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Abstract. Hyper-heuristic frameworks have emerged out of the
shadows of meta-heuristic techniques. In this very active field, new
frameworks are developed all the time. Shared common features that
help to classify them in different types of hyper-heuristic. Similarly
to an iceberg, this large subfield of artificial intelligence hide a sub-
stantial amount of bio-inspired solvers and many research commu-
nities. In this paper, the tip of the iceberg is reviewed; recent hyper-
heuristic frameworks are surveyed and the overall context of the field
is presented. We believe its content complements recent reviews and
offers another perspective of this important and developing field to
the research community. Some hyper-heuristic frameworks tend to be
largely constrained and prevent the state-of-the-art algorithms being
obtained. We suggest in addition to relaxing constraints together with
analysis of the evolved algorithms may lead to human-competitive
results.

1 Introduction

In recent years, hyper-heuristic frameworks have emerged out of the
shadows of meta-heuristic techniques. Those share common features
that help to classify them in different types of hyper-heuristics. An
analysis of shared common features allows them to be classified into
different types of hyper-heuristics Similarly to an iceberg, this large
subfield of artificial intelligence hides a substantial amount of bio-
inspired solvers and many research communities.

Instead of exploring a search space of problem solutions, hyper-
heuristics automatically produce an algorithm that solves a problem
more efficiently. A global optima is not guaranteed to be found with
heuristics, however it provides at least one solution whenever the al-
gorithm stops. In the worst case, the algorithm iterates over a large
number of candidates solutions before finding the best one. In the
best case scenario, the best solution is found rapidly. The “No Free
lunch theorem” (NFL) makes us aware that if a good performance
is demonstrated by an algorithm on a certain class of problems it
will have a trade-off; the algorithm performance will be degraded on
others classes. Hyper-heuristics offers a general technique for opti-
mising algorithms. Learning mechanisms can customize algorithms
to the unique needs of a restricted class of problems; this should re-
liably find a more suitable solution faster for a well-defined problem
class [46].

Our motivation is to review a variety of hyper-heuristic models and
frameworks. identify their main purpose and the problems they have
solved successfully. The next section compares two computing mod-
els of hyper-heuristics, before discussing the advantages and disad-
vantages of this search methodology. The following sections review
algorithm-portfolio-based solvers, cross-domain hyper-heuristic and
evolutionary frameworks. To conclude we discuss opportunities for
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further development and the wider applicability of such techniques.
In this paper, only the tip of the iceberg can be reviewed; space re-
strictions prevent us to cover the entire field. We believe its content
complements other reviews and offers another perspective to this im-
portant and rapidly developing research area.

2 Hyper-heuristic models
2.1 Heuristic, metaheuristic and hyper-heuristic

Heuristic techniques are often referred to as “search algorithms”.
They solve problems by discovering a solution in the set of all pos-
sible solutions for a given problem, which is regarded as the ‘’search
space”. Non-deterministic search methods such as “’evolutionary
algorithms”, “’local search methods”, ’Simulated annealing”, and
others search algorithms offer an alternative approach to exhaus-
tive search to solve difficult computational problems in a reasonable
amount of time. These methods guarantee finding a solution at any
time, but it may not be optimum [11,23,34].

Within a metaheuristic context, the focus shifts from solving a spe-
cific problem to producing a heuristic that solves the problem. The
purpose of such approaches is to find, generate, or select a method or
algorithm to solve a problem; their search space is now the collection
of all possible heuristics and the outcome can be formulae or algo-
rithms together with a solution of the problem it solves. One example
is Genetic Programming (GP) that solves “’automatically problems
without the users to know or specify the the form or structure of the
solution in advance. At the most abstract level GP is a systematic,
domain-independent method for getting computers to solve problems
automatically starting from a high-level statement of what needs to
be done” [32].

