi’s book [19] is the standard introduction to these ideas.

Kolmogorov complexity [24, 17]: Kolmogorov complexity can
be thought of as a lower bound on the algorithmic compressibility of
a finite sequence (of characters or binary digits). It assigns to each
such sequence w a natural number K(w) that, intuitively, measures
the minimum length of a computer program (written in some fixed
programming language) that takes no input and will output w when
run. Given a natural number c and a sequence w, we say that w isc-
incompressible if K(w) ≥| w | −c.

An infinite sequence S is Martin-Löf random if and only if there is
a constant c such that all of S’s finite prefixes are c-incompressible.

Constructive null covers [18]: This is Martin-Löf’s original def-
inition. For a finite binary string w we let Cw denote the cylinder
generated by w. This is the set of all infinite sequences beginning
with w, which is a basic open set in Cantor space. The product mea-
sure µ(Cw) of the cylinder generated by w is defined to be 2− | w |.



Every open subset of Cantor space is the union of a countable se-
quence of disjoint basic open sets, and the measure of an open set
is the sum of the measures of any such sequence. An effective open
set is an open set that is the union of the sequence of basic open sets
determined by a recursively enumerable sequence of binary strings.
A constructive null cover or effective measure 0 set is a recursively
enumerable sequence Ui of effective open sets such that Ui+1 ⊆ Ui
and µ(Ui) ≤ 2−i for each natural number i. Every effective null
cover determines a Gδ set of measure 0, namely the intersection of
the sets Ui.

A sequence is defined to be Martin-Löf random if it is not con-
tained in any Gδ set determined by a constructive null cover.

Constructive martingales [23]: A martingale is a function d :
{0, 1}∗ → [0,∞) such that, for all finite strings w, d(w) =
(d(w0) + d(w1))/2, where ab is the concatenation of the strings a
and b. This is called the ”fairness condition”; a martingale is viewed
as a betting strategy, and the above condition requires that the better
plays against fair odds. A martingale d is said to succeed on a se-
quence S if lim supn→∞ d(Sn) =∞, where Sn is the first n bits of
S. A martingale d is constructive (also known as weakly computable,
lower semi-computable, subcomputable) if there exists a computable
function d̂ : {0, 1}∗ ×N → Q such that, for all finite binary strings
w:

1. d̂(w, t) ≤ d̂(w, t+ 1) < d(w), for all positive integers t,

2. limt→∞ d̂(w, t) = d(w).

A sequence is Martin-Löf random if and only if no constructive
martingale succeeds on it.

Definition 2 A 2-infinite sequence of bits is a sequence {ai} where
i ∈ (−∞,∞) and all ai ∈ {0, 1}.

Definition 3 We say that a 2-infinite sequence of bits is Martin-Löf
random if for arbitrary i ∈ (−∞,∞) the sequence {bn}where bn =
ai+n for all i ∈ N is Martin-Löf random, and the sequence {cn}
where cn = ai−n for all i ∈ N is Martin-Löf random.

Definition 4 A deterministic finite automaton with written random
bits (shortly: wrb) is a deterministic non-writing 2-tape finite au-
tomaton one tape of which contains the input word , and the other
tape contains a 2-infinite Martin-Löf random sequence, the automa-
ton is 2-way on every tape, and it stops producing a the correct result
in a finite number of steps for arbitrary input word. Additionally it
is demanded that the head of the automaton never goes beyond the
markers showing the beginning and the end of the input word.

Nondeterministic, probabilistic, alternating, etc. automata with
wrb differ from deterministic ones only in the nature of the automata
but not in usage of tapes or Martin-Löf random sequences.

Definition 5 We say that a language L is recognizable by a deter-
ministic finite automaton A with wrb if A for arbitrary 2-infinite
Martin-Löf random sequence accepts every input word x ∈ L and
rejects every input word x /∈ L.

Definition 6 We say that a language L is enumerable by a determin-
istic finite automatonA with wrb ifA for arbitrary 2-infinite Martin-
Löf random sequence accepts every input word x ∈ L and do not
accept any input word x /∈ L.

