
Exploiting generalisation symmetries in accuracy-based

learning classifier systems: An initial study

Larry Bull

Abstract. Modern learning classifier systems typically exploit a

niched genetic algorithm to facilitate rule discovery. When used

for reinforcement learning, such rules represent generalisations

over the state-action-reward space. Whilst encouraging maximal

generality, the niching can potentially hinder the formation of

generalisations in the state space which are symmetrical, or very

similar, over different actions. This paper introduces the use of

rules which contain multiple actions, maintaining accuracy and

reward metrics for each action. It is shown that problem

symmetries can be exploited, improving performance, whilst not

degrading performance when symmetries are reduced. 12

1 INTRODUCTION

Learning Classifier Systems (LCS) [Holland, 1976] are rule-

based systems, where the rules are usually in the traditional

production system form of “IF condition THEN assertion”. An

evolutionary algorithm and/or other heuristics are used to search

the space of possible rules, whilst another learning process is

used to assign utility to existing rules, thereby guiding the search

for better rules. LCS are typically used as a form of

reinforcement learner, although variants also exist for supervised

[Bernadó Mansilla & Garrell, 2003], unsupervised [Tammee et

al., 2007] and function [Wilson, 2002] learning. Almost twenty

years ago, Stewart Wilson introduced a form of LCS in which

rule utility is calculated solely by the accuracy of the predicted

consequences of rule assertions/actions – the “eXtended

Classifier System” (XCS) [Wilson, 1995]. Importantly, XCS

makes a clear connection between LCS and modern

reinforcement learning (see [Sutton & Barto, 1998]): XCS uses a

genetic algorithm (GA) [Holland, 1975] to discover regularities

in the problem thereby enabling generalisations over the

complete state-action-reward space. It has been found able to

solve a number of well-known problems optimally (e.g., see

[Butz, 2006]). Modern LCS, primarily XCS and its derivatives,

have been applied to a number of real-world problems (e.g., see

[Bull, 2004]), particularly data mining (e.g., see [Bull et al.,

2008]), to great effect. Formal understanding of modern LCS has

also increased in recent years (e.g., see [Bull & Kovacs, 2005]).

XCS uses a niched GA, that is, it runs the GA over rules

which are concurrently active. Initially, following [Booker,

1985] (see also [Fogarty, 1994]), the GA was run in the match

set [M], i.e., the subset of rules whose condition matches the

current state. The primary motivation for restricting the GA in

this way is to avoid the recombination of rule conditions which

generalise over very different areas of the problem space. Wilson

Dept. of Computer Science & Creative Tech., UWE BS16 1QY, UK.

Email: larry.bull@uwe.ac.uk.

[1998] later increased the niching to action sets [A], i.e., the

subset of [M] whose action matches the chosen output of the

system. Wilson correctly highlighted that for tasks with

asymmetrical generalisations per action, the GA would still have

the potential to unhelpfully recombine rules working over

different sub-regions of the input space unless it is moved to [A].

Using two simple benchmark tasks, he didn’t show significant

changes in performance but did show a decrease in the number

of unique rules maintained when some asymmetry existed from

the use in [A]. Modern XCS uses the [A] form of GA, which has

been studied formally in various ways (e.g., see [Bull, 2002;

2005][Butz et al., 2004][Butz et al., 2007]). It can be noted that

the first LCS maintained separate GA populations per action

[Holland & Reitman, 1978] (see [Wilson, 1985] for a similar

scheme).

The degree of symmetry within the state-action-reward space

across all problems is a continuum. As noted, running the GA in

niches of concurrently active rules identifies those whose

conditions overlap in the problem space. However, using the GA

in [A] means that any common structure in the problem space

discovered by a rule with one action must wait to be shared

through the appropriate mutation of its action. Otherwise it must

be rediscovered by the GA for rules with another action(s). As

the degree of symmetry in the problem increases, so the

potentially negative effect of using the GA in [A] on the search

process increases.

This paper proposes a change in the standard rule structure to

address the issue and demonstrates it using a slightly simplified

version of XCS, termed YCS [Bull, 2005].

2 YCS: A SIMPLE ACCURACY-BASED LCS

YCS is without internal memory, the rule-base consists of a

number (P) of condition-action rules in which the condition is a

string of characters from the traditional ternary alphabet {0,1,#}

and the action is represented by a binary string. Associated with

each rule is a predicted reward value (r), a scalar which indicates

the error () in the rule’s predicted reward and an estimate of the

average size of the niches in which that rule participates (). The

initial random population has these parameters initialized,

somewhat arbitrarily, to 10.

