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Abstract.  Modern learning classifier systems typically exploit a 

niched genetic algorithm to facilitate rule discovery. When used 

for reinforcement learning, such rules represent generalisations 

over the state-action-reward space. Whilst encouraging maximal 

generality, the niching can potentially hinder the formation of 

generalisations in the state space which are symmetrical, or very 

similar, over different actions. This paper introduces the use of 

rules which contain multiple actions, maintaining accuracy and 

reward metrics for each action. It is shown that problem 

symmetries can be exploited, improving performance, whilst not 

degrading performance when symmetries are reduced. 12 

1 INTRODUCTION 

Learning Classifier Systems (LCS) [Holland, 1976] are rule-

based systems, where the rules are usually in the traditional 

production system form of “IF condition THEN assertion”. An 

evolutionary algorithm and/or other heuristics are used to search 

the space of possible rules, whilst another learning process is 

used to assign utility to existing rules, thereby guiding the search 

for better rules. LCS are typically used as a form of 

reinforcement learner, although variants also exist for supervised 

[Bernadó Mansilla & Garrell, 2003], unsupervised [Tammee et 

al., 2007] and function [Wilson, 2002] learning. Almost twenty 

years ago, Stewart Wilson introduced a form of LCS in which 

rule utility is calculated solely by the accuracy of the predicted 

consequences of rule assertions/actions – the “eXtended 

Classifier System” (XCS) [Wilson, 1995]. Importantly, XCS 

makes a clear connection between LCS and modern 

reinforcement learning (see [Sutton & Barto, 1998]): XCS uses a 

genetic algorithm (GA) [Holland, 1975] to discover regularities 

in the problem thereby enabling generalisations over the 

complete state-action-reward space. It has been found able to 

solve a number of well-known problems optimally (e.g., see 

[Butz, 2006]). Modern LCS, primarily XCS and its derivatives, 

have been applied to a number of real-world problems (e.g., see 

[Bull, 2004]), particularly data mining (e.g., see [Bull et al., 

2008]), to great effect. Formal understanding of modern LCS has 

also increased in recent years (e.g., see [Bull & Kovacs, 2005]). 

XCS uses a niched GA, that is, it runs the GA over rules 

which are concurrently active. Initially, following [Booker, 

1985] (see also [Fogarty, 1994]), the GA was run in the match 

set [M], i.e., the subset of rules whose condition matches the 

current state. The primary motivation for restricting the GA in 

this way is to avoid the recombination of rule conditions which 

generalise over very different areas of the problem space. Wilson 
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[1998] later increased the niching to action sets [A], i.e., the 

subset of [M] whose action matches the chosen output of the 

system. Wilson correctly highlighted that for tasks with 

asymmetrical generalisations per action, the GA would still have 

the potential to unhelpfully recombine rules working over 

different sub-regions of the input space unless it is moved to [A]. 

Using two simple benchmark tasks, he didn’t show significant 

changes in performance but did show a decrease in the number 

of unique rules maintained when some asymmetry existed from 

the use in [A]. Modern XCS uses the [A] form of GA, which has 

been studied formally in various ways (e.g., see [Bull, 2002; 

2005][Butz et al., 2004][Butz et al., 2007]). It can be noted that 

the first LCS maintained separate GA populations per action 

[Holland & Reitman, 1978] (see [Wilson, 1985] for a similar 

scheme). 

The degree of symmetry within the state-action-reward space 

across all problems is a continuum. As noted, running the GA in 

niches of concurrently active rules identifies those whose 

conditions overlap in the problem space. However, using the GA 

in [A] means that any common structure in the problem space 

discovered by a rule with one action must wait to be shared 

through the appropriate mutation of its action. Otherwise it must 

be rediscovered by the GA for rules with another action(s). As 

the degree of symmetry in the problem increases, so the 

potentially negative effect of using the GA in [A] on the search 

process increases.  

This paper proposes a change in the standard rule structure to 

address the issue and demonstrates it using a slightly simplified 

version of XCS, termed YCS [Bull, 2005].  

2 YCS: A SIMPLE ACCURACY-BASED LCS 

YCS is without internal memory, the rule-base consists of a 

number (P) of condition-action rules in which the condition is a 

string of characters from the traditional ternary alphabet {0,1,#} 

and the action is represented by a binary string. Associated with 

each rule is a predicted reward value (r), a scalar which indicates 

the error () in the rule’s predicted reward and an estimate of the 

average size of the niches in which that rule participates (). The 

initial random population has these parameters initialized, 

somewhat arbitrarily, to 10.  

