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Abstract. The “end-game” of evolutionary optimisation is often
largely governed by the efficiency and effectiveness of searching re-
gions of space known to contain high quality solutions. In a tradi-
tional EA this role is done via mutation, which creates a tension with
its other different role of maintaining diversity. One approach to im-
proving the efficiency of this phase is self-adaptation of the muta-
tion rates. This leaves the fitness landscape unchanged, but adapts
the shape of the probability distribution function governing the gen-
eration of new solutions. A different approach is the incorporation
of local search – so-called Memetic Algorithms. Depending on the
paradigm, this approach either changes the fitness landscape (Bald-
winian learning) or causes a mapping to a reduced subset of the pre-
vious fitness landscape (Lamarkian learning). This paper explores
the interaction between the effects of mechanisms embodying these
two approaches. Initial results suggest that that the reduction in land-
scape gradients brought about by the Baldwin effect can reduce the
effectiveness of self-adaptation. In contrast Lamarkian learning ap-
pears to enhance the process of self-adaptation, with very different,
but appropriate, behaviours seen on different problems.

1 Introduction
Evolutionary Algorithms (EAs) are a class of population-based
global search heuristics that have proved highly successful in many
optimisation domains [7]. Much of their success comes from the use
of randomised “genetic operators” –mutation and crossover – that
create non-uniform probability distribution function (pdf) over the
search space for generating new candidate solutions to be sampled.
Given a parent pool selected from the current population (a multiset
of candidate solutions), the shape of this pdf is governed by the con-
tents of the pool, the choice of recombination and mutation operators,
and their associated parameters. A broader pdf allows exploration of
the search space, and hence the ability to escape local optima. A nar-
rower pdf allows exploitation of hard-won information by focussing
sampling in the vicinity of promising solutions. The way in which the
trade-off between these two factors is managed has a major impact
on both the effectiveness and efficiency of evolutionary search.

One common approach is to couple the randomised nature of EAs
with a more systematic local search method to create Memetic Al-
gorithms. This may be done in a number of ways – see e.g. [15]
for a description and taxonomy. This paper will examine the most
straightforward and most common: after recombination and muta-
tion, each offspring undergoes local search for a specified number of
iterations. In a Baldwinian paradigm [3], akin to “life-term” learning,
the offspring has its fitness replaced with that of the fittest neighbour
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found by the local search. The Lamarkian paradigm is more drastic
– both the “genome”(representation) and fitness of the offspring are
replaced. Studies of these two paradigms with the Evolutionary Com-
putation literature date back to the mid-1990s (see e.g. [41] and other
papers within that special issue), and over the last decade hundreds
of papers have documented their successful application to improve
the effectiveness and efficiency of evolutionary search - see e.g. [21]
for a recent survey. Both process alter the search landscape “seen”
by the EA, but do this in different ways – this is discussed in more
depth in Section 2.3.

Another very common approach, with proven success, is to apply
a method for parameter adaptation, typically with the effect that an
initially more uniform pdf is “narrowed” to focus more on promising
regions of the search space over time. In both the combinatorial and
real-valued domains, the majority of research and applications have
focussed on adapting the mutation parameters, since the effect of re-
combination lessens as the population converges. A good review may
be found in [8]. Whether adaptation is driven implicitly (e.g. via self-
adaption) or explicitly via the application or an “external” algorithm,
a key factor is the presence of some form of evidence of the utility
of an operator, or parameter value in generating high quality solu-
tions from the current population. From early research [5] through
to more current algorithms [39, 9, 16, 10], many adaptive algorithms
maintain explicit archives - to record the mean improvement caused
by different settings and reward the more promising. In contrast, in
the self-adaptive paradigm the evidence is more implicit - successful
strategies are those that produce offspring that survive, and so prop-
agate via association. The practice and theory of self-adaptation of
mutation rates has been documented in the continuous domain since
[26, 4], the binary domain since [1, 2, 36, 37, 29] and for permuta-
tions [27]. More recent surveys may be seen in [33, 19].

