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Abstract. This paper introduces a novel approach for modeling ex-
pressive timing performance by combining cognitive, symbolic and
graphic representations of rhythm spaces with Lindenmayer systems,
originally conceived to model the evolution of biological cell struc-
tures and plant growth. Logo-turtle abstractions are proposed in order
to generate expressive rhythmic performances defined by rule-based
displacements through perceptual rhythm categories.

1 INTRODUCTION
In music performance, aspects such as rhythm, pitch, loudness, tim-
bre and memory contribute to our perception of expressiveness [28].
However, the expressive parameters and variables used may vary
from one performer to another even within the same piece [2], which
is a common cause of disagreement when listeners compare judg-
ments of expressiveness [27]. Can we then find an intrinsic defini-
tion of expressiveness? i.e. without references to an external score.
Are there perceptual constraints on expressiveness? And if so, would
it be possible to use them to model performance?
Within the abundant literature on music performance modeling [35]
different approaches can be found when defining expressiveness
[18]. Davies [7] defines it as the emotional qualities of music per-
ceived by the listener. London [22] identifies the amount of ex-
pressiveness the listener expects from the performer. Alternatively,
Clarke [6] instead approaches it through the deviations of the perfor-
mance from notated score durations in the score. And, in contrast,
Desain and Honing [8] define expression in terms of a performance
and its structural description, i.e., an attempt to define expression in-
trinsically, independent of a score [11].
For the purpose of the current study we will define expressiveness as
the deviation from the most frequently heard version of a constituent
musical element. This is a reformulation based on the intrinsic defi-
nition of expressiveness that was mentioned before.
Previous research [16, 28] shows that even when listeners require no
explicit training to perceive expressive timing, memory [14, 33] and
expectation [17] play a fundamental role when recognising nuances
in music timing [15]. We can therefore hypothesise that the range of
expectations and uncertainty in music will be partially determined by
our previous exposure to it.
Understanding how our expectations to expressiveness work is a rel-
evant aspect to model the relation between a listener and the music
material the listener is exposed to. By studying this process we can
find out whether certain domains of expressiveness such as timing
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can be categorised and following our previous definition, model how
expressive music could sound to a listener. Using this knowledge we
may be able to generate automatic expressive performances to be
recognised by the listeners as such.
An example of this creative approach to the expectations of listeners
can be found in the way instrumentalists use ritardandi. According
to Honing [13] performers make use of non-linear models to con-
vey expressiveness using different sorts of ritardandi. Non-linearity
allows that a player may perform the same music piece differently
each time, instead of repeating the same expressive ”formula” on
each of the performances. These non-linear models can be seen then
as a communicative resource to refer to a listener’s memory and ex-
pectations but also as a way of producing slight deviations adding a
certain degree of novelty within the listening and performance expe-
rience.
When defining a model of expressive performance we must reckon
incorporating within the model the possibility to produce non lin-
ear variations within the deviations, defined by the perceptual con-
straints. This versatility in expressive productions of the model is
necessary not only to attend the non linearity in performance but also
to respond to our relation to expectancy and uncertainty as listeners.
As an approach to model expressive performances within different
rhythm patterns and mental representations we propose combining
symbolic and graphic representations of rhythm spaces with Linden-
mayer systems and logo-turtle abstractions. The model proposed can
be used as an exploratory tool of expressive timing for computational
creativity music generation.
This paper is divided in the following sections: In §1 an approach
to understanding expressiveness as deviations within different per-
ceptual categories is introduced. In §2 a study done by Desain and
Honing [10] to collect empirical data on the formation of the rhyth-
mic categories is presented. In §3 a review on Lindenmayer systems
and how they can be approached within music applications is intro-
duced. §4 connects the material presented in §2 and §3 proposes a
preliminary implementation of the system. In §5 a summary of the
previous sections and relevance of this approach is given.