Definition 7 A deterministic finite automaton with wrb on un-
bounded input is a deterministic non-writing 2-tape finite automa-
ton one tape of which contains the input word , and the other tape
contains a 2-infinite Martin-Löf random sequence, the automaton is
2-way on every tape, and it stops producing a the correct result in
a finite number of steps for arbitrary input word. It is not demanded
that the head of the automaton always remains between the markers
showing the beginning and the end of the input word.

Recognition and enumeration of languages by deterministic finite
automata with wrb is not particularly interesting because of the fol-
lowing two theorems.

Theorem 2 A language L is enumerable by a deterministic finite
automaton with wrb on unbounded input if and only if it is recursively
enumerable.

Proof. J.Bārzdiņš [2] proved that arbitrary one-tape determinis-
tic Turing machine can be simulated by a 2-way finite deterministic
automaton with 3 counters directly and by a 2-way finite determin-
istic automaton with 2 counters using a simple coding of the input
word. (Later essentially the same result was re-discovered by other
authors.) Hence there exists a a 2-way finite deterministic automaton
with 3 counters accepting every word in L and only words in L.

Let x be an arbitrary word in L. To describe the processing of x
by the 3-counter automaton we denote the content of the counter i
(i ∈ {1, 2, 3}) at the moment t by d(i, t). The word

00000101d(1,0)0101d(2,0)0101d(3,0)000101d(1,1)−

0101d(2,1)0101d(3,1)00 · · ·

· · · 00101d(1,s)0101d(2,s)0101d(3,s)0000

where s is the halting moment, is a complete description of the pro-
cessing of x by the automaton.

Our automaton with wrb tries to find a fragment of the 2-infinite
Martin-Löf random sequence on the help-tape such that:

1. it starts and ends by 0000,

2. the initial fragment

0101d(1,0)0101d(2,0)0101d(3,0)00

is exactly 0000010010010, (i.e., the all 3 counters are empty,

3. for arbitrary t the fragment

0101d(1,t)0101d(2,t)0101d(3,t)0101d(1,t+1)−

0101d(2,t+1)0101d(3,t+1)

corresponds to a legal instruction of the automaton with the coun-
ters.

Since the 2-infinite sequence is Martin-Löf random, such a frag-
ment definitely exists in the sequence infinitely many times. The cor-
rectness of the fragment can be tested using the 3 auxiliary construc-
tions below.

Construction 1. Assume that wk ∈ {0, 1}∗ and wm ∈ {0, 1}∗
are two subwords of the input word x such that:

1. they are immediately preceded and immediately followed by
symbols other than {0, 1},



2. a deterministic finite 1-tape 2-way automaton has no difficulty to
move from wk to wm and back, clearly identifying these sub-
words,

Then there is a deterministic finite automaton with wrb recognizing
whether or not wk = wm.

Proof. As in Theorem 1.©
Construction 2. Assume that 1k and 1m are two subwords of the

help-word y such that:

1. they are immediately preceded and immediately followed by
symbols other than {0, 1},

2. a deterministic finite 1-tape 2-way automaton has no difficulty
to move from wk to wm and back, clearly identifying these
subwords,

3. both k and m are integers not exceeding the length of the input
word.

Then there is a deterministic finite automaton with wrb recognizing
whether or not k = m.

Proof. Similar the proof of Construction 1.©
Construction 3. Assume that 1k1 , 1k2 , · · · , 1ks and

1m1 , 1m2 , · · · , 1mt are subwords of the help-word y such that:

1. they are immediately preceded and immediately followed by sym-
bols other than 1,

2. a deterministic finite 1-tape 2-way automaton has no difficulty to
move from one subword to another and back, clearly identifying
these subwords,

3. both k1 + k2 + · · · + ks and m1 + m2 + · · · + mt are integers
not exceeding the length of the input word.

Then there is a deterministic finite automaton with wrb recognizing
whether or not k1 + k2 + · · ·+ ks = m1 +m2 + · · ·+mt.