These approaches have been successfully combined in, for exam-
ple, the COMA framework [30, 32, 28, 34, 35], but much of that
work focussed on the issues adaptation at the memetic level to create
what Meuth et. al. called “second and third generation MAs” [18].
So far no attention that the author is aware of has been paid to the
potential issues even with simple “first-generation” MAs, when the
action of local search potentially destroys the link between strate-
gies and offspring survival that is considered essential for successful
self-adaptation to occur.

This paper represents a start at building an understanding of this is-
sue by examining the patterns of behaviour observed when applying
a simple memetic algorithm with self-adaptation of mutation rates
to some well-understood combinatorial problems, where the “build-
ing blocks” to be found and propagated are of different orders, so
that some cannot be discovered by local search alone. Specifically it
examines the following hypotheses:



• H1: That one-step Baldwinian learning has a blurring effect on the
fitness landscape which reduces the selection pressure on different
mutation rates, slowing the process of self-adaptation.

• H2: That one-step Lamarkian learning behaves differently - the
mapping to a reduced search space that occurs when offspring
are replaced by fitter neighbours effectively increases the selec-
tion pressure towards lower mutation rates.

• H3: That on problems with single-bit building blocks, using mul-
tiple steps of local search compounds the effects seen above and
increases the selective pressure towards lower mutation rates.

• H4: In contrast, on problems with higher order building blocks,
the effect of multiple steps of local search is to act as a repair
function, allowing the preservation of the higher mutation rates
needed to discover the “optimal” building blocks.

The paper is set out as follows. Section 2 provides a (necessar-
ily) brief introduction to the key concepts of self-adaptation and
Lamarkian search and the Baldwin effect. Section 3 describes the
algorithms, test problems, and methods used to generate and analyse
results. The results are presented in Section 4 and discussed in Sec-
tion 5 before Section 6 draws conclusions and suggests future work.

2 Background

2.1 Self-Adaptation of Mutation Rates

The practice of using adaptive mechanisms to alter operator choices
and parameters has attracted much attention. However the space of
operators and parameters is large, and the mapping to the resulting
quality of solution found is complex, still not well-understood, and
problem dependent. Therefore hand-designed mechanisms have had
relatively less success, and there has been natural interest in the ap-
plication of evolutionary algorithms to search this space. In particu-
lar the use of “Self-Adaptation”, where the operator’s parameters are
encoded within the individuals and subjected to evolution was es-
tablished in the continuous domain within Evolution Strategies [26],
and Stephens et al. have shown in general that adding self-adaptive
genes to encodings can create evolutionary advantages [37].

Bäck’s work in self-adapting the mutation rate to use for binary
encodings within generational GAs [1, 2] proved the concept, and
established the need for appropriate selection pressure. Smith and
Fogarty examined the encoding and conditions necessary to trans-
late this to a steady-state GA [36]. To achieve the necessary selection
pressure they employed a cloning mechanism: from the single off-
spring resulting from crossover they derived a set of clones. The mu-
tation rate of each clone was then modified with a certain probability,
before being applied. The fittest resulting solution was then returned
to the population. Results showed that the number of clones that led
to the shortest tour length was 5 and that this tallied with previous
work in Evolution Strategies (where the ratio of µ to λ is typically in
the range 5− 7) and Bäck’s implementation of truncation selection.
They found that adding a self-adaptive mutation rate improved the
performance of the GA and removed a non-trivial parameter from
the GA. They also examined a variety of different ways of encoding
the mutation parameter.

In subsequent work, Stone and Smith showed that for combinato-
rial problems the use of a continuous variable to encode for the mu-
tation rate, subject to log-normal adaptation was outperformed by a
simpler scheme [38]. In their method the value of the gene encoding
for the mutation rate had a discrete set of alleles i.e. the mutation rate
came from a fixed set, and when subject to mutation was randomly

reset with a small probability. This has been examined experimen-
tally and theoretically in [29] and [31]. In particular it was shown
that the way that the encoded mutation rate is perturbed is important
– allowing the operator to work “on-itself” (as per [2, 36]) will lead
to premature convergence to sub-optimal attractors. This effect has
subsequently been rediscovered elsewhere [24]. Similar results have
been found in the continuous domain experimentally (e.g. [12]) and
theoretically [25].