In the literature, the terms heuristic and metaheuristic are often
used interchangeably and often effectively solve NP-hard problems.
Nonetheless, these search strategies can be resource-intensive to im-
plement and develop. Many of these algorithms rely on a stochastic
population; runs can produce very different outcomes. Additionally,
the algorithms and problem solutions can be unusual as well as chal-
lenging to understand; new domains of a heuristic search space may
be explored that lead to problem solutions that cannot always be eas-
ily explained logically [34].

Hyper-heuristics aim to address some of these issues; this search
methodology discovers some algorithms that are capable of solving
a whole range of problems, with little or nor direct human control.
It has been described as “heuristics to choose heuristics” [6] or
“hyper-heuristic is an automated methodology for selecting or gen-
erating heuristics to solve hard computational problems” [5]. These
techniques search the space of algorithms for any given problem in
two ways. The first method assesses whether some combinations of
pre-existing heuristics can improve the performance of the algorithm.



The second option generates some new heuristics with a metaheuris-
tic search mechanism [34, 35].

2.2 A two-level model

A modular model separates the functionalities of a given problem
from the functionalities of the algorithm optimization process. De-
scribed by Cowling, this easy-to-implement architecture has been
widely adopted by the hyper-heuristic research community. In this
paper, we refer to the top level as “’the Hyper level” and the lower
level as “the Base level” (see fig 1) [6,28,34,37,41].

The Base level encapsulates a set of predefined heuristics for the
given problem, a fitness evaluation function and a specific search
space (see table 1). Its input parameters include a chosen heuristic
with its the location memory and a chosen problem instance. Its only
output is an performance evalution of the algorithm. [6,41].

The Hyper level decides which Base-level heuristic to solve a cho-
sen problem. This can be achieved with a learning mechanism that
evaluates the quality of of the algorithm solutions, so that they can
become general enough to solve unseen instances of a given prob-
lem. Grefenstette suggested that hyper-heuristics can be viewed as
a form of reinforcement learning. Both methods employ online and
offline learning. Online learning learns directly from its experience
from its operational environment; self-modifying operators and au-
toconstructive evolution are examples of this type of hyper-heuristic
(see sections 6.3 and 6.4 ). Offline learning gathers information in
the form of programs from a set of training problems; automated
design, meta-genetic programming, and full evolutionary algorithms
are some examples [3, 14,28].

The Hyper level encapsulates a workspace that acts as repository
of its metaheuristic states and the states of the search and should
offer more freedom to the learning mechanism. The only input is the
performance indicator of the chosen heuristic and its output includes
a chosen heuristic with its location memory and a chosen problem
instance (see table 2 and fig. 1).

Quite naturally, the domain barrier interface between the Hyper
and Base level. Once the Hyper level has selected randomly some
heuristics, these are passed to the Base level. The lower level can
then pass the performance indicators to the higher level.

Table 1: Encapsulation of the problem domain at the Base level as suggested
by [41]

Variable | Description
S | Solution-state Space
O ={o1,...,on} | A setof predefined heuristics
e | Fitness function for instance of a problem.

2.3 The Algorithm Selection Problem

The Algorithm Selection Problem simply describes the iterative
mechanism that is likely to take place during the learning pro-
cess. 'For a particular problem instance pe P with feature vec-
tor f(p) € F, find the selection mapping S(f(p)) into the algorithm
space A, such the selected algorithm a € A maximises the perfor-
mance measure ||y || for y(a,p)eY” [38]. In fact, this architecture
illustrates how the Problem space is embedded in the Feature space
and subsquently affect the state the Algorithm space. The selection

Table 2: Operational environment of the Hyper level as suggested by [41]

Variable
H: [QzW
w

Description

The hyper-heuristic function

metaheuristic states.

Repository for the states of the search

and the states of the algorithm

A tuple made of variables i,j,k variables where
- ¢ represents the chosen heuristic

- j the location memory of this heuristic

- k the chosen problem instance.