Proof. Similar the proof of Construction 2.©
Corollary of Theorem 2. A language L is recognizable by a de-

terministic finite automaton with wrb on unbounded input if and only
if it is recursive.

Theorem 2 and its corollary show that the standard definition of the
automaton with wrb should avoid the possibility to use the input tape
outside the markers. However, even our standard definition allows
recognition and enumeration of nontrivial languages. The proof of
Theorem 1 can be easily modified to prove

Theorem 3 1. The language L = {x2x | x ∈ {0, 1}∗} cannot be
recognized with a bounded error by a probabilistic 2-way finite
automaton,

2. The language L = {x2x | x ∈ {0, 1}∗} can be recognized by a
deterministic finite automaton with wrb.

What happens if we allow to have two (or more) help-tapes con-
taining 2-infinite Martin-Löf sequences? We will see below that
again this help turns out to be superfluous.

Definition 8 A deterministic finite automaton with wrb with 2 help
tapes is a deterministic non-writing 3-tape finite automaton one tape
of which contains the input word , and each of the two other tapes
contains a 2-infinite Martin-Löf random sequence, the automaton is

2-way on every tape, and it stops producing a the correct result in
a finite number of steps for arbitrary input word. It is not demanded
that the head of the automaton always remains between the markers
showing the beginning and the end of the input word.

Theorem 4 A language L is enumerable by a deterministic finite
automaton with wrb with 2 help tapes if and only if it is recursively
enumerable.

Theorem 5 A language L is recognizable by a deterministic finite
automaton with wrb with 2 help tapes if and only if it is recursive.

3 MAIN RESULTS
Theorem 6 The unary language PERFECT SQUARES = {1n |
(∃m)(n = m2)} can be recognized by a deterministic finite au-
tomaton with wrb.

Proof. It is well-known that

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

The deterministic automaton with wrb searches for a help-word (be-
ing a fragment of the given 2-infinite Martin-Löf sequence)

00101110111110 · · · 012n−100.

At first, the input word is used as a counter to test whether each sub-
string of 1’s is exactly 2 symbols longer than the preceding one. Then
the help-word is used to test whether the length of the input word co-
incides with the number of 1’s in the help-word.©

Theorem 7 The unary language PERFECT CUBES = {1n |
(∃m)(n = m3)} can be recognized by a deterministic finite au-
tomaton with wrb.

Proof. In a similar manner the formula

1 + 3(n− 1) + 3(n− 1)2 = n3 − (n− 1)3

suggests a help-word

000[1]00[101110111]00[101111110111111111111]−

00 · · · 00[101n−101(n−1)2 ]000

where symbols [, ] are invisible (i.e. they are not written explicitly;
they are given in our text only for the readers convenience). At first,
the input word is used as a counter to test whether the help-word is
correct but not whether its length is sufficient. Then the help-word is
used to test whether the length of the input word coincides with the
number of 1’s in the help-word.©

Theorem 8 The unary language PRIMES = {1n | n is prime} can
be recognized by a deterministic finite automaton with wrb.

Idea of the proof. The automaton searches for a help-word (being
a fragment of the given 2-infinite Martin-Löf sequence)

101101110 . . . 01n−1.

This fragment is used to test whether n is divided by an m such that
1 < m < n.©

We define a language UNARY 3-SAT as follows. The term
term1 = xk is coded as [term1] being 21k, the term term2 = ¬xk
is coded as [term2] being 31k, the subformula f being (term1 ∨
term2∨ term3) is coded as [f ] being [term1]∨ [term2]∨ [term3].
TheCNF being f1∧f2∧· · ·∧fm is coded as [f1]∧[f2]∧· · ·∧[fm].
©



Theorem 9 Every L ∈ NP is reducible by a deterministic log-
space bounded Turing machine to a language L′ such that L′ is enu-
merable by a deterministic finite automaton with wrb.