Extensive experimental studies using Sequential Parameter Opti-
misation have revealed that in binary search spaces different variants
of self-adaptation do offer performance advantages [23]. However
the very mixed results clearly indicate the need for a deeper under-
standing of the processes involved.

2.2 Memetic Algorithms
The field of Memetic Computation encompasses a wide range of al-
gorithms based on the concept of memes as methods for generat-
ing or improving individual solutions to one or more problem in-
stances. Rather than just local search-evolutionary hybrids, [21] con-
sider Memetic Computation as a more general paradigm which uses
”the notion of meme(s) as units of information encoded in computa-
tional representations for the purposes of problem solving”. In their
more general view memes might be represented as ”decision trees,
artificial neural networks, fuzzy system, graphs etc” , and are not
necessarily coupled to any evolutionary components at all, requiring
simply a method for credit assignment. This enticing view offers the
promise of memes capturing useful structural and behavioural pat-
terns which can be carried between instances of the same problem,
as is being explored in e.g. [40].

This paper is restricted to the broad class of “Memetic Al-
gorithms” (MAs). Introduced by Moscato [20], these combine
population-based global search heuristics (such as EAs) with heuris-
tics that attempt to improve a single solution. Meuth et al. [18] dis-
tinguish between:

• First Generation MAs - which they define as “Global search
paired with local search”,

• Second Generation MAs - “Global search with multiple local op-
timizers. Memetic information (Choice of optimizer) passed to off-
spring (Lamarckian evolution)”,

• Third Generation MAs: - “Global search with multiple local op-
timizers. Memetic information (Choice of local optimizer) passed
to offspring (Lamarckian Evolution). A mapping between evolu-
tionary trajectory and choice of local optimizer is learned”.

Although powerful paradigms with increasing number of success-
ful applications, adaptive second and third generation MAs bring
with them a number of issues concerning the credit-assignment prob-
lem [22, 35]. For these reasons this initial study concentrates on a
simple first generational memetic algorithm based on a greedy bit-
flipping mechanism. For a binary string with length l the Hamming
distance between two strings as H(i, j) =

∑l

k=1
| j[k] − i[k] |,

so this algorithm uses a neighbourhood function nH1(i) = j :
H(i, j) = 1. This local search algorithm can be illustrated by the
pseudocode given in Fig. 1.

2.3 Lamarckianism and the Baldwin Effect
The framework of the local search algorithm outlined above works
on the assumption that the current incumbent solution is always re-
placed by the fitter neighbour when found. Within a memetic algo-



Bit-Flipping Local Search:
Begin

/* given a starting solution i */
/* and the neighbourhood function nH1(i) */
set best = i;
set iterations = 0;
Repeat Until ( depth condition is satisfied )
Do

set count = 0;
Repeat Until ( pivot rule is satisfied )
Do

generate the next neighbour j ∈ nH1(best);
set count = count+ 1;
If (f(j) is better than f(best)) Then

set best = j;
Fi

Od
set iterations = iterations+ 1;
set f(i) = f(best);
If (Lamarkian) Then

set i = best;
Fi

Od
End.

Figure 1: Pseudocode of a local search algorithm

rithm, one can consider the local search stage to occur as an improve-
ment, or developmental learning phase within the evolutionary cycle,
and (taking our cue from biology) one should consider whether the
changes made to the individual (acquired traits) should be kept in
the genotype, or whether the resulting improved fitness should be
awarded to the original (pre-local search) member of the population.

