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Abstract. Exploration and exploitation are considered essential no-
tions in evolutionary algorithms. However, a precise interpretation of
what constitutes exploration or exploitation is clearly lacking and so
are specific measures for characterising such notions. In this paper,
we start addressing this issue by presenting new measures that can
be used as indicators of the exploitation behaviour of an algorithm.
These work by characterising the extent to which available informa-
tion guides the search. More precisely, they quantify the dependency
of a population’s activity on the observed fitness values and genetic
material, utilising an empirical model that uses a coarse-grained rep-
resentation of population dynamics and records information about
it. The model uses the k-means clustering algorithm to identify the
population’s “basins of activity”. The exploitation behaviour is then
captured by an entropy-based measure based on the model that quan-
tifies the strength of the association between a population’s activity
distribution and the observed fitness landscape information.

In experiments, we analysed the effects of the search operators
and their parameter settings on the collective dynamic behaviour of
populations. We also analysed the effect of using different problems
on algorithm behaviours. We define a behavioural landscape for each
problem to identify the appropriate behaviour to achieve good results
and point out possible applications for the proposed model.

1 Introduction
Population-based search algorithms solve problems using a set of
interaction mechanisms which control the generation of new indi-
viduals in a population. Based on the information obtained via pre-
vious individuals, an algorithm directs the search and changes the
density of the population in different regions. This bias in directing
the movement of the population is hoped to guide the algorithm to-
wards promising areas in the search space and exploring them with
more intensity than less promising areas. As the interaction mech-
anisms operate on moving, creating and/or eliminating individuals,
the algorithm produces an emergent “large-scale” behaviour in the
dynamics of the population.

Population dynamics has been a central issue in many theoretical
investigations. For example, within evolutionary computation theory,
approaches include: the schema theory [8, 22, 23], Markov chain
formulations [27], Walsh-function-based analyses [1], statistical-
mechanical formulations [21] and also some computational com-
plexity approaches [29, 9, 10]. The study of the dynamics/behaviour
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of populations with respect to specific problems has also been the
subject of a number of studies where empirical measures were de-
fined and studied. For example, semi-empirical measures of problem
difficulty, such as the fitness-distance correlation [12] and the nega-
tive slope coefficient [17], have been proposed to characterise what
makes a problem easy or hard for evolutionary algorithms.

All of these approaches have seen some successes at mathemat-
ically or empirically modelling evolutionary algorithms. However,
very often researchers describe the behaviour of search algorithms
in terms of exploration and exploitation, not of run times, success
probabilities, or Walsh coefficients. Exploration refers to behaviour
resulting in the discovery of new good regions in the search space,
while exploitation refers to the behaviour of exploring previously dis-
covered good regions [8, 3]. Researchers have found that to achieve
good performance it is often important to control the trade-off be-
tween explorative and exploitative behaviour. This is done by either
tuning the parameters of search algorithms prior to a run or by chang-
ing them dynamically throughout the run based on features of the
population such as fitness or diversity. However, there is no precise
definition in the literature of the notions of exploration and exploita-
tion, no precise characterisation of the distinction between them, and
no numerical quantification of them.

In our previous work [25], we presented a model to analyse the
collective dynamic behaviour of population-based algorithms. Based
on that model, we defined many measures to extract emergent fea-
tures attributed to that behaviour. These features can be used to qual-
itatively describe the exploitation/exploration behaviour of an algo-
rithm. We used self-organising maps (SOMs) [13] to implement the
model. The SOMs track the population’s movement as an algorithm
operates on solving a problem and this allowed us to gather infor-
mation about its activities in each of the regions currently being ex-
plored. In [26], we have taken the work further by performing more
experiments and presenting a new set of measures to characterise the
dependency of different collective behaviour features on observed fit-
ness values. We called these measures fitness dependency measures
and used them as indicators of the exploitation behaviour of a popu-
lation. Building on that work, here we have used the model presented
in [26, 25] to define a new measure, the genetic dependency that we
have used along with fitness dependency to analyse the influence of
the observed fitness values and genetic material in guiding the search
activities. Our current model is implemented using the k-means clus-
tering method [4] to identify regions of activity within the population
over a run. Based on this model we define entropy-based measures
[18] to quantify the dependency of population activities on fitness
values and on the diversity of the available genetic material. The pro-
posed measures are used as indicators of the exploitation behaviour
of algorithm as they characterise the extent by which a population