(4,3, k)

Figure 1: The mathematical model suggested by [41] to represent a hyper-
heuristic system.

Hyper Level

Online learning
Offline learning

H:[Q]xW - OxNZxW
Q: (i.j. k.e(sy))

Methodologies searching the design space

hgW - W to find algorithms of good quality to solve a
hy:W-W specific class of problems.
e(sy) Domain Barrier (LK)
Base Level
hs 5§ Specific information related to the
problem space.It should include a
0:0= {01"""9n} problem domain S, an instruction set
e:es—R O, a fitness evaluation e

Figure 2: An illustration of the Algorithm Selection Problem, as originally
proposed by [33]
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process of a new heuristic can employ a variety of search methodolo-
gies, including online and offline learning. So we believe this general
model cannot only model hyper-heuristic frameworks, but also meta-
heuristics and others search methodologies that are outside the scope
of this paper [7,33,38].

Table 3: Description of the main components of the Algorithm Selection
Problem. These components are similar to the variables of the two-level
model and simply describes all the elements of a heuristic.

Elements | Description
pe P | The problem search space, referred as Problem Space
aeA | The algorithm search space, called Algorithm Space
yeY | The performance measures

y(a,p) eY | The fitness evaluation of an algorithm
for specific problem instance
f(p)eF | A setof existing heuristics
for a given problem
S(f(p))e A | Selection process of a new

heuristic for a given problem

3 Discussion of hyper-heuristic methodologies

Using these four important distinctive components of section 2, the
concept offers many advantages:

1. Hyper-heuristics should influence positively the selection of
heuristics. The optimized heuristics for a given problem should
compute high quality solutions. The learning phase should refine
the algorithms, so that the algorithm solutions meet the needs of
the training set and subsequently problems of a certain class can be
solved more efficiently. Both models complement each other and
comply with the “’No Free lunch” theorem. Their response mech-
anism should move towards optimum algorithm solutions in the
workspace, as it guides the selection of heuristic. The Algorithm
Selection Problem represents in a three-dimensional coordinate
system the relationship between a problem instance, an algorithm
solution and its performance. Comparatively, the two-level model
offers a clear separation between the optimization of an algorithm
and the optimization process of a specific problem. This provides
a visualisation of the NFL [20, 34,46].

2. The existence of the two models not only raises questions about
the level of generality, but also introduces the concept of plug-
and-play of heuristics. Both models at least separates the prob-
lem domain from the algorithm search space. Like Lego bricks
the models offer elements a degree of freedom to be changed.
With very little data being passed between each component, each
element can be changed as long as they respect the interfaces in
place. For example, the Hyper level search methodologies have no
knowledge of the problem-domain concealed in the Base level. In
turn, the Base level is not aware of the learning mechanism used
to choose its heuristic, in the Hyper level. In comparison, every
space of the Algorithm Selection Problem can also change each
of its spaces, without affecting of the others [7,28,41].

3. Both models explore a greater design space. The stochastic pro-
cess explores more candidate algorithms in the design space. We
can imagine that hyper-heuristics can either produce algorithms
that are close to the state-of-the-art methodologies or algorithms
that have not yet been thought of by humans. They offer a viable
and powerful tool that is able to respond to some performance

indicators and probabilistically move the search forward to new
areas in a reasonable amount of time. As suggested by [47], the
development cost of writing heuristic could be potentially low-
ered. “In addition Moore’s law states that processor speed is in-
creasing exponentially, while the cost of human labour increases
in-line with inflation” [4,12].

Nonetheless the following issues needs to be considered too.

1. Experienced-based methodologies provide algorithms that may

not be guaranteed to be optimal. These algorithms may vary after
each run and be challenging to understand intuitively. The chosen
heuristic can produce solutions of a lower quality than expected. It
may also not be trusted by its users; the algorithm search may have
generated an unknown order of instructions. The chosen problem
area must then be able to cope with the speculative and random-
ness of hyper-heuristics. It could be disastrous if the maximum
strain of a steel cable is solved with an algorithm of poor quality.
Lives could be lost, if the cable is used inappropriately, with a lift
with a load that is too heavy [12,34,35].