The question of whether acquired traits could be inherited by an
individual’s offspring was a major issue in nineteenth century, with
Lamarck arguing in favour, whereas the Baldwin effect [3] suggests
a mechanism whereby evolutionary progress can be guided towards
favourable adaptation without the changes in individuals’ fitness aris-
ing from learning or development being reflected in changed genetic
characteristics. Modern theories of genetics strongly favour the latter
viewpoint.

Luckily, computer algorithms are not restricted by these biological
constraints, and so in practice both schemes are usually possible to
implement within a memetic algorithm. In general MAs are referred
to as Lamarckian if the result of the local search stage replaces the
individual in the population, and Baldwinian if the original member
is kept, but has as its fitness the value belonging to the outcome of
the local search process. In a classic early study, Hinton and Nowlan
[13] showed that the Baldwin effect could be used to improve the
evolution of artificial neural networks, and a number of researchers
have studied the relative benefits of Baldwinian versus Lamarckian
algorithms [14, 17, 41, 44, 45]. In practice most recent work has
tended to use either a pure Lamarckian approach, or a probabilistic
combination of the two approaches, such that the improved fitness is
always used, and the improved individual replaces the original with
a given probability.

These two approaches both alter the fitness landscape. The Bald-
win effect is to replace the fitness of each point with that of its fittest
neighbour. To extend the landscape metaphor, this has the effect of
broadening peaks and ridges, raising the height of valleys, and gen-
erally “blurring” the landscape structure and removing gradients and
fine-grained structural features in a process similar to noise removal
in image processing. Lamarkian learning has a different effect: the

fitness of points in the landscape is unchanged, but a translation oc-
curs to the higher neighbour, and whole swathes of low-fitness points
are effectively removed from the search space.

3 Experimental Methodology
3.1 Algorithm
The core Evolutionary Algorithm used a very standard Genetic Al-
gorithm (GA) with a (100,500) model for population management
and the following operators and parameters.

Table 1: EA operators and parameters

Operator/Parameter Value
µ 100
λ 500

Representation Binary Strings
Solution Length Problem-dependant

Crossover One-Point
Crossover Probability 0.7

Mutation Operator Bit-Flipping
Mutation Rate Encoding Integer in range [1,10]

Mutation Strategy Rate Psm 0.05 or 0
Parent Selection Tournament Size 1

Survivor Selection Truncation
Local Search Neighbourhood Hamming Distance 1

Local search pivot rule Greedy
Depth of local search d 1, 2 or 5 iterations

The Self-adaptation process used the scheme outlined in [29, 31,
38]. Rather than attempting to adapt a continuous mutation rate pa-
rameter, each solution encodes a choice from a discrete set of val-
ues, 1.0/l ∗ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 1.0, 2,MIN(0.25 ∗
l, 5.0),MIN(0.25 ∗ l, 10.0)} where l is the length of the problem
encoding. Prior to mutating the solution encoding, the gene encoding
for the mutation rate is randomly reset with probability Psm.

Although these operators and parameter values were taken as
fairly standard from the literature, preliminary experimentation (not
show for reasons of space) suggests that the effects observed below
occur over a wide range of parameter values. One point crossover
was chosen for its positional bias which matches that of the problem
encoding used for the Royal Road and Trap functions.

3.2 Test Functions
The first test problem used is a 200-bit version of the unimodal One-
Max function:

f(i) = u(i) ∗ 100/l. (1)

where the unitation u(i) =
∑l

j=1
i[j] .

The effect of Baldwinian learning with depth d on this landscape is
to assign to each genome the fitness of a individual with d more bits
set to 1 - in other words the shape of the landscape is left untouched
except for those few solutions with a neighourhood H(i, j) = d
of the global optimum, where the landscape is flat. The effect of
Lamarkian search is to move each point d steps up the slope of the
hill - ie. effectively to remove those points with u(i) < d from the
search space. In both cases the underlying structure of the problem
is left unchanged, so except for the more rapid convergence to the
global optimum, it is hypothesized that the self-adaptation of muta-
tion rates will follow a similar pattern to the GA.