2 RHYTHM CATEGORIES AND EXPRESSIVE
TIMING

As explained in §1, factors such as music exposure and music pre-
disposition contribute to our perception of rhythm and consequently
in how this affects our relation to musical expressiveness.
In the domain of rhythm, expressive timing is defined by the devi-
ations, or nuances, that a performer may introduce in contrast to a
metronomic interpretation of a rhythm. The ability of listeners to dis-
till a discrete, symbolic rhythmic pattern from a series of continuous



intervals” [15] requires understanding how the perception of rhythm
occurs.
Rhythmic perceptual categories then can be understood as mental
clumps by which listeners can mentally relate expressive timing to
a rhythmic pattern after having effectively detected it [15]; e.g., the
rhythmic pattern that would be symbolically transcribed while doing
a music dictation. Fig. 1 shows the process of categorising a possi-
ble sequence of expressive timing events into a symbolic representa-
tion (perception) and a possible production, or interpretation of the
symbolic material while performing it (production). Different inter-
pretations, or performance renditions, of the symbolic representation
(musical score) are possible depending on the performer aesthetics,
experience and motor skills with their instruments [3].
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Figure 1. Difference between the perception as a symbolic representation
and the production of it within a performance. Adapted from Honing (2013)

[15].

Categorization has been studied extensively using behavioral
and perceptual experiments [5, 10]. These aimed to answer how a
continuous domain such as time is perceived and categorized, as
well as represented symbolically in music notation. The two main
hypotheses can be resumed in the studies done by Clarke [5] and
Desain and Honing [10].
Clarke [5] did two experiments to prove the hypothesis that listeners
judge deviations as an element out of the categorical domain. From
these experiments it was concluded that rhythm is not perceived
on a continuous scale but as rhythmic categories that function
as a reference relative to which the deviations in timing can be
appreciated.
Desain and Honing [10] did an empirical study using a large set of
temporal patterns as stimuli to musically trained participants. By
giving an identification task, rhythmic categories were collected
through a perceptual experiment in which rhythm on a continuous
scale (see example in the top panel op Fig. 1) had to be notated in
music notation (see example in bottom panel of Fig. 1). Thus, the
participants would have to notate what they heard and guess what
would be written in the score a drummer playing that sequence
would have in front of him. Repeating this process with every pos-
sible combination of four onset rhythms of a one second duration,
the authors were able to sample and obtain the perceived rhythmic
categories from the whole rhythm space.
Fig. 2 shows two sample rhythms and their location in a chrono-
topological map or rhythm chart. Each of the sides of the triangle
represent an inter-onset interval in a rhythm of four onsets. Fig. 3
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Figure 2. Two sample rhythms (S1 and S2; left panel), and their location
in a chronotopological map or rhythm chart (right panel). Adapted from

Honing (2013) [15] ”

represents a chronotopological map obtained after collecting all the
answers belonging to all possible variations of four stimuli within
one second (60 beats per minute). Inside this triangle different
rhythm categories are demarcated and tagged with a different letter.
The black dots represent the modal points which are the points
of greatest agreement among the participants when symbolically
representing the sequence being heard; which is also the point in
which entropy, H = 0. When scaled to the unit, the boundaries of
each of the categories would represent the values in which H = 1.

As it can be observed in Fig. 3, the most frequently identified
pattern (marked as modal in Fig. 3) is not aligned with the metro-
nomical interpretation of the same rhythmic pattern. This suggests
that deviations within a category do not confirm Clarke’s definition
of timing being deviations from integer-related durations as notated
in a score. Instead, it suggests that the most commonly perceived
rendition of a rhythm (modal) is actually not integer-related, but
contains a timing pattern (a slight speeding up and slowing down),
a rhythmic pattern that seems a more appropriate reference to use
than the metronomical version. The latter, in fact, might well be
perceived as expressive. [15].
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Figure 3. Rhythmic categories, demarcated by black lines in a
chronotopological map. Each point in the map is a rhythm of four onsets, i.e.

three inter-onset intervals with a total duration of one second; Perceived
(modal) and integer related (metronomical) centroids are marked by dots and

crosses, respectively; Letters refer to rhythmic categories annotated in the
legend. Adapted from Honing (2013) [15]



The results obtained after these experiments [10] explain why tra-
ditional software tools in which expressive timing is treated as a re-
sult of, e.g., a rounding-off algorithm is often limited in expression
and easily differentiated from non-machine generated rhythm [35].
In this study [10] it was also observed that several factors influence
the perception of a rhythmic pattern: such as tempo (on this study,
specifically, 40, 60 or 90 beats per minute), meter (duple, triple) and
dynamic accent. These factors affect therefore the graphical repre-
sentation of the rhythmic categories, varying the shape and size of
each category (e.g. the 40 BPM and duple rhythm category will be
different than the 40 BPM and triple). However, at the moment we
will focus solely on the temporal aspects of rhythm.