2. The simplicity and modularity of the two models offers the op-

portunity to represent simple or very complex hyper-heuristics.
This varying complexity can be implemented in either one ele-
ment, several elements or all of them. Adding too much technical
knowledge and the programmers’ expertise can result in reducing
the reusability and the applicability of a framework. These sys-
tems require a lot of effort to understand them. Additionally, the
embedded conceptual elements in the application programming
interface could become challenging to use again; some logic may
not be suitable in another context. In others areas of evolutionary
computations (EC), researchers have shown that EC can produce
designs that surpass the state-of-the-art. Overly complex frame-
works may prevent this creative feature occuring [24,43].

3. Similarly to the full evolution of an evolutionary algorithm, the

training phase could be quite power-hungry with a long training
time. Although the performance of computers is improving all the
time, this important factor cannot be ignored. The search in the
algorithm space could be affected; the domain knowledge may be
gained with fewer generations than expected and affect the quality
of the learning. Also the produced algorithm may find good qual-
ity solutions, but their execution time and number of generations
may be too large. To overcome this issue, some hyper-heuristics
extend the fitness measure at the Hyper level by including higher
level variables such as the execution time [8,28].

4 Algorithm-Portfolio-based frameworks

Hyper-heuristic frameworks known as Algorithm-Portfolio-based
frameworks aim at predicting the running time of algorithms, so that
the time they take to solve a problem can be reduced. This idea iden-
tified that consideration of the running time of algorithms had been
neglected from the Algorithm Selection Problem. The “Algorithm
Portfolio” technique provides a means to overcome this problem.
This method applies the Algorithm Selection Problem to construct
models of algorithms runtimes using statistical regression. Then for
a given instance of a problem, each algorithms time is predicted and
the fastest predicted algorithm is used to solved the problem until the
allotated time is used up or a suitable solution is found [25].

4.1 The SATzilla framework

SATzilla applies the Algorithm portfolio to Boolean satisfiability
(SAT) problems; SAT solvers have been built for nearly a decade.



An offline learning process develops first a portfolio of algorithms,
before applying each of them against an instance of the problem to
select the fastest algorithm and predicts its runtime. More recently,
new benchmarks instances and a variety of new base solvers were
added to the framework [29,49-51].

4.2 The Snappy framework

The “Simple Neighborhood-based Algorithm Portfolio in PYthon”
(Snappy) is a more recent framework. Although this framework also
adopts the Algorithm portfolio, its aim is to provide a tool that can
improve its own performances through online learning. Instead of us-
ing the traditional offline training step, a neighbourhood search pre-
dicts the performance of the algorithms. Snappy outperformed state-
of-the-art benchmarks problems previously solved by SATzilla [36].

5 Cross-domain hyper-heuristic frameworks

In this section we review some cross-domain frameworks that have
been recently mentioned in the literature. All these frameworks are
implemented with Java, to provide a library that helps the program-
mers to write hyper-heuristic algorithms more easily in the Hyper
level. All these frameworks offer a range of tools abstracted from it-
erated local search methodologies, that can be used to quickly create
some hyper-heuristics.