exploits available information to guide search activities.
The proposed model is an effort to contribute to our understanding

of the exploration/exploitation phenomena by trying to define what
constitutes exploitation and measuring quantities that assess the de-
gree of that behaviour in an algorithm. An algorithm produces differ-
ent behaviours when it operates on different problems. In accordance
with the No Free Launch (NFL) theorem [30], only certain types of
collective dynamic behaviour will lead the algorithm to perform well
on a problem. In this work, we show that, for a given problem, an
algorithm’s performance can be modelled as a function of the algo-
rithm’s collective behaviour. In the future, this performance model
could be used to implement an algorithm selection mechanism to
help identify algorithms with a collective behaviour that likely to
achieve better results on a problem. It could also be used to tune
an algorithm’s parameters so as to exhibit such behaviour or to guide
the design of new algorithms.

The rest of the paper is organised as follows. In Section 2, we
present the proposed model and define the dependency measures that
will be used to characterise the exploitation behaviour. Section 3 out-
lines the details of our experiments and presents our results of dif-
ferent genetic operators, their settings and interaction on the collec-
tive exploitation behaviour of an algorithm. We consider the possible
ways in which our model and indicators can be used in Section 4 and
we finish with some conclusions in Section 5.

2 The Proposed Model

We will first describe the proposed model (Section 2.1) and then
present the dependency measures that we use to characterise a popu-
lation’s exploitation behaviour (Section 2.2).

2.1 Formulation

Our model is similar, but not identical, to the one proposed in [25].
The proposed model uses a set of nodes to capture the distribution
of population individuals at certain points in time. Each node has a
centroid representing the centre of a group of individuals in a lo-
calised area of the search space. In addition, nodes store information
describing the activities of population in the corresponding area. To
track the dynamic behaviour of a population over a run, the model
is instantiated every so many time steps to represent the motion of
the population and record information about its activities as the algo-
rithm progresses in solving a problem.

Formally, a set of nodes, Ct, represents a snapshot of the pop-
ulation distribution at time t. Let C0 be the set of nodes that rep-
resents the distribution of the initial individuals in the population,
Pinit = {(x1, y1), . . . , (xη, yη)}, where η is the population size,
xi ∈ RD represents the position of individual i in the search space
(D being its dimension) and yi ∈ R is the associated fitness value.
Also, let the time-ordered set P = {(x1, y1), . . . , (xN , yN )} repre-
sent a sequence of all the individuals created by an algorithm over a
period of a run from the initial population, N being the total number
of individuals created by the algorithm (i.e., the total number of calls
to the fitness function).

The sets of nodes C1, C2, ... are created every τ individuals
produced by the algorithm (i.e., τ represents the sampling pe-
riod). For example, C1 captures the distribution of the sequence
P1 = {(x1, y1), . . . , (xτ , yτ )}. Generally speaking,Ct is created by
tracking and recording information about individuals in the sequence
Pt = {(xk+1, yk+1), . . . , (xk+τ , yk+τ )}, where k = τ × (t− 1).

More precisely the set Ct consists of nt nodes, where each node,
Ctr , is represented by the following tuple

Ctr = 〈mCtr , hC
t
r , dC

t
r , fC

t
r 〉 (1)

where in Ctr , t is time and r ∈ {1 . . . nt} is the position in the set.
The elements of Pt are partitioned into non-overlapping subsets,

PC
t
r , the individuals of which are associated with the node Ctr based

on their distance from the r-th centroid (as explained later in this sec-
tion). Let xC

t
r and yC

t
r represent sets of positions and fitness values

of the individuals associated withCtr , respectively. Then the elements
of the tuple Ctr are computed as follows:

mCtr ∈ RD is the node centroid. The node centroid represents a
region of a population activity. As the algorithm works on redis-
tributing the population around activity regions, node centroids
are recalculated so as to represent newly created individuals. As
we will see later in this section, we utilised the k-means clustering
method to identify population’s activity regions, divide the indi-
viduals among the nodes and calculate the centroid of each one;
hC

t
r (hit counter) is the number of individuals associated with the

node Ctr . Formally, hC
t
r = |PC

t
r |. It represents the amount of ac-

tivity that an algorithm allocates for a particular area of the search
space.
dC

t
r (hit distance) is the mean distances between a node’s centroid,
mCtr , and the positions of the individuals, xC

t
r , associated with

Ctr . Formally, dC
t
r = 1

hC
t
r

∑
a∈xC

t
r
‖a−mCtr‖. This feature de-

scribes the local genotypic diversity of an activity region.
fC

t
r is the mean fitness of the individuals associated with Ctr . For-

mally, fC
t
r = 1

hC
t
r

∑
a∈yC

t
r
a. This feature gives insights on the

quality of the region of the search space tracked by this node.