On receipt of an input message, the rule-base is scanned, and

any rule whose condition matches the message at each position

is tagged as a member of the current match set [M]. An action is

then chosen from those proposed by the members of the match

set and all rules proposing the selected action form an action set

[A]. XCS’s explore/exploit action selection scheme will be used

here. That is, on one cycle an action is chosen at random and on

the following the action with the highest average fitness-

weighted reward is chosen deterministically.

The simplest case of immediate reward R is considered here.

Reinforcement in YCS consists of updating the error, the niche

size estimate and then the reward estimate of each member of the

current [A] using the Widrow-Hoff delta rule with learning rate

:

j  j + (|R - rj| - j) (1)

rj  rj + (R - rj) (2)

j  j + (|[A]| - j) (3)

The original YCS employs two discovery mechanisms, a

panmictic (standard global) GA and a covering operator. On

each time-step there is a probability g of GA invocation. The GA

uses roulette wheel selection to determine two parent rules based

on the inverse of their error:

fj = (1 / (j
v
 + 1)) (4)

Here the exponent v enables control of the fitness pressure

within the system by facilitating tuneable fitness separation

under fitness proportionate selection (see [Bull, 2005] for

discussions). Offspring are produced via mutation (probability )

and crossover (single point with probability ), inheriting the

parents’ parameter values or their average if crossover is

invoked. Replacement of existing members of the rulebase is

global and uses roulette wheel selection based on estimated

niche size. If no rules match on a given time step, then a

covering operator is used which creates a rule with the message

as its condition (augmented with wildcards at the rate p#) and a

random action, which then replaces an existing member of the

rulebase selected as under the GA. Parameter updating and the

GA are not used on exploit trials.

Figure 1: Schematic of YCS as used here.

The niche GA mechanism used here is XCS’s time-based

approach under which each rule maintains a time-stamp of the

last system cycle upon which it was part of a GA (a development

of [Booker, 1989]). The GA is applied within the current action

set [A] when the average number of system cycles since the last

GA in the set is over a threshold GA. If this condition is met, the

GA time-stamp of each rule is set to the current system time, two

parents are chosen according to their fitness using standard

roulette-wheel selection, and their offspring are potentially

crossed and mutated, before being inserted into the rule-base as

described above.

YCS is therefore a simple accuracy-based LCS which

captures the fundamental characteristics of XCS: “[E]ach

classifier maintains a prediction of expected payoff, but the

classifier’s fitness is not given by the prediction. Instead the

fitness is a separate number based on an inverse function of the

classifier’s average prediction error” [Wilson, 1995] and a

“classifier’s deletion probability is set proportional to the [niche]

size estimate, which tends to make all [niches] have about the

same size, so that classifier resources are allocated more or less

equally to all niches” [ibid]. However, YCS does not include a

number of other mechanisms within XCS, such as niche-based

fitness sharing, which are known to have beneficial effects in

some domains (see [Butz et al., 2004]).

The pressure within XCS and its derivatives to evolve

maximally general rules over the problem space comes from the

triggered niche GA. Selection for reproduction is based upon the

accuracy of prediction, as described. Thus within a niche,

accurate rules are more likely to be selected. However, more

general rules participate in more niches as they match more

inputs. Rules which are both general and accurate therefore

typically reproduce the most: the more general and accurate, the

more a rule is likely to be selected. Any rule which is less

general but equally accurate will have fewer chances to

reproduce. Any rule which is over general will have more

chances to reproduce but a lower accuracy (see [Butz et al.,

2004] for detailed analysis).

Under the new rule representation scheme introduced here

each rule consists of a single condition and each possible action.

Associated with each action are the two parameters updated

according to equations 1 and 2:

Traditional rule – condition: action: reward: error: niche

New rule – condition: action1: reward1: error1: niche

action2: reward2: error2

action3: reward3: error3

 …

actionN: rewardN: errorN

All other processing remains the same as described but with

each action of each rule using its associated error and reward

parameters, e.g., in the GA. In this way, any symmetry is directly

exploitable by a single rule whilst still limiting the possibility for

recombining rules covering different parts of the problem space

since the GA is run in [A], as Wilson [1998] described. Any

action which is not correctly associated with the generalisation

over the problem space represented by the condition will have a

low accuracy and can be ignored in any post processing of rules

for knowledge discovery. The generalisation process of modern

LCS is implicitly extended to evolve rules which are accurate

over as many actions as possible since they will participate in

more niches. Note that the niche size estimate can become

noisier than in standard YCS/XCS as it is an estimate of the size

of [M]. Similarly, any effects from the potential maintenance of

inaccurate generalisations in some niches due to their being

accurate in other niches are not explored here. Initial results do

not indicate any significant disruption however.