5.1 Hyflex and parHyFlex

The motivation of Hyflex was inspired by the two-level hyper-
heuristic model (see figure 1). “’The emphasis of our HyFlex frame-
work lies in providing the algorithm components that are problem
specific, thus liberating the algorithm designers needing to know the
problem’s domain’s specific details” [2]. An interface between the
Hyper and the Base level is provided, with the main purpose of com-
paring a variety of hyper-heuristics. In fact, the algorithm designers
can only devise new Hyper level algorithms; the Base level contains
a library of well-known combinatorial problem domains with their
benchmarks. In this context, the low-level heuristic supplies a set
of operators that either apply small or large changes in the problem
solutions. These perturbations should expand the search to a larger
neighborhood and then guarantees better solutions are found [1, 2].
The flexibility offered by object oriented programming gives a
simple and convenient method to easily create some hyper-heuristics.
The framework structure hides strictly within the domain barrier
the problem domain, in order to implement a domain-independent
form of hyper-heuristic. “Using the framework, one can implement a
hyper-heuristic without any knowledge about the algorithm running
on parallel systems” [44]. The ‘“Problem-domain, Hyper-heuristic
and Heuristic type” classes decompose the system in explicit tem-
plates; a diagram can be found in [1] and [30]. New hyper-heuristics
are then derived from those components and only the code that
specifically differs from the original problem domains or hyper-
heuristics is then written. For example, [45] developed a specific
subclass of the Problem Domain for the vehicle routing problem
and from the Hyper-heuristic another three subclasses that imple-
ment three different adaptive iterated local search. This new class en-
coded a representation of this NP-hard problem, an evaluation func-
tion with some benchmark problems and the current state-of-the-art
operations. On the other hand, [27] used Hyflex to implement a more
complex Hyper level. The research used again the problem domain

library with an Adaptive Dynamic Heuristic Set strategy enhanced
with a learning automaton.

This strict use of templates could limit the ability of Hyflex of
solving large real-world problems; such problem-domain preferably
require less domain information [35]. Also the algorithm designers
are required to structure their code with the explicit definitions of the
three components. Finally, the framework seems to only support local
search meta-heuristic in the Hyper level, making it very challenging
to use Genetic Programming.

5.2 Hyperion

Hyperion applies a general reusable hyper-heuristic solution, to offer
the tools to rapidly create a prototype. Its main aim helps identifying
the components that contribute to an algorithm’s good performance.
A transition function uses the problem domain variables (see table
1) to transform a problem solution into another one; Transition :
S — S. In this case the transition has been defined as Eqn. 1. These
transitions result from a variety of search methodologies that are built
in a library. Hyperion also provides the four learning mechanisms de-
scribed by [31]; the most complex framework recursively aggregates
the hyper-heuristic to implement a hierarchy of hyper-heuristics.

{ (from, fromValue, Operator, to, toValue) }
from e S,

fromValue € R,

operator € O,

to € S,

toValue € R 1)

Transition =

Experiments using the Boolean satisfiability compared the perfor-
mance of several neighbourhood techniques [42].

5.3 hMod

Inspired by the previous frameworks, hMod abstracts all the elements
of flow charts in a new object-oriented architecture. This model en-
codes the core of the Hyper level in several modules, referred as algo-
rithm containers. hMod directs the programmer to define the Hyper
level heuristic using two separate XML files; one for the heuristic
selection process and another one for the acceptance move. These
XML files are then read and interpreted with the code [43].

1. Each flowchart has a start and an end. An initial step is encapsu-

lated in an “algorithm” class and the “flow control” in a “step”
class. This variable points to the next operation, except for the last
operation, which points to nothing.

2. A generic processing step holds a set of instructions that describe

a specific behaviour.

3. The “decision” is treated as special step with two flow controls;

one if the condition is met and another one if the condition is not
met. The decision is useful with iterations and conditional execu-
tion.

4. “Input/output” has its own set of data classes with the traditional

get and set methods.

At the time of writing, this new framework was only at the pro-
posal stage. No result of its performance was available to allow com-
ment.



6 Evolutionary hyper-heuristics

This second branch of hyper-heuristics optimises algorithms with
Genetic Programming (GP) at the hyper level. Unlike the previous
frameworks, the top level remains mostly unchanged, and most of
the effort is required to encode the problem domain at the Base level.

