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Abstract. In this paper, we explore the evolution of three-

dimensional objects with a simple generative encoding, known as

Gielis Superformula. Evolving three-dimensional objects has long

been of interest in a wide array of disciplines, from engineering

(e.g., robotics) to biology (e.g., studying morphological evolution).

While many representations have been presented, ranging from di-

rect encodings to complex graphs and grammars, the vast major-

ity have possessed complex underlying encodings, which were nec-

essary to produce varied morphologies. Here, it is shown possible

to produce very closely matching designs of a number of complex

three-dimensional objects through the evolution of supershapes pro-

duced by Gielis Superformula. Subsequently, we explore the evolu-

tion of vertical-axis wind turbine prototypes represented as super-

shapes wherein each individual is physically instantiated and evalu-

ated under approximated wind tunnel conditions.

1 Introduction

In recent years, wind has made an increasing contribution to the

world’s energy supply mix. However, there is still much to be done in

all areas of the technology for it to reach its full potential. Currently,

horizontal-axis wind turbines (HAWTs) are the most commonly used

form. However, “modern wind farms comprised of HAWTs require

significant land resources to separate each wind turbine from the ad-

jacent turbine wakes. This aerodynamic constraint limits the amount

of power that can be extracted from a given wind farm footprint.

The resulting inefficiency of HAWT farms is currently compensated

by using taller wind turbines to access greater wind resources at

high altitudes, but this solution comes at the expense of higher en-

gineering costs and greater visual, acoustic, radar and environmen-

tal impact” [11]. This has forced wind energy systems away from

high energy demand population centres and towards remote locations

with higher distribution costs. In contrast, vertical-axis wind turbines

(VAWTs) do not need to be oriented to wind direction and can be

positioned closely together, potentially resulting in much higher ef-

ficiency. VAWT can also be easier to manufacture, may scale more

easily, are typically inherently light-weight with little or no noise pol-

lution, and are more able to tolerate extreme weather conditions (see,

e.g., [13] for discussions). However, their design space is complex

and relatively unexplored. Generally, two classes of design are cur-

rently under investigation and exploitation: the Savonius, which has

blades attached directly upon the central axis structure; and the Dar-

rieus, where the blades—either straight or curved—are positioned

predominantly away from the central structure. Hybrids also exist.
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The majority of blade design optimisation is performed through

the use of computational fluid dynamics (CFD) simulations, typically

described with three-dimensional Navier-Stokes equations [1]. How-

ever, three-dimensional CFD simulations are computationally expen-

sive, with a single calculation taking hours on a high-performance

computer, making their use with an iterative search approach diffi-

cult [18]. Moreover, assumptions need to be made, e.g., regarding

turbulence or pressure distributions, which can significantly affect

accuracy. Previous evolutionary studies have been undertaken with

types of CFD to optimise the blade profile for both HAWT (e.g., [22])

and VAWT (e.g., [8]) to varying degrees of success/realism.

Evolutionary algorithms (EAs) have been used to design three-

dimensional physical objects, such as furniture (e.g., [6]), aircraft

engine blades (e.g., [35]) and wings (e.g., [46]). Notably, Lohn

et al. [39] evolved and manufactured X-band satellite antenna for

NASA’s ST5 spacecraft, representing the world’s first artificially

evolved hardware in space. Significantly, the antenna’s performance

was similar to a design hand-produced by an antenna-contractor.

Most of these approaches, however, have used simulations to provide

the fitness scores of the evolved designs.

The evaluation of physical artifacts for fitness determination can

be traced back to the origins of evolutionary computation; for ex-

ample, the first evolution strategies (ESs) were used to design jet

nozzles as a string of real-valued diameters, which were then ma-

chined and tested for fitness [52]. Other well-known examples in-

clude robot controller design (e.g., [45]), electronic circuit design

using programmable hardware (e.g., [59]), product design via human

provided fitness values (e.g., [26]), chemical systems (e.g., [58]), and

unconventional computers (e.g., [24]). Evolution in hardware has the

potential to benefit from access to a richer environment where it can

exploit subtle interactions that can be utilised in unexpected ways.

For example, the EA used by Thompson [59] to work with field-

programmable gate array circuits used some subtle physical proper-

ties of the system to solve problems where the properties used are

still not understood. Humans can be prevented from designing sys-

tems that exploit these subtle and complex physical characteristics

through their lack of knowledge, however this does not prevent ex-

ploitation through artificial evolution. There is thus a real possibility

that evolution in hardware may allow the discovery of new physical

effects, which can be harnessed for computation/optimisation [41].