As mentioned earlier, unlike [26, 25], here we use the k-means
clustering method [4] to partition a sequence of individuals Pt into
groups (we call them nodes Ct) based on distance and to calculate
the centroid of each group (i.e., mCtr ). This makes our model much
simpler. In the previous implementation, SOMs were used to pre-
serve the topological distribution of the individuals in a population
and keep track of the changes of that distribution (by observing the
changes to a SOM’s centroids). These two factors are essential to
calculate some of the emergent features presented in the our previ-
ous work. However, in this work, we are only interested in capturing
a coarse-grained representation of population distribution in order
to extract certain features and produce probability distributions for
them. For this reason, here we can use the simpler and more efficient
k-means clustering algorithm instead of SOMs.

The most common k-means algorithm uses an iterative refinement
technique to assign observations (individuals) to clusters (nodes) and
to update the centroid of each cluster. The process starts by choosing
the initial values for cluster centroids. That can be done by selecting
random individuals as the initial centroids or by using a seeding tech-
nique. Then, each individual is assigned to the nearest cluster and the
centroid of each cluster is computed as mCtr = 1

|PC
t
r |

∑
a∈xC

t
r
a.

The process of assigning individuals to clusters and updating the
centroids continues until we reach a point where no further improve-
ments in the value of the within-cluster sum of squares can be ob-
tained. This is defined as WCSS =

∑
S∈Ct

∑
a∈xS ‖a−m

S‖2. The
k-means algorithm can result in empty clusters, in which case we re-
move them from Ct. Hence, the number of nodes, nt, changes over
time. In our implementation, we choose the initial value of the num-
ber of clusters as 25, therefore, nt ≤ 25.
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(B) Change in H(hdt) over time
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(A) Change in H(fitt) over time
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Figure 1. Mean and standard deviation of the entropy of fitt (A) and hdt
(B) over 10 independent runs of the k-means algorithm (see text). The tiny

standard deviations indicate that the sensitivity of k-means to initial
conditions adds minimal noise to our entropy measures.

2.2 Characterising the Exploitation Behaviour
Population activities may be guided (i.e. the search may be biased)
by various sources of information that an algorithm can use. In addi-
tion to the observed fitness values, for example, distance or similarity
between individuals can be used, as in fitness-sharing techniques. In
this section, we develop a measure to quantify the level of search de-
pendency on certain sources of information and use it as an indicator
of a population’s exploitation behaviour. In order to characterise the
dependency of population behaviour on available information, we
have chosen to use a measure of the amount of certainty this infor-
mation brings to the activities of a population. That is to say, we
want to assess how much the activity distribution of populations is
dependent on the distributions of features such as fitness average or
hit distance.

To quantify this association, we used an entropy-based measure,
which is a normalised variant of mutual information called uncer-
tainty coefficient [18]. This is defined as follows:

U(Y |X) =
H(Y )−H(Y |X)

H(Y )
=
I(X,Y )

H(Y )
(2)

where

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
( p(x, y)

p(x)p(y)

)
(3)

is the mutual information between two random variables X and Y
and

H(X) = −
∑
x∈X

p(x) log(x) (4)

is the entropy of a random variable X .
In information theory, entropy is a measure of the uncertainty or

randomness associated with a random variable [20], while mutual in-
formation is a quantity that measures the mutual dependence of the
two random variables. From Equation 2, we can see that mutual in-
formation can be expressed as I(X,Y ) = H(Y )−H(Y |X), where

H(Y |X) is the conditional entropy of Y given X . This quantifies
what is left of the uncertainty about Y after knowing X . Based on
the definition of mutual information, the dependency betweenX and
Y is expressed by how much uncertainty about Y has been removed
by knowing X . The value of U(Y |X) lies between zero and one,
where 0 means that X and Y have no association, while 1 means
that by knowing X one can totally predict Y .