The second two problems used were 64-bit versions of the type
R1 Royal Road fitness function [11] where the fitness is given by the



number of blocks “aligned” to the target string in a problem with L
blocks, each of length K. Assuming (without loss of generality) that
the target string is all 1s for each block:

fR1(i) =
∑L

l=1
Πj∈blockl ij (2)

A well known property of these functions is that for K > 1 they
possess “plateaus” of equal fitness, and as discussed in [42] these
represent entropic barriers to evolutionary search. As has been ex-
tensively documented, search on these problems typically proceeds
via a series of “epochs”, and during transitions the entropy of the
population is reduced as the correct alignment is found for the next
block, and fixated through the population.

To examine the effect of learning two different 64-bit versions with
different sized plateaus were used - denoted hereafter as “Royal-4bit”
(L = 16,K = 4) and “Royal-8bit” (L = K = 8).

To understand the effect of learning on these problems, let us con-
sider the partition of the search space corresponding to a single block.
Applying one step of local search means that now K of the possible
2K solutions in that partition now contribute to the global fitness in-
stead of just 1. The effect of multiple steps of learning will depend
on whether any of the blocks have unitation of K− 1. The “Baldwin
effect” on these landscapes is that the plateaus effectively grow in
size to occupy a proportion (K + 1)/2K of the partition. Regardless
of mutation rate, it becomes more probable that mutation will cause
a jump onto the plateau, but higher rates are more likely to destroy
previously existing blocks, unless these can be repaired by multiple
applications.

The effect of Lamarkian learning is subtly different - points with
unitation in the partition between 0 and K − 2 are unchanged, but
those with unitation K − 1 are removed as offspring created in those
regions are move to the single sub-solution with a unitation K. Thus
the proportion of the partition corresponding to the high-fitness val-
ues is now 1/(2k − K) which is smaller than the Baldwin version.
Thus more of these points are at Hamming distance greater than 1,
so we might expect to see the preferential selection for higher muta-
tion rates which are more likely to cause jumps to points at 1-change
remove from the optimal sub-solution.

A third class of problems which present a fitness barrier, rather
than an entropic one to evolutionary progress to the global opti-
mum is characterised by so-called L “Trap” or deceptive functions
of size K. This paper will consider functions with a deceptive par-
tition whose fitness varies as a function of the unitation uj(i) in the
j − th partition as given in [6]:

f(i) = 100.0/L ∗
L∑

j=1

{
a(K − 1− uj(i)) uj(i) ≤ K

1 otherwise
(3)

Experiments used a 80 bit four-trap problem and a 64 bit 8 trap prob-
lem - soL = 20 and 8 respectively, and the constant a at values 0.1 for
K = 8 and 0.2 for K = 4 to ensure that the optimal configuration
for the partition outscores the deceptive optima.

For each problem, these values of length used were chosen to pro-
vide similar levels and speed of convergence to the other problems
given the selection regime and population sizes.

3.3 Methods for analysis
Each configuration of EA without local search (GA), and with Bald-
win (B) or Lamarkian (L) learning with depths 1, 2 and 5 ( B-d1, ...,
B-d5, L-d1 etc.) was run 100 times on each problem, with a termina-
tion criteria of 50 generations. After each generation of each run data

was recorded for the best, worst and mean fitness, mean and stan-
dard deviation of mutation rates in the current population, and the
total number of evaluations used.

As this paper is primarily concerned with the effect on the learning
of mutation rates, algorithms are mostly compared on a generation-
by-generation basis, ignoring the fact that the local search variants
make more calls to the evaluation function. Results are displayed
graphically, and where claims are made about values at the end of
runs, these are confirmed by analysis of the results at generation
49 using Analysis of Variance followed by post-hoc testing using
Tukeys HSD test at the 95% confidence level. Statistical analysis was
carried out using the SPSS v. 20 software.