3 EXPERIMENTATION

3.1 Symmetry

Following [Wilson, 1995], the multiplexer task is used in this

paper. These Boolean functions are defined for binary strings of

length l = k + 2k under which the first k bits index into the

remaining 2k bits, returning the value of the indexed bit. A

correct classification results in a payoff of 1000, otherwise 0. For

example, in the k=4 multiplexer the following traditional rules

form one optimal [M] (error and niche size not shown):

1111###############1: 1: 1000

1111###############1: 0: 0

Figure 2 shows the performance of YCS using the new

multi-action rule representation on the 20-bit multiplexer (k=4)

problem with P=1000, p#=0.6, =0.04, v=10, =0.5, GA=25 and

=0.2. After [Wilson, 1995], performance, taken here to mean

the fraction of correct responses, is shown from exploit trials

only, using a 50-point running average, averaged over twenty

runs. It can be seen that optimal performance is reached around

60,000 trials. Figure 2 also shows the average specificity of all

rules, taken here to mean the fraction of non-# bits in a

condition, for the LCS - the amount of generalization produced.

The maximally general solution to the 20-bit multiplexer has

specificity 5/20 = 0.25 and YCS can be seen to produce rule-

bases with an average specificity very close to the optimum. The

average error of rules can also be seen to decrease over time.

Figure 3 shows the performance of YCS using the traditional

rule representation with the same parameters. As can be seen,

optimal performance is not reliably reached in the allowed time.

Figure 4 shows the performance of the same system with

P=2000, with optimality reached around 60,000 trials (matching

that of XCS with the same equivalent parameters, e.g., [Butz et

al., 2004]). That is, with double the rule-base resource, the GA is

able to reliably (re)discover the problem structure in all [A] over

the same time period using the traditional rule representation.

Hence, in a problem with complete symmetry between [A], the

new rule representation presented here significantly improves the

efficiency of the GA.

3.2 Less Symmetry

To reduce the symmetry in the multiplexer in a simple way, an

extra bit can be added. Here an incorrect response becomes

sensitive to the value of the extra input bit: if it is set, the reward

is 500, otherwise it is 0. That is, using the new rule

representation, it is no longer possible for just one rule to use the

same generalisation over the input space to accurately predict the

reward for each action in a given [M]. The following traditional

rules represent one optimal [M]:

1111###############1#: 1: 1000

1111###############11: 0: 500

1111###############10: 0: 0

Figure 2: Performance of new rule representation.

Figure 3: Performance of traditional rule representation.

Figure 4: As Figure 3 but with larger population size.

Figure 5 shows how YCS is unable to solve the less

symmetrical 20-bit multiplexer using the new rule representation

with P=1000. Figures 6 and 7 show how the performance of

YCS with and without the new representation (respectively) is

optimal and roughly equal with P=2000. Note that the new

representation still only requires two rules per [M], as opposed to

three in the traditional scheme. However, although there is a

slight increase in learning speed with the new scheme, it is not

statistically significant (T-test, time taken to reach and maintain

optimality over 50 subsequent exploit cycles, p>0.05). Figures 8

and 9 show there is significant benefit (p≤0.05) from the new

representation when k=5, i.e., the harder 37-bit multiplexer

(P=5000).

3.3 Multiple Actions

Multiplexers are binary classification problems. To create a

multi-class/multi-action variant in a simple way the case where

the data bit is a ‘1’ is altered to require an action equal to the

value of the address bits for a correct response. In this way there

are 2k possible actions/classes. Under the new format with k=3,

one optimal [M] could be represented as the single rule:

111#######1: 7: 1000

 6: 0

 5: 0

 4: 0

 3: 0

 2: 0

 1: 0

 0: 0

Figures 10 and 11 show the performance of YCS with and

without the new representation (respectively) with k=3 and

P=2000. As can be seen, both representations are capable of

optimal performance with the parameters used but the new

representation learns significantly faster ((p≤0.05).