Moreover, the advent of high quality, low-cost, additive rapid fab-

rication technology—known as three-dimensional printing—means

it is now possible to fabricate a wide range of prototype designs

quickly and cheaply. Three-dimensional printers are now capable of

printing an ever growing array of different materials, including food

(e.g., chocolate [23] and meat [38] for culinary design), sugar (e.g.,

to help create synthetic livers [42]), chemicals (e.g., for custom drug



design [57]), cells (e.g., for functional blood vessels [32] and artifi-

cial cartilage [62]), plastic (e.g., Southampton University laser sin-

tered aircraft), thermoplastic (e.g., for electronic sensors [36]), tita-

nium (e.g., for prosthetics such as the synthetic mandible developed

by the University of Hasselt and transplanted into an 83-year old

woman), and liquid metal (e.g., for stretchable electronics [34]). One

potential benefit of the technology is the ability to perform fabrica-

tion directly in the target environment; for example, Cohen et al. [10]

recently used a three-dimensional printer to perform a minimally in-

vasive repair of the cartilage and bone of a calf femur in situ. Lipson

and Pollack [37] were the first to exploit the emerging technology in

conjunction with an EA using a simulation of the mechanics and con-

trol, ultimately printing mobile robots with embodied neural network

controllers.

We have recently undertaken initial experimentation of surrogate-

assisted embodied evolutionary algorithms to design VAWT with

a vector of integers representing the width of a turbine blade seg-

ment [48, 47]. In this paper, we explore the evolution of a simple

generative encoding to produce more flexible three-dimensional de-

signs for manufacture by a three-dimensional printer. Initially, the

target-based evolution of three-dimensional supershapes is investi-

gated. Subsequently we explore the evolution of VAWT represented

as supershapes wherein each individual is physically instantiated and

evaluated under approximated wind tunnel conditions.

2 Related Work

The evolution of geometric models to design arbitrary three-

dimensional morphologies has been widely explored. Early examples

include Watabe and Okino’s lattice deformation approach [61] and

McGuire’s sequences of polygonal operators [40]. Sims [55] evolved

the morphology and behaviour of virtual creatures that competed in

simulated three-dimensional worlds with a directed graph encoding.

Bentley [5] investigated the creation of three-dimensional solid ob-

jects via the evolution of both fixed and variable length direct encod-

ings. The objects evolved included tables, heatsinks, penta-prisms,

boat hulls, aerodynamic cars, as well as hospital department layouts.

Eggenberger [12] evolved three-dimensional multicellular organisms

with differential gene expression. Jacob and Nazir [31] evolved poly-

hedral objects with a set of functions to manipulate the designs by

adding stellating effects, shrinking, truncating, and indenting polyg-

onal shapes. More recently, Jacob and Hushlak [30] used an inter-

active evolutionary approach with L-systems [50] to create virtual

sculptures and furniture designs.

EAs have also been applied to aircraft wing design (e.g., [46])

including aerodynamic transonic aerofoils (e.g., [20, 51]), and mul-

tidisciplinary blade design (e.g., [21]). Few evolved designs, how-

ever, have been manufactured into physical objects. Conventionally

evolved designs tend to be purely descriptive, specifying what to

build but not how it should be built. Thus, there is always an in-

herent risk of evolving interesting yet unbuildable objects. More-

over, high-fidelity simulations are required to ensure that little dif-

ference is observed once the virtual design is physically manifested.

In highly complex design domains, such as dynamic objects, the dif-

ference between simulation and reality is too large to manufacture

designs evolved under a simulator, and in others the simulations are

extremely computationally expensive.

Funes and Pollack [15] performed one of the earliest attempts to

physically instantiate evolved three-dimensional designs by placing

physical LEGO bricks according to the schematics of the evolved in-

dividuals. A direct encoding of the physical locations of the bricks

was used and the fitness was scored using a simulator which pre-

dicted the stability of the composed structures. Additionally, Hornby

and Pollack [28] used L-systems to evolve furniture designs, which

were then manufactured by a three-dimensional printer. They found

the generative encoding of L-systems produced designs faster and

with higher fitness than a non-generative system. Generative sys-

tems are known to produce more compact encodings of solutions and

thereby greater scalability than direct approaches (e.g., see [54]).

Compositional pattern producing networks [56] have recently

been used to evolve three-dimensional objects which were ultimately

fabricated on a three-dimensional printer [2, 3, 9]. Both interactive

and target-based approaches were explored.