To use the uncertainty coefficient to assess the dependency of a
population’s behaviour on fitness and hit distance (local genotypic
diversity), we first need to compute the probability distribution of the
features: hit counter (activity), mean fitness and mean hit distance
over all areas of population activity. In our model the probability dis-
tribution of a feature is approximated via a histogram of that feature
across the nodes in the model. The histogram has m equal-size bins
or classes (in this work, we choose m = 10) whose width is simply
the difference between the maximum and minimum values of a fea-
ture over all nodes divided bym. The probability distribution of each
class is then computed as the proportion of activity (as indicated by
the hit counter) the nodes of each class received. More specifically,
if Lφ1

i for i = 1 . . .m are the bins (classes) obtained by dividing up
nodes according to the values of the feature φ1, then the probability
distribution of that feature is approximated as:

p(Lφ1
i ) =

( ∑
X∈Lφ1i

hX
)
/τ, for i = 1 . . .m (5)

where τ is the total number of hits (created individuals) between two
sampling points and hX is the hit counter of node X .

We also need to compute the joint probability of two classes of
features. LetLφ2

i for i = 1 . . .m, be another sequence of bins for the
feature φ2, then the joint probability of φ1 and φ2 is approximated
as follows:

p(Lφ1
i , Lφ2

j ) =
( ∑
X∈Lφ1i ∩L

φ2
j

hX
)
/τ, for i, j = 1 . . .m (6)

With these approximations of the probability and joint probabil-
ity distributions of features in hand, the entropy and mutual infor-
mation (Equations 4 and 3, respectively) and then the uncertainty
coefficient (Equation 2) can be calculated. In particular, we have
applied these definitions to analyse the dependency of hit counter
(activity) on mean fitness and mean hit distance. For simplicity,
we will denote the corresponding values of the uncertainty coeffi-
cient as fdta,f and gdta,f , respectively. They can be defined as fol-
lows. Let actt = {hX ,∀X ∈ Ct}, fitt = {fX ,∀X ∈ Ct}
and hdt = {dX ,∀X ∈ Ct}, then fdta,f = U(actt|fitt) and
gdta,f = U(actt|hdt).

The quantity fdta,f assesses the dependency of activity on fitness
values, therefore, we will refer to it as fitness dependency. The quan-
tity gdta,f , instead, assesses the dependency of activity on genetic
material and we will refer to it as genetic dependency. The two mea-
sures are used to assess the exploitation behaviour of algorithm a as
it operates on problem f at point of time t.

The average of fitness dependency over one algorithm run is de-
fined as fda,f = 1

M

∑M
t=1 fd

t
a,f , where, M = N/τ represents the

total number of sampling points, N is the total number of fitness
function evaluations in a run and τ is the sampling period. gda,f is
defined in a similar way. We propose to use these two exploitation
measures to represent the dynamic collective behaviour of an algo-
rithm with respect to certain problem over a run.

The k-means algorithm is sensitive to the initial values of the clus-
ter centroids, meaning that the clustering method may end up cluster-
ing a population’s individuals in a different way depending on initial



conditions. This might have a potential impact on our measures as
it can effect the probability distribution of the emergent features. To
examine the effects of clustering noise, we tested the extent to which
different initial conditions can effect the entropy of fitt and hdt. In
this experiment, at each sampling point t, the individuals Pt were
clustered 10 times by k-means (using different random seeds). Then,
we computed the entropy of fitt and hdt, H(fitt) and H(hdt),
for each of the 10 clustering results. Finally, we compute the aver-
age and the standard deviation for these 10 values for each feature.
Results indicated that initial conditions for k-means minimally af-
fect our measures, as in all cases the entropy values had very low
standard deviations. Figure 1 shows an example of typical run of
BLX-0.5-0.025-2 on F9. Similarly we also found that results
are not particularly sensitive to the choice of k and that using k = 25
in the k-means algorithm provides a good balance between accuracy
and computation time. For this reason, we used this value.

3 Experimental Results
In this section we will look at our experimental setup and experi-
ments.

3.1 Experimental Setup
The collective dynamic behaviour of an evolutionary algorithm is the
result of combining the biases of its search operators and their inter-
action with the problem landscape. The bias of each operator depends
on the nature of the operator itself and the values of its control param-
eters. Thus, although the exploitation behaviour of an algorithm is a
collective phenomenon, it depends on the operator biases, parameter
settings and the way operators interact with each other, in addition
to the bias generated by the fitness landscape. To examine these ef-
fects and interactions in relation to the exploitation behaviour of an
algorithm, we applied our dependency measures to evolutionary al-
gorithms using three different crossover methods, different levels of
selection pressure and different mutation rates. We used generational
evolutionary algorithms with fixed population size (100) and con-
stant crossover rate (0.7). Non-uniform mutation has been used with
different mutation rates. To refer to our algorithms, we used a naming
convention that summarises details about the algorithm in its name.
The details of this naming convention are reported in Appendix A.