6.1 Automated design and meta-genetic
programming

These methods specialise in the automatic design of components
of Genetic Algorithms. Similarly to meta-genetic programming (see
[13]), automated design considers components of an evolutionary al-
gorithm with the purpose of improving their performance without
losing excessively the generality of this well-known algorithm. Both
techniques can be applied to the hyper-heuristic models aforemen-
tioned. At the Base level the performance of the operators is assessed
by executing several times a Genetic Algorithm with the newly gen-
erated operators. While, meta-genetic programming encodes their al-
gorithms in a tree, automated design uses register machines at the
Hyper level. Only automated design strongly aims at producing se-
lection or mutation operators with improved performance on a class
of problems. The domain knowledge is acquired with a set of in-
stances chosen from a given problem class, during a training phase.
The operators’ performance is assessed during the validation phase
and the real-world phase can apply fully-developed algorithms on
problems of the same given class.

Automated design has successfully improved the performance of
selection operators for a GA that solved problem classes of the one-
max problem. It was also used to explore mutation operators for
a GA that solves mathematical functions with arbitrary chosen bit-
strings. In these experiments, the parameters of each problem were
defined by a Gaussian distribution. Finally, automated design dis-
covered and generated new statistical distribution for the mutation
operators [21,47,48].

6.2 Full evolution of evolutionary algorithms

Evolving evolutionary algorithms (EEA) fully adapts an evolution-
ary algorithm to the given needs of a problem; it is a very spe-
cialised hyper-heuristic method. It lets an EA discover the rules and
knowledge, so that it can find the best EA to optimise the solu-
tions of a problem. Several subfields of Genetic Programming have
achieved this purpose with some success; Linear Genetic Program-
ming (LGP), Multiple Expression Programming (MEP) and Gram-
matical Evolution (GE) have produced unknown evolutionary algo-
rithms [9, 10,22,26].

To the best of our knowledge, only a few researchers have yet fo-
cused on optimising the sequence of an EA to the specific need of
a problem. Two approaches demonstrated the feasibility automati-
cally evolving evolutionary algorithms. The first method used linear
genetic programming and multi-expression genetic programming, to
optimise the EA solving unimodal mathematical functions. An evo-
lutionary algorithm manipulates a sequence of genetic and reproduc-
tive operators with their parameters. A solution consists of a new
evolutionary algorithm that is capable of outperforming GA when
solving a specific class of unimodal test functions. The result was an
initial time-consuming and power-hungry learning process, such sys-
tems seems to be better suited to test hypothesis rather than actively
solving a problem [9, 10].

A Grammatical Evolutionary framework also evolved EAs, to in-
stead solve the Royal Road problems. Genetic operators are per-
formed on binary string that encodes the EEAs. A mapping process,
inspired by the protein synthesis, then transform this simple code
into an EEA. The binary string are transcribed into an integer string,
which is in turn derived into a tree structure using a set of prede-
fined grammatical rules. Then the EEA is executed to solve classes of
Royal Road Problems. Results demonstrates GE can optimise EAs,
despite the grammatical rules imposed during evolution seeming to
hinder the production of innovative EAs [26].

6.3 Self-modifying operators

Instead of repetitively using GP to select or generate the lower heuris-
tic, before assessing its performance, self-modifying operators inte-
grate the variation operators within the algorithm itself. These added
online-learning features in the Hyper level empowered with the ca-
pability of adapting operators at the higher-level operate at the same
time it is optimising low-level heuristics.

Self-modification Cartesian Genetic Programming (SMCGP) en-
codes in a graph the chosen low-level heuristic, alongside self-
modifying operators. During the evaluation phase, a copy of the CGP
program is made. This graph is then executed, and if they are any al-
terations to be made, then they modify the new graph. The encoded
graph is then executed the same manner as a CGP program. SMCGP
has been used to solve a number or problems. It has found general
solutions to arbitrary parity problems, binary addition and Fibonacci
series. It has discovered algorithms for computing e and pi to arbi-
trary position [15-17].