Recently, Rieffel and Sayles [53] evolved circular two-

dimensional shapes where each design was fabricated on a three-

dimensional printer before assigning fitness values. Interactive evo-

lution was undertaken wherein the fitness for each printed shape was

scored subjectively. Each individual’s genotype consisted of twenty

linear instructions which directed the printer to perform discrete

movements and extrude the material. As a consequence of perform-

ing the fitness evaluation in the environment, that is, after manufac-

ture, the system as a whole can exhibit epigenetic traits, where phe-

notypic characteristics arise from the mechanics of assembly. One

such example was found when selecting shapes that most closely re-

sembled the letter ‘A’. In certain individuals, the cross of the pattern

was produced from the print head dragging a thread of material as

it moved between different print regions and was not explicitly in-

structed to do so by the genotype.

Husbands et al. [29] used an interactive evolutionary approach to

design three-dimensional objects with a superquadrics formula sim-

ilar to the Gielis Superformula used here. The Genetic Algorithm

(GA) [27] used a directed graph encoded as bitstrings that were

translated into a valid geometry. They were the first to combine su-

perquadric primitives and global deformations with a GA, incorpo-

rating translation, rotation, scaling, reflection, tapering and twisting.

A significant advantage of superquadrics is the compactness of the

representation since few parameters are needed for a given deforma-

tion that widely extends the range of shapes representable.

3 Gielis Superformula

Gielis [16, 17] found that the forms of a large variety of plants and

other living organisms can be modelled by a single, simple, geomet-

ric equation, forming a generalisation of a hyper-ellipse, termed the

Superformula. Modifying the set of real-valued parameters to the

Superformula generates myriad and diverse natural polygons with

corresponding degrees of freedom. The Superformula can be used

to create three-dimensional objects, supershapes, using the spheri-

cal product of two superformulas; in fact, by multiplying additional

superformulas it can be extended to N -dimensions. “In general, one

could think of the basic Superformula as a transformation to fold or

unfold a system of orthogonal coordinate axes like a fan. This cre-

ates a basic symmetry and metrics in which distances can further be

deformed by local or global transformations. Such additional trans-

formations increase the plasticity of basic Supershapes” [17]. Gielis’

Superformula can be further generalised to increase the degrees of

freedom, adding twist and further rotations, permitting the creation

of more complex three-dimensional forms, including shells, möbius

strips, and umbilic tori. Gielis’ Superformula, which defines a super-

shape in 2 dimensions is given in the following equation, where r is

the radius; φ is the angle; a > 0, b > 0 control the size of the super-

shape and typically = 1; and m (symmetry number), n1, n2 and n3



(shape coefficients) are the real-valued parameters:
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Using the spherical product, the extension to three dimensions:

x = r1(θ)× cos(θ)× r2(ϕ)× cos(ϕ) (2)

y = r1(θ)× sin(θ) × r2(ϕ)× cos(ϕ) (3)

z = r2(ϕ)× sin(ϕ) (4)

Where −π

2
≤ ϕ ≤ π

2
for latitude and −π ≤ 0 ≤ π for longitude.

Example shapes generated with the Superformula can be seen in

Figure 1 where the cube, star, and heart can be generated from the

same set of eight real-valued parameters; the torus requiring two ad-

ditional parameters; the shell a total of twelve; and the möbius strip

a total of fifteen.

A supershape visualisation tool and its source code, licensed

under Creative Commons Attribution-Share Alike 3.0 and GNU

GPL license, can be found at http://openprocessing.org/

visuals/?visualID=2638.

4 Target-Based Evolution

Given a target shape it is often very useful to identify a representative

formula. Optimisation methods, such as the Levenberg-Marquardt

(LM) theory [49], have typically been used to identify the best fit-

ting supershape parameters (e.g., [19]). However LM cannot retrieve

all of the parameters required for supershape fitting. Bokhabrine et

al. [7] used a GA to evolve all supershape parameters for surface

reconstruction (i.e., a target-based approach) using an inside-outside

function [14] for fitness computation. Voisin et al. [60] later extended

this to utilise a pseudo-Euclidean distance for fitness determination,

yielding improved performance. Additionally, Morales et al. [43]

used a GA to evolve N -dimensional Superformula for clustering.