Figure 5: Performance of new scheme on less symmetrical

(LS) task.

Figure 6: As Figure 5 but with larger population size.

Figure 7: Performance of traditional rules on less

symmetrical task (vs. Figure 6).

Figure 8: Performance of new scheme on less symmetrical

multiplexer when k=5.

Figure 9: Performance of traditional rules on less

symmetrical multiplexer when k=5.

Figure 10: Performance of new scheme on multi-action task.

Figure 11: Performance of traditional rules on multi-action

task.

3.4 Imbalance

The frequency of state visitation is rarely close to uniform in

most reinforcement learning tasks. For example, in a spatial

maze navigation task, those states at or near a goal will typically

be visited more often than those states far from a goal. In data

mining, real-world data does not typically contain equal

examples of all cases of the underlying concept space - known as

the class imbalance problem, and often tackled through

under/over sampling. This bias of sampling the problem space

can cause difficulties in the production of accurate

generalisations since over general rules can come to dominate

niches due to their frequency of use (updating and reproduction)

in more frequently visited states. Orriols-Puig and Bernado

Mansilla [2008] introduced a heuristic specifically for (limited

to) binary classification tasks which dynamically alters the

learning rate ( and frequency of GA activity (GA) to address

the issue in accuracy-based LCS. They show improved learning

in both imbalanced multiplexers and well-known data sets.

The new rule representation would appear to have some

potential to address the issue of imbalance generally when there

is symmetry in the underlying problem space, i.e., both for

reinforcement learning and data mining. Since all actions are

maintained by all rules, information about all actions is

maintained in the population. Whilst over general conditions will

quickly emerge for the same reasons as for the traditional

representation, later in the search, the use and updating of the

correct actions for less frequently visited states will indicate their

true value and the GA will (potentially) adjust generalisations

appropriately. An imbalanced multiplexer (akin to [Orriols-Puig

& Bernado Mansilla, 2008]) can be created by simply

introducing a probabilistic bias in sampling action ‘1’ compared

to ‘0’. Figures 12 and 13 show the performance of YCS with and

without the new representation (respectively) with k=4, P=2000

and a bias of 80% (4:1). Exploit cycle testing remains unbiased,

as before. As can be seen, the new representation is able to cope

with the bias, whereas the equivalent traditional rule

representation is not. The same was generally found to be true

for various levels of bias, k, etc. (not shown).

Figure 12: Performance of new scheme on the imbalanced

task.

Figure 13: Performance of the traditional scheme on the

imbalanced task.

4 CONCLUSIONS & FUTURE WORK

This paper has proposed the use of rules which contain multiple

actions, maintaining accuracy and reward metrics for each

action. This somewhat minor alteration appears to provide

benefits over the traditional approach in a variety of scenarios.

Future work should also consider the new, general rule structure

proposed here with more complex representations such as real-

valued intervals (e.g., see [Stone & Bull, 2003]) or genetic

programming (e.g., see [Preen & Bull, 2013]), together with

delayed reward tasks.

Kovacs and Tindale [2013] have recently highlighted issues

regarding the niche GA, particularly with respect to overlapping

problems. They compare the performance of an accuracy-based

LCS with a global GA (see also [Bull, 2005]), a niche GA, and a

global GA which uses the calculated selective probabilities of

rules under a niche GA. The aim being to avoid the reduced

actual selection of accurate, general rules due to overlap within a

given niche. Using the 11-bit multiplexer (k=3) problem they

show a possible slight increase in performance from their new

scheme over the niche GA, with the global GA performing

worst. Their new scheme shows an increase in the number of

unique rules maintained compared to the niche GA and they

postulate this increase in rule diversity may explain the

suggested difference in performance. This seems likely given the

multiplexer does not contain any overlap. Note that Wilson

[1994] proposed using both a global and niche GA together “to

offset any inbreeding tendency” within niches. Since they used a

supervised form of XCS which only maintains the highest

reward entries of the state-action-reward map (UCS) [Bernado

Mansilla & Garrell, 2003], the exploitation of symmetry does not

help to explain their findings. The effect of the new

representation in overlapping problems remains to be explored.

The related use of multiple conditions per action, i.e., including

an OR relationship, may be a more appropriate approach for the

traditional (human readable) conjunctive representations of

ternary alphabet or interval rules where overlap may be most

significant.