6.4 Autoconstructive evolution

Another approach lets the Hyper level programs be subjected to
changes in their structure, at the same time they are responsible them-
selves produce their own children. “In fact, autoconstructive evolu-
tion is a hyper-heuristic in two ways: reproductive mechanisms are
evolved which are then used to vary problem solutions, and reproduc-
tive mechanisms vary the reproductive mechanisms.” [19] (see figure
3). Push is a well-known autoconstructive evolution system defined
by [39]. A detailed tutorial demonstrates clearly how stacks differ-
entiate in term of data type and store the values of variables. [40]
A stack can either represent a simple data type like a boolean, or a
more complex data structure like locations within a tree. The latter
becomes very useful to encode instructions that adapt the tree struc-
ture of a tree dynamically. This type of hyper-heuristic method was
successfully applied to solve the order and majority problems, with
the following evolutionary elements:

1. An autoconstructive mutation operator was defined as f = f(g)
and an auto constructive crossover operator had the mathematical
function f' = f(f,9)

2. Each problem domain has their own fitness function defined sep-
arately.

3. The Push interpreter maintains a parent and a children population.
A tournament selects the parent from the parent population before
the autoconstructive operators are applied. The children popula-
tion only accepts candidate solutions that meet the size require-
ments, have less errors than their parents and finally are different
from their parents.

4. After the Push interpreter is initialised the two selected parent pro-
grams f and g are copied in the children population. Each of the



Figure 3: The Autoconstructive evolution as suggested by [18]. The hyper-
heuristic gives the program the capability to evolve itself.
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autoconstructive genetic operators are executed and solve either
the order problem or the majority problem. The program becomes
a candidate child program and the acceptance criteria is applied.

The entanglement of the low-level heuristic and its problem do-
main within the higher-heuristic program can lead to the problem so-
lutions and its algorithm being inseparable. By treating the produced
algorithm as a variation operator, the program may be used indepen-
dently to solve problems belonging to the same class [18,19,39].

7 Discussion and conclusion

We have discussed types of heuristics, and compared and discussed
the differences between the main hyper-heuristic models and frame-
works. The hyper-heuristic research community is very active and
have produced impressive results. However, they are still many ques-
tions that remain to be considered to advance the field further.

Although hyper-heuristic frameworks are well developed, there
has been little discussion of the generated algorithms themselves.
Can something be learned from study and analysis of generated al-
gorithms that perform well? It seems that early discussions of these
aspects in meta-heuristics have not been continued. The chosen en-
coding scheme is not expressive enough to allow easily the analysis
of computational patterns of operations against their performance.

The operations that have been used to generate new candidate al-
gorithms have been dominated by local search operations. Such op-
erations would be very unlikely to create algorithms which carry out
a form of cross-over. In addition, the form that generated algorithm
can take appears to be very limited. For instance, any forms of GP
cannot be currently produced by these cross-domain hyper-heuristics
approaches. Too much human domain knowledge from software en-
gineering has been included in the structure of the frameworks. This
seems to prevent the framework from being adapted easily from their
current educational and prototyping focus.

Algorithm design for solving NP-hard problems is an area of in-
tense research. Many sophisticated state-of-the-art algorithms exist,
yet currently it is unknown whether hyper-heuristic frameworks are
capable of expressing such algorithms. To the best of our knowledge,
structures of algorithms are seldom analysed or compared with the
state-of-the-art algorithms. For instance, in the field of logic synthe-
sis and minimisation there exist number of very effective algorithms.
Can such algorithms be improved on using hyper-heuristic methods?

So far, hyper-heuristic frameworks have been restricted to a con-
strained set of possible algorithms. In general, it may not have
enough expressiveness to represent a greater variety of algorithms,
closer to the state-of-the-art or even programming languages.

The range of computer languages used to encode cross-domain
hyper-heuristic frameworks has been quite limited and needs to take
advantage of a greater ranges of programming platforms.
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