In separate experiments the mean best fitness, average evaluations
to solution and success rates were compared for the seven algorithms
above, and variants using a fixed mutation rate of pm = 1/l. These
were repeated with different selection regimes - namely (100,500)
with uniform parent selection, and (500,500) with tournaments of
size 5 to select parents. The latter should provide similar selection
pressure (according to takeover times) and has been suggested to out-
perform truncation selection [24].

4 Results

4.1 Benchmarking Self-Adaptation

Performing an Analysis of Variance (ANOVA) on the (100,500) re-
sults for maximum fitness after 49 generations, with the function, and
algorithm as independent factors showed that although there were
small differences between algorithms, by that stage there were not
statistically significant differences between fixed and self-adaptive
mutation rates. Comparing the final mean mutation rates, those of the
MA-B-d5 algorithm were significantly higher than the other meth-
ods, which were otherwise not significantly different. The overall
picture was not different with the (500,500) regime.

Comparing the efficiency, as measured by when the best fitness
was recorded for each run, ANOVA with this as the dependant vari-
able, and function and algorithm as independent variables showed
that the self-adaptive variants were always faster, more significantly
so with increased depth of local search. Lamarkian variants were al-
ways significantly was faster than their Baldwinian counterparts and
each step of increasing depth from 0 (GA) through 1,2 and then 5
caused a significant increase in evaluations.

The mean best fitness results for (100,500) showed that there
was no difference between the fixed and adaptive mutation rates for
Lamarkian search, but these were always significantly better than the
GA and Baldwinian MAs. In contrast, adding self-adaptation to the
Baldwinian MAs significantly reduced the mean best fitness for each
different depth of search.

In order to examine the interplay of effects further, the next set
of experiments concentrate on the effect of selection at the level of
mutation rates in the presence of different forms of local search. To
this end, the “strategy adaptation” parameter Psm was set to 0, so
each member of the initial population had its mutation rate randomly
set to one of the permissible values, and offspring inherited mutation
rates from their parents, but there was no further perturbation of these
strategy parameters.

4.2 Evolution of Mutation Rates for OneMax

Figure 2 shows the evolution of the fitness values in the popula-
tion, the mean and standard deviation of encoded mutation rates



on the OneMax function. For both learning paradigms the rates sta-
bilise more slowly, and to values that decrease with increasing search
depth. However for Baldwinian search, the values at generation 49
are not significantly different to the GA.

The effect of selection is much more noticeable with Lamarkian
learning. The mutation rates converge faster, and to lower values than
the GA - not significantly so for depth 1, but the evolved rates for
depths 2 and 5 are significantly different to the GA, and each other.
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Figure 2: Evolving Behaviour on OneMax. Increasing lines are
best,mean and worst fitness in population. Dashed and dotted lines
are mean and standard deviation of mutation rates.

The reduction in the standard deviation shows that this is a learned
effect rather than simple drift. To confirm this, experiments were
run where the function switched from OneMax to Zeromax after 25
generations. Figure 3 shows the evolved behaviour on this “switch-
ing” problem. The clear spike in the evolved mutation rates after the
switch, and subsequent rapid recovery in fitness values, most notably
for MA-L-D5 demonstrates that effective self-adapation is occurring.

4.3 Results for Royal Road Functions

Figure 4 shows the evolution of behaviour on the Royal Road func-
tion with different sized blocks. In addition to the difference in ef-
fectiveness of search, the key point to note is the consistently higher,
and more varied mutation rates for Lamarkian search with depth 5,
a feature that increases when the size of the sub-blocks to be op-
timised increased. Mutation rates also increase with depth of Bald-
winian search, but the differences are not statistically significant by
generation 49
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Figure 3: Evolving Behaviour on Switching function. Increasing lines
are best,mean and worst fitness in population. Dashed and dotted
lines are mean and standard deviation of mutation rates.