An algorithm’s dynamic collective behaviour is greatly influenced
by the nature of the problem fitness landscape. To study the impact of
the problem on the algorithm collective behaviour and performance,
we carried out experiments on a number of 10-dimensional real-
coded benchmark problems defined in [24]. Each algorithm (e.g.,
Arth-0.4-0.025-2 or BLX-0.25-0.05-3, see Apendex A)
has been tested in 100 independent runs with each problems. Each
run lasted for 100,000 fitness function evaluations.

The crossover methods chosen for our tests are: arithmetic
crossover, blending crossover (BLX-α), and heuristic crossover
(their details and settings are explained in Appendix B). These
crossovers were chosen as they handle the parental genetic ma-
terial in very different manners: deterministic, stochastic, and
fitness-biased, respectively. They exhibit different levels of explo-
ration/exploitation because they make use of the information avail-
able to them in very different ways. Also, their behaviour changes
significantly depending on their parameter settings.

More specifically, arithmetic crossover (Arth-λ) exhibits an explo-
ration behaviour and increases the population diversity for λ > 1 or
λ < 0, and otherwise reduces it [6]. BLX-α widens the distribution
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Figure 3. The effects of using different mutation rates on a set of
algorithms operating on problem F4

of genetic materials when α > (
√

3 − 1)/2, and otherwise reduces
it [15]. Heuristic crossover, on the other hand, creates offspring close
to the better parent, which makes this operator more exploitative (it
does not only make use of the provided genetic material, but also uses
the fitness values to bias the search). To obtain a full spectrum of be-
haviours, in our experiments, we used four control parameter settings
for each of the three crossover methods. These made the bias of Arth-
λ and BLX-α range from exploitative to explorative and the bias of
heuristic crossover from more exploitative to less exploitative.

To examine the effect of mutation on the exploitation behaviour
of algorithms, non-uniform mutation [14] has also been used with a
range of mutation rates. Non-uniform mutation lowers the mutation
step over a run to allow more exploration at the initial generations
and fine tuning at the late stages of the search. This mutation is con-
sidered very appropriate for real-coded evolutionary algorithms [7].
More details are presented in Appendix B

Obviously, we cannot assess the effect of genetic operators on
the exploitation behaviour of an algorithm based only on the way
they combine/alter parental genetic material to produce new individ-
uals. This is because the quality of the operators’ output depends
on the quality of the material provided in input, which is chosen
from the population by the selection mechanism. Therefore, we used
tournament selection with different tournament sizes, so as to vary
the selection pressure in the algorithm. Larger tournaments induce a
higher selection pressure and lead to a higher exploitation behaviour
whereas smaller tournaments lead to a lower pressure and a higher
exploration.

3.2 Algorithm Settings and Operators Effects

The collective dynamic behaviour of an algorithm is the result of
applying the algorithm on a certain problem. Both the algorithm
and the problem have an effect on the population dynamics. In this
section, we apply our dependency measures on different algorithms
operating on problems with different properties. Figure 2(A) com-
pares the fitness dependency and genetic dependency of two sets
of algorithms, Heur-0.2-0.025-x and Heur-0.4-0.025-x
for x = 2, . . . , 8, run on problem F9. The two sets of algorithms
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Figure 2. The effects of using different crossover parameter settings, using different crossover methods and applying an algorithm on different problems on
the exploitation behaviour of an algorithm, for different values of the selection pressure (tournament size).

use the heuristic crossover method with different parameter settings
(0.2 and 0.4) over differ selection pressures (tournament sizes). From
the figure we see that Heur-0.2 algorithms exhibit lower fitness-
dependencies and genetic-dependencies compared to Heur-0.4 algo-
rithms. This is due to the fact that Heur-0.2 algorithms, especially
with high selection pressure levels, tend to narrow the population
distribution and loose the ability to exploit. On the contrary, Heur-
0.4 algorithms move more slowly toward better solutions, maintain-
ing a higher population diversity for relatively longer periods. This
allows an algorithm to exploit good information for longer resulting
in higher average fitness and genetic dependencies. We should also
note that fitness dependency is greater than genetic dependency for
both sets of algorithms. This is because there are more operators in
these algorithms that are biased by fitness values (crossover in addi-
tion to selection).3