The cube, star, and heart shapes (as seen in Figure 1) are here con-

verted into 50× 50× 50 binary voxel arrays and used as the desired

targets, where the fitness of an individual is the fraction of voxels that

correctly match. The genotype of each individual in the population

consists of eight real-valued parameters in the range [0,50] which

affect the Superformula, giving rise to the supershape. The GA pro-

ceeds with a population, P , of 200 individuals, a per allele mutation

rate of 25%, and mutation step size of ±rand(5), where rand se-

lects a real-valued number in the range [0,5]; a crossover rate of 0%;

the GA tournament size for both selection and replacement is set to

3.

Figures 2–4 show the fraction of total voxels matched to the target

shapes during evolution of the supershapes; results presented are an

average of 10 experiments. Similar to [9], a large number of voxels

are quickly matched, however here the target object is not identifiable

until approximately 99% are set correctly. As such, the small differ-

ences in fitness between the treatments represent substantial differ-

ences in whether the target object is recognisable. In all cases, greater

than 99.5% fitness is achieved. From Figure 2 it can be seen that,

on average, the GA takes approximately 1100 evaluations to reach

>99% matching voxels of a target cube object and 3700 evaluations

to achieve >99.9%. Figure 3 shows that on average approximately

3900 evaluations are required to reach >99% matching voxels of a

target star object and 16100 evaluations to achieve >99.5%. Finally,

Figure 4 shows that, on average, >99% matching voxels of a tar-

get heart object is reached after 6400 evaluations and >99.5% after

24000 evaluations.

(a) Cube m1 = 4,
n1,1 = 10, n1,2 =

10, n1,3 = 10, m2 =

4, n2,1 = 10, n2,2 =

10, n2,3 = 10

(b) Star m1 = 6,
n1,1 = 5, n1,2 = 10,
n1,3 = 10, m2 = 4,
n2,1 = 10, n2,2 =

10, n2,3 = 10

(c) Heart m1 = 3,
n1,1 = 1.5, n1,2 =

12, n1,3 = 3, m2 =

0, n2,1 = 3, n2,2 =

0, n2,3 = 0

(d) Shell m1 = 3,
n1,1 = 1.5, n1,2 =

12, n1,3 = 3, m2 =

0, n21 = 3, n22 = 0,
n23 = 0, t2 = 2,
d1 = 1, d2 = 1,
c1 = 5

(e) Torus m1 = 10,
n1,1 = 10, n1,2 =

10, n1,3 = 10,
m2 = 10, n2,1 = 10,
n2,2 = 10, n2,3 =

10 t1 = 2, c3 = 0

(f) Möbius Strip
m1 = 3, n1,1 = 1.5,
n1,2 = 12, n1,3 = 3,
m2 = 0, n2,1 = 3,
n2,2 = 0, n2,3 = 0

t1 = 4, t2 = 0,
d1 = 0, d2 = 0,
c1 = 5, c2 = 0.3,
c3 = 2.2

Figure 1: Example three-dimensional supershapes.

At the end of the experiments, the fittest individual was subse-

quently fabricated by a three-dimensional printer and can be seen

in Figure 5, including the supporting rafts required for manufacture.

Figure 6 illustrates a sample of the evolved individuals from one cube

experiment, Figure 7 similarly for the star experiment, and Figure 8

for the heart experiment.

5 Rotation Speed-Based Evolution

As previously mentioned, we have recently undertaken initial experi-

mentation of surrogate-assisted embodied evolutionary algorithms to

design VAWT with a vector of integers representing the width of a

turbine blade segment [48, 47].

The fitness of each individual was scored as the maximum rotation

speed achieved during the application of constant wind generated by

an approximated wind tunnel after fabrication by a three-dimensional

printer. The rotation speed is the significant measure of aerodynamic

efficiency since the design space is constrained (including rotor ra-

dius and turbine height). However, in future work, the AC voltage
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Figure 2: Evolution of a three-dimensional cube.
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Figure 3: Evolution of a three-dimensional star.

generated would be preferred as it would take into account any slight

weight variations that may affect performance. The rotation speed

was measured in number of revolutions per minute (rpm) using a

PCE-DT62 digital photo laser tachometer by placing a 10 × 2mm
strip of reflecting tape on the outer tip of one of the treatment’s

blades. When measuring a single isolated VAWT the treatment was

placed at 30mm distance from the centre of a 3, 500rpm 300mm
propeller fan generating 4.4m/s wind speed.