4.4 Results for Deceptive Functions

Figure 5 shows the evolution of behaviour on the deceptive function
with different sized blocks: Trap-4 and Trap-8. Note the difference
in effectiveness of search. On both functions, at generation 49 the
statistically homogenous subsets are, ranked according to increasing
fitness; (B-d5, GA, B-d1, B-d2) < L-d1 < (L-d5, L-d2), where the
suffix MA is omitted for brevity.

On the functions with 4-bit partitions, the Baldwin behaviour is
not statistically significantly different to the GA, but there are con-
sistently lower mutation rates for the Lamarkian learning. This dif-
ference is significant even up to generation 49 when the best value
had stopped increasing.

With the trap-8 function, the values are no longer statistically sig-
nificant by generation 49 - but of course there are far fewer sub-
functions to be optimised. Considering instead the mean mutation
rates across the whole run, there is now a statistically significant dif-
ference - the values for Lamarkian learning are significantly lower
than for the GA, and then in turn for the Baldwinian learning. These
values reflect the speed of the adaptive process- higher mean values
meaning slower adaptation.

5 Discussion

The first set of benchmarking comparisons confirmed that self-
adaptation outperformed a single fixed mutation rate, as expected -
working just as effectively at finding good solutions but more effi-
ciently. Lamarkian learning improved the mean best fitness discov-
ered. However, the interplay between the Baldwin effect and self-
adaptation was not always beneficial - particular on the Royal Road
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Figure 4: Evolving Behaviour on Royal Road functions with blocks
of size 4 (top) and 8 (bottom). Increasing lines are best,mean and
worst fitness in population. Dashed and dotted lines are mean and
standard deviation of mutation rates.
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size 4 (top) and 8 (bottom). Increasing lines are best,mean and worst
fitness in population. Dashed and dotted lines are mean and standard
deviation of mutation rates.



landscapes where the plateaus form entropic barriers to improvement
and the Baldwin effect extends those plateaus.

On the OneMax function, the hypothesis predicted that Lamarkian
learning would demonstrate faster adaptation (H2) and to lower (H3)
values of mutation rates than the GA. This was supported by the
observations. The hypothesis H1 and H3 suggested competing effects
would results from Baldwinian learning. Results confirmed that and
indeed with depth 1 a slower adaption to higher rates than the GA was
seen, an effect which diminished with increased local search depth,
but the differences were not statistically significant by the end of even
these relatively brief runs.

The results on the switcher function confirmed that self-adaptation
is able to occur effectively and efficiently with Lamarkian learning
up to a depth 5, possibly even suggesting a synergistic effect when
compared to the GA alone.

On the Royal Road functions the hypothesised effects were not
really seen except for with depth 5, where as predicted by H4, the
Lamarkian search maintains higher mutation rates - which in turn
lead to the continued discovery of sub-solutions. For example even
after averaging over 100 runs, the bottom right figure of Figure 4
shows an increase in fmax around 30 generations.

On the trap functions the differences are most evident in the speed
of adaptation: as predicted by H1 the “blurring” effect of Baldwin
learning significantly reduces the rate of adaptation to lower muta-
tion values than the GA. In contrast, as predicted by H2, the rate
of adaptation is faster for Lamarkian learning than for the GA, and
hence the overall mean across all generations is lower.

6 Conclusions

This paper set out to examine the interaction between two different
forms of memetic learning, and the self-adaptation of mutation rates.
A number of hypotheses were proposed to describe the effects. Re-
sults suggest that there are indeed significant interactions, but the hy-
pothesis themselves require significant clarification as in cases they
work against each other.

The primary empirical results suggest that whereas Lamarkian
learning seems to reinforce the self-adaptation process, the Baldwin
effect often hinders the process, sometimes with detrimental results
on the effectiveness and efficiency of the overall search process.

The primary message of this paper is therefore perhaps unsurpris-
ing: that it is unwise to rashly mix algorithmic adaptations that work
well in isolation. Clearly further empirical and theoretical studies are
needed to model these effects so that the twin forces of memetics and
self-adaptation can be brought to bear with reliable and predictable
results.
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