In Figure 2(B), we compare the collective dynamic behaviour
of two algorithms with different crossover methods, BLX-0.5 and
Arth-0.4, run on problem F18. The figure shows that using differ-
ent crossover methods leads to different behaviours. The exploita-
tion behaviour of Arth-0.4 algorithms is higher than that of BLX-
0.5 algorithms. The stochastic nature of BLX crossover contributes
to reduce the exploitation behaviour in comparison to arithmetic
crossover which creates new solutions in a deterministic fashion.

To demonstrate the impact of the problem fitness landscape on the
algorithm collective dynamic behaviour, we run the same set of al-
gorithms on two different problems: F4, a noisy unimodal fitness
function, and F9, a multimodal function with high number of local
optima. We can see that although we have used the same set of al-
gorithms, namely BLX-0.5-0.025-x, for x = 2, . . . , 8, the col-
lective behaviour is totally different. The fitness dependency of algo-
rithms operating on F4 is always less than the genetic dependency.
This is likely due to the unimodal nature of this fitness landscape. On
the contrary, the genetic dependency is less than the fitness depen-
dency in algorithms run on F9. We will explore more the effects of
the fitness landscape on the collective behaviour of algorithms later
on in the article.

3 Of course, we have to keep in mind that the collective dynamic behaviour of
these algorithms is also dependent on the problem they are operating on and
different behaviours can result with different fitness landscapes (more about
the effect of problem on algorithm’s behaviour in this and next sections).
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Figure 4. The distribution of algorithms in behavioural space for four
different problems

Many researches have analysed the impact of mutation rate on
algorithm performance and behaviour (e.g. [16, 28]). In this work,
we exam the effect of changing mutation rate on the collective be-
haviour of algorithms. As we mentioned earlier, non-uniform muta-
tion has been used with different mutation rates. Figure 3 depicts
the change in the collective dynamic behaviour of algorithms in
response to changing the mutation rate. We chose a set of 24 al-
gorithms, Arth-{0.2,0.4}-µ-x, BLX-{0.25,0.5}-µ-x and
Heur-{0.2,0.4}-µ-x, for x = 2, . . . , 5, run on problem F4.
We used four mutation rates, µ = 0.0, 0.025, 0.05, 0.1. The figure
presents the collective dynamic behaviour of an algorithm in terms
of its fitness dependency and genetic dependency. Each algorithm
is represented as a point in fitness- and genetic-dependencies space,
which we will refer to as the algorithm behavioural space. From the
figure we can see that changing mutation rate actually shifts the al-
gorithm behaviour in the behavioural space. Note that how changing
the mutation rate has led the algorithms to form a different niche in
the behavioural space.
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Figure 5. The distribution of algorithms and their best fitness values in the behavioural space of problem F4 and F18

3.3 Fitness Landscape Effect

As mentioned before, the nature of the fitness landscape has a
great impact on how an algorithm conducts the search and dis-
tributes the population in the search space. Our measures of popu-
lation collective dynamic behaviour, and in fact every performance
measure, characterise the association between algorithm and prob-
lem. An algorithm exhibits different behaviours depending on the
problem it operates on, which is consistent with the NFL theorem.
To demonstrate this, we ran a set of 24 algorithms on four dif-
ferent problems. The algorithms are Arth-{0.2,0.4}-0.05-x,
BLX-{0.25,0.5}-0.05-x and Heur-{0.2,0.4}-0.05-x,
for x = 2, . . . , 5. The four problems are F4, F6, F15 and F18.
Figure 4 shows the distributions of the 24 algorithms with respect to
the four problems. It is obvious from the figure that the same set of
algorithms has different distribution in the behavioural space.

4 Prospects for Applications of the Proposed Model

In section 3.3, we showed that the collective dynamic behaviour of an
algorithm changes according to the problem faced by the algorithm.
This means that every time we use an algorithm, a, on a problem, f ,
the collective dynamic behaviour of a, represented in terms of our
dependency measures as a point (fda,f , gda,f ) in the behavioural
space, will be different from the behaviour of another algorithm,
(fda′,f , gda′,f ), or the behaviour of the same algorithm applied to
different problem, (fda,f ′ , gda,f ′), unless that the two algorithms, a
and a′, are qualitatively similar or the two problems, f and f ′, have
similar features, respectively.