Proof. 3-SAT is NP -complete. Hence L is reducible by a deter-
ministic log-space bounded Turing machine to 3-SAT. The language
3-SAT is reducible by a deterministic log-space bounded Turing ma-
chine to unary3 − SAT . The language UNARY 3-SAT is enumer-
able by a deterministic finite automaton B with wrb which can be
constructed using Construction 1, Construction 2 and Construction
3.©

Theorem 10 If a language L is enumerable by a nondeterministic
finite automaton with wrb then L ∈ NP .

Proof. R.Fagin’s theorem [6] in descriptive complexity theory
states that the set of all properties expressible in existential second-
order logic is precisely the complexity class NP. N.Immerman 1999
gave a detailed proof of the theorem [13].

Our proof rather closely simulates Immerman’s proof. Essentially,
we use second-order existential quantifiers to choose existentially a
help-word and a computation tableau. For every timestep, we arbi-
trarily choose the finite state control’s state, the contents of every
tape cell, and which nondeterministic choice we must make. Verify-
ing that each timestep follows from each previous timestep can then
be done with a first-order formula.©

The paper [9] contains the following

Theorem 11 There exists a nonrecursive languageL such that it can
be nonconstructively recognized with nonconstructivity (logn)2.

In contrast, we have a result showing that if the nonconstructive
help is a Martin-Löf sequence, then the language can be only recur-
sive. Moreover, we have

Theorem 12 If a language L is recognizable by a nondeterministic
finite automaton with wrb then L ∈ NP ∩ co−NP .

Unfortunately, we have no strengthening of Theorems 10,12 for
deterministic finite automata with wrb. Theorem 13 below shows that
this open problem can be difficult.

Theorem 13 Every language enumerable by a deterministic finite
automaton with wrb is also recognizable by a nondeterministic finite
automaton with wrb if and only if P = NP .

Proof. Immediately from Theorem 12 and Lemma 1 below.©

Lemma 1 If every language enumerable by a deterministic finite au-
tomaton with wrb is also recognizable by a nondeterministic finite
automaton with wrb then P = NP .

Proof. Let L be an arbitrary language in NP . Then by Theorem
9 L is reducible by a log-space DTM to a language L′ ∈ NP such
that L′ is enumerable by a deterministic finite automaton with wrb.
The assumption of our theorem implies that L′ recognizable by a
nondeterministic finite automaton with wrb, and, consequently, also
the complement of L′ is recognizable by a nondeterministic finite
automaton with wrb. By Theorem 12 it follows that L′ ∈ co−NP ,
and by Theorem 9 it follows that L ∈ co−NP .©

Theorem 14 If a language L is enumerable by a nondeterministic
finite automaton with wrb then L is also enumerable by a determin-
istic finite automaton with wrb.

Proof. The deterministic automaton with wrb searches for a help-
word (being a fragment of the given 2-infinite Martin-Löf sequence)
of a special kind described below.

Let x ∈ L be an input word , a help-word w (we denote the length
of w by h) and let an computation path P by the nondeterministic
automaton on (x,w) be fixed such that the head onw never leavesw.
At first, we describe a word y containing enough information about
the nondeterministic choices and later we use this word y to construct
a deterministic finite automaton with wrb to accept the word (x, z)
with an appropriate z. Let w be a unary word w1w2w3 · · ·wm. Then

y = w12c(1,1)c(2,1) · · · c(h,1)2w22−

c(1,2) · · · c(h,2)2w3 · · · 2wm2c(1,m) · · · c(h,m)

where c(i,j) denotes:

• �, if at the computation path P there is no occurrence when the
head on the help-tape is on the symbol wj and the head on the
input tape at this moment is on the i-th symbol of x;

• code of triple (p, s, i), if at the computation path P there is an oc-
currence when the head on the help-tape is on the symbol wj and
the head on the input tape at this moment is on the i-th symbol of
x, and at this moment the state of the automaton is p , the instruc-
tion s is performed on the computation path P , and the number i
in a unary notation. (Please notice that p and s are elements of fi-
nite sets with a cardinality bounded by a constant depending only
on the program of the nondeterministic automaton.)