On receipt of an input message, the rule-base is scanned, and 

any rule whose condition matches the message at each position 

is tagged as a member of the current match set [M]. An action is 

then chosen from those proposed by the members of the match 

set and all rules proposing the selected action form an action set 

[A]. XCS’s explore/exploit action selection scheme will be used 

here. That is, on one cycle an action is chosen at random and on 

the following the action with the highest average fitness-

weighted reward is chosen deterministically. 



The simplest case of immediate reward R is considered here. 

Reinforcement in YCS consists of updating the error, the niche 

size estimate and then the reward estimate of each member of the 

current [A] using the Widrow-Hoff delta rule with learning rate 

: 

 

j  j + ( |R - rj| - j )  (1) 

 

rj  rj + ( R - rj )    (2) 

 

j  j + ( |[A]| - j )   (3) 

 

The original YCS employs two discovery mechanisms, a 

panmictic (standard global) GA and a covering operator. On 

each time-step there is a probability g of GA invocation. The GA 

uses roulette wheel selection to determine two parent rules based 

on the inverse of their error:  

 

fj  =  ( 1 / (j
v
 + 1) )    (4) 

 

Here the exponent v enables control of the fitness pressure 

within the system by facilitating tuneable fitness separation 

under fitness proportionate selection (see [Bull, 2005] for 

discussions). Offspring are produced via mutation (probability ) 

and crossover (single point with probability ), inheriting the 

parents’ parameter values or their average if crossover is 

invoked. Replacement of existing members of the rulebase is 

global and uses roulette wheel selection based on estimated 

niche size. If no rules match on a given time step, then a 

covering operator is used which creates a rule with the message 

as its condition (augmented with wildcards at the rate p#) and a 

random action, which then replaces an existing member of the 

rulebase selected as under the GA. Parameter updating and the 

GA are not used on exploit trials. 

 

 

 
 

Figure 1: Schematic of YCS as used here. 

 

The niche GA mechanism used here is XCS’s time-based 

approach under which each rule maintains a time-stamp of the 

last system cycle upon which it was part of a GA (a development 

of [Booker, 1989]). The GA is applied within the current action 

set [A] when the average number of system cycles since the last 

GA in the set is over a threshold GA. If this condition is met, the 

GA time-stamp of each rule is set to the current system time, two 

parents are chosen according to their fitness using standard 

roulette-wheel selection, and their offspring are potentially 

crossed and mutated, before being inserted into the rule-base as 

described above. 

YCS is therefore a simple accuracy-based LCS which 

captures the fundamental characteristics of XCS: “[E]ach 

classifier maintains a prediction of expected payoff, but the 

classifier’s fitness is not given by the prediction. Instead the 

fitness is a separate number based on an inverse function of the 

classifier’s average prediction error” [Wilson, 1995] and a 

“classifier’s deletion probability is set proportional to the [niche] 

size estimate, which tends to make all [niches] have about the 

same size, so that classifier resources are allocated more or less 

equally to all niches” [ibid]. However, YCS does not include a 

number of other mechanisms within XCS, such as niche-based 

fitness sharing, which are known to have beneficial effects in 

some domains (see [Butz et al., 2004]). 

The pressure within XCS and its derivatives to evolve 

maximally general rules over the problem space comes from the 

triggered niche GA. Selection for reproduction is based upon the 

accuracy of prediction, as described. Thus within a niche, 

accurate rules are more likely to be selected. However, more 

general rules participate in more niches as they match more 

inputs. Rules which are both general and accurate therefore 

typically reproduce the most: the more general and accurate, the 

more a rule is likely to be selected. Any rule which is less 

general but equally accurate will have fewer chances to 

reproduce. Any rule which is over general will have more 

chances to reproduce but a lower accuracy (see [Butz et al., 

2004] for detailed analysis).  

Under the new rule representation scheme introduced here 

each rule consists of a single condition and each possible action. 

Associated with each action are the two parameters updated 

according to equations 1 and 2: 

 

Traditional rule – condition: action: reward: error: niche 

 

New rule –  condition: action1: reward1: error1: niche 

action2: reward2: error2 

action3: reward3: error3 

    … 

actionN: rewardN: errorN 

 

All other processing remains the same as described but with 

each action of each rule using its associated error and reward 

parameters, e.g., in the GA. In this way, any symmetry is directly 

exploitable by a single rule whilst still limiting the possibility for 

recombining rules covering different parts of the problem space 

since the GA is run in [A], as Wilson [1998] described. Any 

action which is not correctly associated with the generalisation 

over the problem space represented by the condition will have a 

low accuracy and can be ignored in any post processing of rules 

for knowledge discovery. The generalisation process of modern 

LCS is implicitly extended to evolve rules which are accurate 

over as many actions as possible since they will participate in 

more niches. Note that the niche size estimate can become 



noisier than in standard YCS/XCS as it is an estimate of the size 

of [M]. Similarly, any effects from the potential maintenance of 

inaccurate generalisations in some niches due to their being 

accurate in other niches are not explored here. Initial results do 

not indicate any significant disruption however.     