We analysed the distribution of the collective dynamic behaviours
of a large set of algorithms in the behavioural space and noticed that
algorithms with good performance values (e.g., best fitness achieved)
tend to form niches in the behavioural space. In addition, algorithm
performance seems to be a continuous function of behaviour in such
a space.

Figure 5 depicts the distribution of 336 algorithms on
two different problems, F4 and F18. The tested algorithms
are Arth-{0.2, 0.4, 1.2, 1.5}-µ-x, BLX-{0.0,
0.25, 0.5, 0.75}-µ-x and Heur-{0.1, 0.2, 0.3,

0.4}-µ-x, where x = 2, . . . , 8 and µ = 0.0, 0.025, 0.05, 0.1.
We can see that certain areas in behavioural space have algorithms
with better performance. The continuous change in algorithm
performances in the behavioural space demonstrates that the rela-
tionship between the collective dynamic behaviour, (fda,f , gda,f ),
and algorithm’s performance, pa,f , can be modelled as a smooth
function, pa,f = pbl(fda,f , gda,f ), where we term the function pbl
a behavioural landscape function of problem f .

The behavioural landscape of problems F4 and F18 can be mod-
elled by using a regression method to define the relationship between
algorithm’s behaviour and performance. We analysed the data re-
ported in Figure 5 using a local regression method (LOESS) [5]. The
resulting behavioural landscapes are shown in Figure 6. Simple in-
spection of such landscapes reveals that they may help us to identify
the desired collective behaviour to achieve good results on a problem.

For this reason, the proposed model has the potential to present
a solution to the algorithm-selection [19] or parameter-tuning prob-
lems [2]. Both problems can be viewed as the problem of searching
the behavioural landscape to find the right algorithm/parameter set-
tings to produce the desired collective dynamic behaviour and con-
sequently achieve the best results on the problem in hand. Obviously
in any real-world application, the shape of the behavioural landscape
is unknown and, so, an algorithm selection/parameter tuning mech-
anism would need to sample such a landscape and direct further the
exploration toward areas of algorithms with high performance. This
can be done by adjusting the parameters of an algorithm, or by se-
lecting another algorithm, to produce a collective behaviour in a cer-
tain region in the behavioural landscape containing algorithms more
likely to have better performance.

The behavioural landscape represents a unified approach to char-
acterise a problem and to provide useful knowledge about it to guide
algorithm design and implementation. It also gives us a different
perspective on what makes a problem hard to solve by certain al-
gorithms.

5 Conclusions and Future Work

In this paper, we have presented an empirical model to represent and
analyse the collective dynamic behaviour of population-based algo-
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Figure 6. The behavioural landscapes of problems F4 and F18 show the association between algorithms behaviour and performance. Such landscapes may
help us to identify the desired collective behaviour to achieve good results on a problem.

rithms. The model uses a coarse-grained representation of popula-
tions to identify areas of search activity and record information de-
scribing genotypic and phenotypic aspects of this activity. Our aim
was to characterise the exploitation behaviour of algorithms by quan-
tifying how much the search is guided by the information available
in a population. In other words, we measured the extent by which a
population makes use of (exploits) observed fitness values and ge-
netic material to direct and intensify population activities.

The k-means clustering method was used to identify activity re-
gions, while the dependency of activity on genetic material and fit-
ness values was assessed by an entropy-based measure, namely the
uncertainty coefficient.

In order to analyse the effects of different search operators and
their parameter settings on the exploitation behaviour of EAs, we ap-
plied the proposed model to algorithms with three different crossover
methods, different levels of selection pressure and different mutation
rates. The chosen crossover methods combine individual solutions
and utilise information presented to them in very different ways. Fur-
thermore, each of them has a control parameter that can be used to
tune the exploration/exploitation behaviour of the operator.

The mutation rate is considered a key control parameter of EAs.
Our results confirmed this. Changing mutation rate can affect dra-
matically the collective behaviour of populations. We showed that
the mutation rate can affect the bias of other operators and change
the dependency on fitness and on genetic material.