Let z be an expression of y in binary notation by a symbol-to-
symbol translation of the word y. The needed deterministic automa-
ton working on arbitrary 2-infinite Martin-Löf sequence searches for
a fragment z of the given 2-infinite sequence. This search involves a
huge amount of comparisons (1) whether or not the tested help-word
is compatible with the instructions of the nondeterministic finite au-
tomaton with wrb and (2) whether the tested help-word is compati-
ble with the computation path of the nondeterministic finite automa-
ton with wrb. For instance, let at some moment it appears that the
current instruction of the nondeterministic automaton (contained in
c(i,j))prescribes moving the head on the help-tape one position to
the right with the head on the input tape staying at the same position.
Then the head of the deterministic automaton with wrb leaves its po-
sition and for a time being the input tape is used only as a counter.
The moves to the leftmost position and then the counter is used to
move the help-tape head to the position of c(i,j+1) simultaneously
comparing whether c(i,j+1) contains an instruction compatible with
the instruction performed at the previous step. If at some moment it
turns out that the help word is not correct (i.e. it does not correspond
either to the instructions of the nondeterministic automaton, or it does
not correspond to a legal path of computation), the deterministic au-
tomaton searches for a new help-word. Since the help tape contains a
2-infinite Martin-Löf random sequence, if there is an accepting path
of the nondeterministic automaton there is also an accepting path of
the deterministic automaton.©

Corollary of Theorem 14. If a language L is recognizable by a
nondeterministic finite automaton with wrb then L is also recogniz-
able by a deterministic finite automaton with wrb.

Now we consider closure properties of the class of languages enu-
merable by deterministic finite automata with wrb.



A family of languages is an ordered pair (Σ,Λ), where (1) Σ is
an infinite set of symbols; (2) Λ is a set of formal languages; (3) For
each L in Λ there exists a finite subset Σ1 ⊂ Σ such that L ⊆ Σ∗1;
and (4) L 6= � for some L in Λ.

Given alphabets Σ1 and Σ2, a function h : Σ1 → Σ∗2 such that
h(uv) = h(u)h(v) for all u and v in Σ∗1 is called a homomorphism
on Σ∗1. Let ε denote the empty word. If h is a homomorphism on
Σ∗1 and h(x) 6= ε for all x 6= ε in Σ∗1, then h is called an ε-free
homomorphism.

A trio is a family of languages closed under ε-free homomorphism,
inverse homomorphism, and intersection with regular language.

A full trio, also called a cone, is a trio closed under arbitrary ho-
momorphism.

A (full) semi-AFL is a (full) trio closed under union.
A (full) AFL is a (full) semi-AFL closed under concatenation and

the Kleene plus.
It is known that the regular languages, the context-free languages,

and the recursively enumerable languages are all full AFLs. How-
ever, the context sensitive languages and the recursive languages are
AFLs, but not full AFLs because they are not closed under arbitrary
homomorphisms.

Theorem 15 The class of all languages enumerable (recognizable)
by deterministic finite automata with wrb is an AFL but not a full
AFL.

Proof. 1. Inverse homomorphisms. Let L be a language enumer-
able (recognizable) by deterministic finite automaton A with wrb, h
be a homomorphism, and L′ be a language such that h(L′) = L.
Then L′ can be enumerated (recognized) by an automaton B sim-
ulating A on a word y = h(x) which is not written on any tape
but can be easily uniquely restored from x by a deterministic finite
automaton.

2. ε-free homomorphisms. The proof is technically complicated
but similar to the proof of Theorem 14.

3. Intersections, unions, concatenations, Kleene plus. Immedi-
ate.

4. Arbitrary homomorphisms. The class of all languages recog-
nizable by deterministic finite automata with wrb is not closed under
arbitrary homomorphisms.

Idea of the proof. Using the technique of our Theorem 2 it is
possible to prove that every recursively enumerable language is a
homomorphic image of a language recognizable by a deterministic
finite automaton with wrb.
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