Initially, 20 random designs were generated, fabricated, and eval-

uated. Since many of the seed treatments were extremely aerody-

namically inefficient (only 2 out of 20 yielded > 0rpm), a canon-

ical GA was run for 2 further generations before comparing with a

GA assisted by a neural network surrogate model (SGA). The fittest

evolved treatments after each generation are reproduced here in Fig-

ure 9 for the GA and Figure 10 for the SGA.

Additional challenges are encountered when extracting large

amounts of wind energy since multiple turbines must be arranged

into a wind farm. As the turbines extract the energy from the wind,

the energy content decreases and the amount of turbulence increases

downstream from each. See [25] for photographs and explanation of

the well-known wake effect at the Horns Rev offshore wind farm in

the North Sea. Due to this, HAWTs must be spaced 3–5 turbine di-

ameters apart in the cross-wind direction and 6–10 diameters apart in

the downwind direction in order to maintain 90% of the performance

of isolated HAWTs [11]. The study of these wake effects is therefore

a very complex and important area of research (e.g., see [4]), as is
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Figure 4: Evolution of a three-dimensional heart.

Figure 5: Cube, star and heart fabricated by a three-dimensional

printer.

turbine placement (e.g., see [44] for an evolutionary approach). This

work has almost exclusively considered HAWT. However, Dabiri

et al. [33] have recently highlighted how the spacing constraints of

HAWT often do not apply for VAWT, and even that performance can

be increased by the exploitation of inter-turbine flow effects. Indeed,

it has been shown [11] that power densities an order of magnitude

greater can be potentially achieved by arranging VAWTs in layouts

utilising counter-rotation that enable them to extract energy from ad-

jacent wakes and from above the wind farm.

Therefore, a surrogate-assisted cooperative coevolutionary ap-

proach (SCGA) to design wind farms was explored, utilising the ag-

gregated rotation speed of an array of 2 closely positioned VAWT as

fitness. Each VAWT was treated separately by evolution and approx-

imation techniques so that heterogeneous designs could potentially

emerge. When measuring the fitness of an individual, one turbine

from each species population was positioned 33mm adjacently and

30mm from the propeller fan. That is, there was a 3mm spacing be-

tween the blades at their closest point. The treatments in each species

population were initially evaluated in collaboration with a single ran-

domly selected treatment from the other species population. There-

after, the GA was run as before, however alternating between species

after each offspring was formed and evaluated with the elite member

from the other species. The fittest evolved treatments after each gen-

eration are shown in Figure 9 for the coevolutionary GA (CGA) and

Figure 12 for the SCGA.

The results showed that EAs are capable of identifying novel and

increasingly efficient VAWT designs wherein a sample of prototypes



(a) 96.71% (b) 98.50% (c) 99.29% (d) 99.97% (e) Target

Figure 6: Evolution of a three-dimensional cube.

(a) 94.18% (b) 96.24% (c) 98.03% (d) 99.56% (e) Target

Figure 7: Evolution of a three-dimensional star.

are fabricated by a three-dimensional printer and examined for util-

ity in the real-world. The use of a neural network surrogate model

was found to reduce the number of fabrications required by an EA

to attain higher aerodynamic efficiency (rotation speed) of VAWT

prototypes. The approach represents the first surrogate-assisted em-

bodied evolutionary algorithm using three-dimensional printing, and

completely avoids the use of three-dimensional computer simula-

tions, with their associated processing costs and modelling assump-

tions. In this case, three-dimensional CFD analysis was avoided, but

the approach is equally applicable to other real-world optimisation

problems, for example, those requiring computational structural dy-

namics or computational electro-magnetics simulations. In particu-

lar, the wind turbine array experiment showed that it is possible to

use surrogate-assisted coevolution to iteratively increase the perfor-

mance of two closely positioned turbines, taking into account the

inter-turbine flow effects, which is especially difficult to achieve un-

der a high-fidelity simulation. The surrogate-assisted GA represents

a scalable approach to the design of wind turbine arrays since the

number of inputs to the surrogate-models remains constant regard-

less of the number of turbines undergoing evolution.

One of the drawbacks of the representation used is that it assumes

an underlying VAWT structure. In contrast, supershapes open the

space of possible designs and yet retain a compact encoding. As a

first step towards the evolution of supershapes as VAWT, here a sin-

gle supershape as described previously becomes a prototype VAWT.

A workspace (maximum object size) of 50 × 50 × 70mm is used

so that the instantiated prototype is small enough for timely produc-

tion (∼ 80mins) and with low material cost, yet large enough to

be sufficient for fitness evaluation. The workspace has a resolution

of 100 × 100 × 100 voxels. A central platform is constructed for

each individual to enable the object to be placed on to the evaluation

equipment. The platform consists of a square torus, 2 voxels in width

and with a centre of 10 × 10 empty voxels consistent through the

z-axis, thus creating a hollow tube; see example in Figure 13a.