REFERENCES

Bernado Mansilla, E. & Garrell, J. (2003) Accuracy-Based Learning

Classifier Systems: Models, Analysis and Applications to
Classification Tasks. Evolutionary Computation 11(3): 209-238.

Booker, L.B. (1985) Improving the Performance of Genetic Algorithms

in Classifier Systems. In J.J. Grefenstette (ed) Proceedings of the
First International Conference on Genetic Algorithms and their

Applications. Lawrence Erlbaum Associates, pp80-92.

Booker, L.B. (1989) Triggered Rule Discovery in Classifier Systems. In
J. Schaffer (ed) Proceedings of the Third International Conference

on Genetic Algorithms and their Applications. Morgan Kaufmann,

pp265-274.
Bull, L. (2002) On Accuracy-based Fitness. Soft Computing 6(3-4): 154-

161.

Bull, L. (2004)(ed) Applications of Learning Classifier Systems.
Springer.

Bull, L. (2005) Two Simple Learning Classifier Systems. In L. Bull & T.

Kovacs (eds) Foundations of Learning Classifier Systems. Springer,
pp63-90.

Bull, L. & Kovacs, T. (2005)(eds) Foundations of Learning Classifier

Systems. Springer.
Bull, L., Bernado Mansilla, E & Holmes, J. (2008)(eds) Learning

Classifier Systems in Data Mining. Springer.

Butz, M. (2006) Rule-based Evolutionary Online Learning Systems.
Springer.

Butz, M., Kovacs, T., Lanzi, P-L & Wilson, S.W. (2004) Toward a

Theory of Generalization and Learning in XCS. IEEE Transactions
on Evolutionary Computation 8(1): 28-46

Butz, M., Goldberg, D., Lanzi, P-L. & Sastry, K. (2007) Problem

solution sustenance in XCS: Markov chain analysis of niche support
distributions and the impact on computational complexity. Genetic

Programming and Evolvable Machines 8(1): 5-37

Fogarty, T.C. (1994) Co-evolving Co-operative Populations of Rules in
Learning Control Systems. In T.C. Fogarty (ed) Evolutionary

Computing. Springer, pp195-209.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems.
University of Michigan Press.

Holland, J.H. (1976) Adaptation. In R. Rosen & F.M. Snell (eds)

Progress in Theoretical Biology, 4. Academic Press, pp313-329.
Holland, J.H. & Reitman, J.H. (1978) Cognitive Systems Based in

Adaptive Algorithms. In Waterman & Hayes-Roth (eds) Pattern-

directed Inference Systems. Academic Press.
Kovacs, T. & Tindale, R. (2013) Analysis of the niche genetic algorithm

in learning classifier systems. In Proceedings of the Genetic and

Evolutionary Computation Conference. ACM Press, pp1069-1076.
Orriols-Puig, A. & Bernado Mansilla, E. (2008) Evolutionary Rule-based

Systems for Imbalanced Data Sets. Soft Computing 13(3): 213-225.

Preen, R. & Bull, L. (2013) Dynamical Genetic Programming in XCSF.
Evolutionary Computation 21(3): 361-388.

Stone, C. & Bull, L. (2003) For Real! XCS with Continuous-Valued

Inputs. Evolutionary Computation 11(3): 299-336
Sutton, R.S. & Barto, A.G. (1998) Reinforcement Learning. MIT Press.

Tammee, K., Bull, L. & Ouen, P. (2007) Towards Clustering with XCS.
In D. Thierens et al. (eds) Proceedings of the Genetic and

Evolutionary Computation Conference. ACM Press, pp1854-1860

Wilson, S.W. (1985) Knowledge Growth in an Artificial Animal. J.J.
Grefenstette (ed) Proceedings of the First International Conference

on Genetic Algorithms and their Applications. Lawrence Erlbaum

Associates, pp16-23.
Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System.

Evolutionary Computation 2(1):1-18.

Wilson, S.W. (1995) Classifier Fitness Based on Accuracy. Evolutionary
Computation 3(2):149-177.

Wilson, S.W. (1998) Generalization in the XCS Classifier System. In

Koza et al. (eds.) Genetic Programming 1998: Proceedings of the
Third Annual Conference. Morgan Kaufmann, pp322-334.

Wilson, S.W. (2002) Classifiers that Approximate Functions. Natural

Computing 1(2-3): 211-234.