3 EXPERIMENTATION  

 

3.1 Symmetry 

Following [Wilson, 1995], the multiplexer task is used in this 

paper. These Boolean functions are defined for binary strings of 

length l = k + 2k under which the first k bits index into the 

remaining 2k bits, returning the value of the indexed bit. A 

correct classification results in a payoff of 1000, otherwise 0. For 

example, in the k=4 multiplexer the following traditional rules 

form one optimal [M] (error and niche size not shown): 

 

1111###############1: 1: 1000 

1111###############1: 0: 0 

 

Figure 2 shows the performance of YCS using the new 

multi-action rule representation on the 20-bit multiplexer (k=4) 

problem with P=1000, p#=0.6, =0.04, v=10, =0.5, GA=25 and 

=0.2. After [Wilson, 1995], performance, taken here to mean 

the fraction of correct responses, is shown from exploit trials 

only, using a 50-point running average, averaged over twenty 

runs. It can be seen that optimal performance is reached around 

60,000 trials. Figure 2 also shows the average specificity of all 

rules, taken here to mean the fraction of non-# bits in a 

condition, for the LCS - the amount of generalization produced. 

The maximally general solution to the 20-bit multiplexer has 

specificity 5/20 = 0.25 and YCS can be seen to produce rule-

bases with an average specificity very close to the optimum. The 

average error of rules can also be seen to decrease over time. 

Figure 3 shows the performance of YCS using the traditional 

rule representation with the same parameters. As can be seen, 

optimal performance is not reliably reached in the allowed time. 

Figure 4 shows the performance of the same system with 

P=2000, with optimality reached around 60,000 trials (matching 

that of XCS with the same equivalent parameters, e.g., [Butz et 

al., 2004]). That is, with double the rule-base resource, the GA is 

able to reliably (re)discover the problem structure in all [A] over 

the same time period using the traditional rule representation. 

Hence, in a problem with complete symmetry between [A], the 

new rule representation presented here significantly improves the 

efficiency of the GA. 

 

3.2 Less Symmetry 

To reduce the symmetry in the multiplexer in a simple way, an 

extra bit can be added. Here an incorrect response becomes 

sensitive to the value of the extra input bit: if it is set, the reward 

is 500, otherwise it is 0. That is, using the new rule 

representation, it is no longer possible for just one rule to use the 

same generalisation over the input space to accurately predict the 

reward for each action in a given [M]. The following traditional 

rules represent one optimal [M]: 

 

1111###############1#: 1: 1000 

1111###############11: 0: 500 

1111###############10: 0: 0 

 
 

Figure 2: Performance of new rule representation. 

 
Figure 3: Performance of traditional rule representation. 

 

 
Figure 4: As Figure 3 but with larger population size. 



Figure 5 shows how YCS is unable to solve the less 

symmetrical 20-bit multiplexer using the new rule representation 

with P=1000. Figures 6 and 7 show how the performance of 

YCS with and without the new representation (respectively) is 

optimal and roughly equal with P=2000. Note that the new 

representation still only requires two rules per [M], as opposed to 

three in the traditional scheme. However, although there is a 

slight increase in learning speed with the new scheme, it is not 

statistically significant (T-test, time taken to reach and maintain 

optimality over 50 subsequent exploit cycles, p>0.05). Figures 8 

and 9 show there is significant benefit (p≤0.05) from the new 

representation when k=5, i.e., the harder 37-bit multiplexer 

(P=5000). 

 

3.3 Multiple Actions 

Multiplexers are binary classification problems. To create a 

multi-class/multi-action variant in a simple way the case where 

the data bit is a ‘1’ is altered to require an action equal to the 

value of the address bits for a correct response. In this way there 

are 2k possible actions/classes. Under the new format with k=3, 

one optimal [M] could be represented as the single rule: 

 

 

111#######1: 7: 1000 

       6: 0 

       5: 0 

       4: 0 

       3: 0 

       2: 0 

       1: 0     

       0: 0 

 

 

Figures 10 and 11 show the performance of YCS with and 

without the new representation (respectively) with k=3 and 

P=2000. As can be seen, both representations are capable of 

optimal performance with the parameters used but the new 

representation learns significantly faster ((p≤0.05). 