When production is required, the three-dimensional binary voxel

array is converted to stereolithography (STL) format. Once encoded

in STL, it then undergoes post-processing with the application of

3 Laplacian smoothing steps using Meshlab2; see example in Fig-

ure 13b. Finally the object is converted to printer-readable G-code

2 MeshLab is an open source, portable, and extensible system for
the processing and editing of unstructured 3D triangular meshes.
http://meshlab.sourceforge.net

(a) 96.11% (b) 98.11% (c) 99.00% (d) 99.50% (e) Target

Figure 8: Evolution of a three-dimensional heart.

(a) 1st Gen

(b) 2nd Gen

(c) 3rd Gen

(d) 4th/5th Gen

Figure 9: The fittest treatments with z-variability produced by the GA

each generation.

and is subsequently fabricated by a Stratasys Dimension Elite printer

using a polylactic acid (PLA) bioplastic. See example in Figure 13c.

The fitness computation for each individual is the maximum ro-

tation speed achieved during the application of constant wind gen-

erated by an approximated wind tunnel after fabrication by a three-

dimensional printer. The rotation speed is here measured in number

of revolutions per minute (rpm) using a PCE-DT62 digital photo

laser tachometer by placing a 10×2mm strip of reflecting tape on the

centre of the treatment. The experimental configuration can be seen

in Figure 14, which shows the 3, 500rpm 300mm propeller fan and

the treatment placed at 30mm distance and offset by 100mm from

the centre; that is, with an asymmetric air flow of 4.4m/s.

The initial population consists of the star individual from Fig-

ure 13 and 19 other individuals whose parameters are each those of

the star ±rand() × 5.0, where rand() is a random number in the



(a) 4th Gen

(b) 5th Gen

Figure 10: The fittest treatments with z-variability produced by the

SGA each generation.

range [-1,1]; that is, P = 20. All initial individuals are subsequently

fabricated and evaluated. Thereafter, a generational GA forms the

next generation using the evolutionary operators as described for the

target-based experiment. The fittest evolved treatment after 4 gener-

ations is shown in Figure 15. The parameters to the Superformula

specify the length of the blades in addition to the frequency and the

population has evolved an individual that forms an ‘X’ shape where

the blades extend beyond the length of the workspace. As the blades

extend beyond the workspace they are no longer drawn/fabricated

and so the hollowness of the shape can be observed. It appears that

evolution has identified that longer blades are more efficient under

the current experimental conditions and this is also observed with an

increase in the average length of the blades throughout the popula-

tion. Futhermore, the reduction in number of blades from the initial

6 to 4 indicates that fewer blades may be more efficient. In Figure 16

the fittest evolved treatment after 5 generations is shown. As can be

seen, overall the shape is more rounded and two of the blades from

the ‘X’ have merged closer together in a step towards a 3 bladed

shape, resulting in a lighter weight design with an increase in rota-

tion speed.

6 Conclusions

This paper has shown that it is possible to evolve a vector of reals that

are used as Superformula parameters to generate three-dimensional

objects. Target-based evolution was used to explore the ability of Su-

performula to create complex objects, particularly those that resem-

ble natural designs. The experiments showed that with target-based

evolution very closely matching objects can be identified. In addition,

a methodology for the embodied evolution of supershapes as VAWT

has been introduced. One significant advantage of the approach over

alternative representations is the simplicity and compactness of the

encoding, which may be amenable for use in a surrogate-assisted ap-

proach.

If the recent speed and material advances in rapid-prototyping con-

tinues, along with the current advancement of evolutionary design, it

will soon be feasible to perform a wide-array of automated complex

engineering optimisation in situ, whether on the micro-scale (e.g.,

drug design), or the macro-scale (e.g., wind turbine design). That

is, instead of using mass manufactured designs, EAs will be used to

identify bespoke solutions that are manufactured to compensate and

(a) 1st Gen

(b) 2nd Gen

(c) 3rd Gen

(d) 4th Gen

Figure 11: Top view of the fittest CGA heterogeneous array treat-

ments each generation. Wind direction from the south.

exploit the specific characteristics of the environment in which they

are deployed, e.g., local wind conditions, nearby obstacles, and local

acoustic and visual requirements for wind turbines.
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