The effect of using different problems on the collective dynamic
behaviour has been analysed. A range of benchmark problems with
a variety of properties have been used. We showed that for a prob-
lem, a behavioural landscape of the algorithm collective dynamic be-
haviours can be defined. We explained that this behavioural land-
scape can be utilised to implement algorithm-selection or parameter-
tuning mechanisms. We also showed that this landscape can be used
to characterise a problem and provide guidelines to practitioners to
design and implement algorithms for a certain problem.

Although the proposed model has been used to analyse EAs, dif-
ferent kinds of population-based algorithms could be analysed, as the
model is totally algorithm-independent and only observes population
individuals as they are created. This gives the proposed model an ad-
vantage over many analysis tools that have been tailored to analyse
or model a certain kind of algorithms or single operators. In addition,
the model can be implemented using clustering techniques other than

k-means. Possible candidate tools are self-organising maps [13] or
principal component analysis (PCA) [11].

A key contribution of the proposed model is that it helps to iden-
tify what constitutes exploitation (or exploration) behaviour and to
understand the effects that operators with different biases have on the
dynamic behaviour of populations. The model also provides a practi-
cal tool to analyse a population’s collective behaviour. This tool can
be of use by EA practitioners for analysing the effects of operators
and for tuning their control parameters. The model also allows the
comparison of different algorithms at a higher level than just perfor-
mance.

In future work, the notion of behavioural landscape that we have
defined in this work could be utilised in implementing a performance
prediction model. The correlation between algorithm performance
and the fitness or genetic dependency can be analysed and possibly
used to define a new kind of behavioural landscape.
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A Algorithms Naming Convention
We used a naming convention for EAs to capture four facts about an
algorithm: crossover method, crossover control parameter, mutation
rate and tournament size (selection pressure). The algorithm name
has the format CCCC-c-m-t. Here CCCC refers to the crossover
method and it can be Arth for arithmetic crossover, BLX for blend-
ing crossover and Heur for heuristic crossover (see Appendix B); c
is a real number representing the control parameter of the crossover
method used; m is the per-locus mutation rate and t is an integer rep-
resenting the tournament size. For example, Arth-0.4-0.10-4
is an EA using arithmetic crossover with control parameter 0.4, mu-
tation rate 0.10 and tournament size 4.

B Crossover and Mutation Operators
Three crossover methods have been used in this paper. They all return
two offspring and all have a control parameter that can be used to
tune their exploration/exploitation behaviour. These methods are:

• Arithmetic crossover (Arth-λ): Two offspring individ-
uals, C1 and C2, are produced from two parents, P1

and P2, as follows: C1 = P1 × λ+ P2 × (1− λ) and
C2 = P1 × (1− λ) + P2 × λ.

• Blending crossover (BLX-α): Two offspring individuals are pro-
duced by randomly (uniformly) generating values for their genes
within an interval that depends on the corresponding parental
genes. Suppose that pi1 and pi2 are the ith parameter of parents P1

and P2, respectively, the corresponding parameter, cik, of offspring
Ck is randomly chosen from the interval [pmin − I × α, pmax +
I × α], where pmin = min{pi1, pi2}, pmax = max{pi1, pi2} and
I = pmax − pmin.

• Heuristic crossover (Heur-λ): This method creates one offspring
individual around the parent with the highest fitness. Here we
modified it slightly so as to produce two offspring. Suppose
that we have two parent individuals, P1 and P2, and that P1

is the one with higher fitness, then the two offspring individu-
als, C1 and C2, are created as: C1 = P1 − λ× (P2 − P1) and
C2 = P1 + λ× (P2 − P1).

Non-uniform mutation has been used in this work. This muta-
tion has the ability to adapt over run to allow different degrees of
exploration. It is defined as following,

Let C = (c1, . . . , cD) represents an individual undergoing muta-
tion, where D represents the problem dimension, and it is set to 10,
and ci ∈ [ai, bi] is a gene to be mutated and ai and bi are the lower
and upper limits of possible values range, then the mutated gene c′i
is calculated as follows

c′i =

{
ci + ∆(t, bi − ci) if q = 1
ci −∆(t, ci − ai) if q = 0

with q is a random number which may have the value of either one

or zero, and ∆(t, y) = y(1−r(1−
t

gmax
)b

), where t is the number of
current generation, gmax is the maximum number of generations, r
is a random number from the interval [0, 1] and b is a parameter de-
termines the degree of dependency on the number of generation (t).
We chose b = 5.