 

 

 
Figure 5: Performance of new scheme on less symmetrical 

(LS) task. 

 
Figure 6: As Figure 5 but with larger population size. 

 
Figure 7: Performance of traditional rules on less 

symmetrical task (vs. Figure 6). 

 
Figure 8: Performance of new scheme on less symmetrical 

multiplexer when k=5. 



 
Figure 9: Performance of traditional rules on less 

symmetrical multiplexer when k=5. 

 
Figure 10: Performance of new scheme on multi-action task. 

 
Figure 11: Performance of traditional rules on multi-action 

task. 

3.4 Imbalance 

The frequency of state visitation is rarely close to uniform in 

most reinforcement learning tasks. For example, in a spatial 

maze navigation task, those states at or near a goal will typically 

be visited more often than those states far from a goal. In data 

mining, real-world data does not typically contain equal 

examples of all cases of the underlying concept space - known as 

the class imbalance problem, and often tackled through 

under/over sampling. This bias of sampling the problem space 

can cause difficulties in the production of accurate 

generalisations since over general rules can come to dominate 

niches due to their frequency of use (updating and reproduction) 

in more frequently visited states. Orriols-Puig and Bernado 

Mansilla [2008] introduced a heuristic specifically for (limited 

to) binary classification tasks which dynamically alters the 

learning rate ( and frequency of GA activity (GA) to address 

the issue in accuracy-based LCS. They show improved learning 

in both imbalanced multiplexers and well-known data sets. 

The new rule representation would appear to have some 

potential to address the issue of imbalance generally when there 

is symmetry in the underlying problem space, i.e., both for 

reinforcement learning and data mining. Since all actions are 

maintained by all rules, information about all actions is 

maintained in the population. Whilst over general conditions will 

quickly emerge for the same reasons as for the traditional 

representation, later in the search, the use and updating of the 

correct actions for less frequently visited states will indicate their 

true value and the GA will (potentially) adjust generalisations 

appropriately. An imbalanced multiplexer (akin to [Orriols-Puig 

& Bernado Mansilla, 2008]) can be created by simply 

introducing a probabilistic bias in sampling action ‘1’ compared 

to ‘0’. Figures 12 and 13 show the performance of YCS with and 

without the new representation (respectively) with k=4, P=2000 

and a bias of 80% (4:1). Exploit cycle testing remains unbiased, 

as before. As can be seen, the new representation is able to cope 

with the bias, whereas the equivalent traditional rule 

representation is not. The same was generally found to be true 

for various levels of bias, k, etc. (not shown).  

 

 

 

 
Figure 12: Performance of new scheme on the imbalanced 

task.  



 
Figure 13: Performance of the traditional scheme on the 

imbalanced task. 

4 CONCLUSIONS & FUTURE WORK 

This paper has proposed the use of rules which contain multiple 

actions, maintaining accuracy and reward metrics for each 

action. This somewhat minor alteration appears to provide 

benefits over the traditional approach in a variety of scenarios. 

Future work should also consider the new, general rule structure 

proposed here with more complex representations such as real-

valued intervals (e.g., see [Stone & Bull, 2003]) or genetic 

programming (e.g., see [Preen & Bull, 2013]), together with 

delayed reward tasks. 

Kovacs and Tindale [2013] have recently highlighted issues 

regarding the niche GA, particularly with respect to overlapping 

problems. They compare the performance of an accuracy-based 

LCS with a global GA (see also [Bull, 2005]), a niche GA, and a 

global GA which uses the calculated selective probabilities of 

rules under a niche GA. The aim being to avoid the reduced 

actual selection of accurate, general rules due to overlap within a 

given niche. Using the 11-bit multiplexer (k=3) problem they 

show a possible slight increase in performance from their new 

scheme over the niche GA, with the global GA performing 

worst. Their new scheme shows an increase in the number of 

unique rules maintained compared to the niche GA and they 

postulate this increase in rule diversity may explain the 

suggested difference in performance. This seems likely given the 

multiplexer does not contain any overlap. Note that Wilson 

[1994] proposed using both a global and niche GA together “to 

offset any inbreeding tendency” within niches. Since they used a 

supervised form of XCS which only maintains the highest 

reward entries of the state-action-reward map (UCS) [Bernado 

Mansilla & Garrell, 2003], the exploitation of symmetry does not 

help to explain their findings. The effect of the new 

representation in overlapping problems remains to be explored. 

The related use of multiple conditions per action, i.e., including 

an OR relationship, may be a more appropriate approach for the 

traditional (human readable) conjunctive representations of 

ternary alphabet or interval rules where overlap may be most 

significant. 
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