3 LINDENMAYER SYSTEMS
Finding a relation between formal grammars and music syntax has
been researched since the publication of the General Theory of Tonal
Music [20], a theory inspired by Chomsky’s formalization of lan-
guage [4]. One of the main advantages of Chomsky’s formalization
is that its approach to the grammar is semantically agnostic. In it a
generative grammar G is defined by the 4-tuple:

G = (N,S, ω, p) (1)

• N being a finite of nonterminal symbols (or variables) that can be
replaced.

• S being a set of terminal symbols (constants) that is disjoint from
N .

• ω being the initial axiom, is a string of symbols from N that de-
fines the initial state of the system.

• p being a set of production rules that define how variables can
be replaced by variables and/or constants having the axiom as the
initial state and applying the productions in iterations.

In 1968, Lindenmayer proposed a similar mathematical formalism
for modeling cell development and plant growth, in which a structure,
represented by symbols within a defined alphabet, develops over time
via string-rewriting [21]. This approach has been applied in many
different fields such as computer graphics, architecture, artificial life
models, data compression and music. The essential difference be-
tween Chomsky grammars and Lindenmayer systems (L-systems) is
that in each L-system derivation (i.e. the application of the produc-
tion rules to re-write the string) all symbols are replaced simulta-
neously rather than sequentially, which is what happens in normal
Chomsky grammars.
In L-systems, structure development is done in a declarative man-
ner according to a set of rules (pre-defined or inferred), each of
them taking care of a separate step of the process. There are three
types of rules an L-system may use: An essential difference between
Chomsky’s grammar and Lindenmayer systems (L-system) is that
L-systems allow a parallel production of the grammar (instead of se-
quential) [31], consequently a word might have all letters replaced at
once.
L-systems permit therefore the development of a structure of any
kind being represented by a string of symbols within an alphabet.
This development is done in a declarative manner according to a set
of rules (pre-defined or inferred), each of them taking care of a sepa-
rate step of the process.
In musical L-systems we can differentiate among three different steps
or types of rules [23] :

• Production rules: Each symbol is replaced by one or more symbols
according to the production rules, which determine the structural

development of the model. The production rules are the key of the
development of the string and the richness and variety of the out-
put depends on them. Choosing therefore a set of rules or another
will define the type and output of the L-system being used.

• Decomposition rules: Decomposition rules allow ’unwrapping’ a
certain symbol, that is meant to represent a compound structural
module, into a set of other symbols or substructures that make this
module. Decomposition rules are always context-free and effec-
tively Chomsky productions [23].

• Interpretation rules: After each derivation, interpretation rules
must be applied to be able to parse and translate the string out-
put to the desired field and parameter being studied. This parsing
and translation is done, as in context-free Chomsky productions,
recursively after each derivation. The expressive generative model
will focus on these interpretation rules; their mapping is what al-
lows for versatility and richness, while retaining the system’s sim-
plicity.

As an example we can study a simple implementation of a Fibonacci
sequence using context free L-systems and having, as interpretation
rules, the generation of different rhythmic sequences:

• Axiom:
ω : A

• Production rules:
p1 : A→ B,
p2 : B→ AB

• Derivations: We will obtain the following results for derivation
steps n:
n = 0: B
n = 1: AB
n = 2: BAB
n = 3: ABBAB
n = 4: BABABBAB
n = 5: ABBABBABABBAB

• Interpretation rules:
A : quarternote, ♩
B : halfnote, 

• Final result:
n = 0: 
n = 1: ♩
n = 2: ♩
n = 3: ♩♩
n = 4: ♩♩♩
n = 5: ♩♩♩♩♩

L-systems are categorized according to the production rules they
use. These can be classified according to the appliance of the produc-
tion rules, but each of the grammars can be combined with others.
According to Manousakis [23], L-system grammars can be: context-
free (OL systems), context-sensitive (IL systems), deterministic (DL
systems), non-deterministic (stochastic) NDL,bracketed, propagative
(PL systems), non-propagative, with tables (TL system), parametric
or with extensions (EL system).
Originally conceived as a formal theory of development, L-systems
were extended by Lindenmayer and Prusinkiewiz [31] to describe
more complex plants and branching structures; they also worked on
implementing graphical representations of fractals and living organ-
isms.
Prusinkiewicz’s approach was based on a graphical interpretation of
L-systems by using the logo-style turtle. The turtle movement in a



two dimensions map interpretation consists on a triplet (x, y, α) that
includes the Cartesian coordinates (x, y) and the angle (α) that di-
rects its facing. Once the step size (d) and the angle (α) are given the
turtle is directed by following rules such as:

• F : Move forward and draw a line. The line should be drawn
between (x, y) and (x′, y′). (x′, y′) is defined then by: x′ =
x+ dcosα and y′ = y + dsinα

• f : Move forward without drawing a line
• + : Turn left by angle δ. The turtle should point then according to

(x, y, α+ δ)
• - : Turn right by angle δ. The turtle should point then according to

(x, y, α− δ)

4 USING L-SYSTEMS TO GENERATE
EXPRESSIVENESS

In 1986, Prusinkiewicz [30] proposed a musical application of L-
systems. Since then, several musical approaches have been proposed
with purposes such as e.g. composing music [34], generating real
time evolving audio synthesis and music structures in different time
levels of a composition [23, 24, 25] or parsing music structure from
scores [26]. However, to our knowledge, L-systems have not being
approached yet in combination with perceptual constraints.
A main advantage of incorporating L-systems into a perceptual
model of expressiveness is that since its semantic relation to the mod-
eled structure is symbolic, ”there is no topological similarity or con-
tiguity between the sign and the signifier, but only a conventional ar-
bitrary link” [23]. Due to the versatility in the production or mapping
levels within different expressive categories, in any structural or gen-
erative level, a parallel development of its symbols (production) will
contribute to the generation of expressiveness in music (e.g. com-
bining loudness or timbre with expressive timing). This property is
essential and the main motivation to use the proposed formalism in-
stead of other algorithmic approaches. By using L-systems we can
attend several perceptual categories simultaneously and define or in-
fer rules according to the structure obtained from the musical content.

4.1 Implementation
A practical implementation based on the above theoretical frame-
work is currently being developed. The purpose of this implemen-
tation is to verify that the hypothesis proposed can be empirically
validated as a cognitive exploratory framework and a computational
model of generative expressive performance (or musical composi-
tion). We therefore focus on using the rhythmic categories as a con-
ceptual space through which a ’logo-turtle’ will move to generate
different sorts of expressive timing within a musical bar consisting
on four onsets and according to the prediction rules previously de-
fined by our L-system. Due to the versatility within the different steps
of L-systems explained in §3, several approaches can be further de-
veloped. In the following subsections a possible implementation is
presented within the different phases necessary to attend a possible
generative system:

4.1.1 Geometrical approximation

In an implementation scenario, a first issue when using data from
perceptual rhythm categories, is how to approach the complex ge-
ometrical shapes of each category. While finding a fitting function
through each of the samples that forms the geometrical shapes it is

a more precise solution, a simplistic alternative can be the approxi-
mation of the complex geometrical shapes to simple ones.Since the
shape of the rhythm categories the simplest geometrical forms that
we can visually approximate them to are the circumference or the
ellipse.Since we aim to cover as much space of each category as pos-
sible, an ellipse seems as the best approximation.
Obtaining measurements manually from the graphical representa-
tions of the categories [10], we have defined the position in the geo-
metrical space as well as dimensions (axis lengths) and angle inclina-
tion of each of the ellipses being used. The result of this hand-aligned
approximation to ellipses for all rhythms with a duration of one sec-
ond (cf. 60 BPM) can be observed in the upper panel of Fig. 4.

4.1.2 Object Mapping

The formalisation of L-system mapping typologies has been first
introduced by Manousakis[23]. Following this formalisation, each
rhythmic category can be represented by a letter of the L-system dic-
tionary and this abstraction can be used simultaneously with different
production rules attending different expressive aspects (in addition
to rhythm). From a generative perspective of a compositional sys-
tem, once we have mapped the different rhythm categories we can
define some production rules to alternate (or ”jump”) from a rhythm
category to another generating different rhythmic patterns.

4.1.3 Movement mapping (relative spatial mapping)

Another strategy is to use a direct logo-style mapping, mapping the
turtle’s trajectory in 2D spaces to a path within a perceptual category.
We’ll use a simple L-system with a 3-letter alphabet, interpreted as
movement and angle commands, and a single production rule. Lets
illustrate this with an example:

• Alphabet:
V : F , +, −

• Production rules:
p1 : F→ F+F−−F+F

• Axiom:
ω : F

• Derivations:
n = 0: F+F−−F+F
n = 1: F+F−−F+F+F+F−−F+F−−F+F−−F+F+F+F−−F+F

• Interpretation rules:
F : move forward with a distance x
+ : turn right with angle θ
− : turn left with angle θ

According to the example presented, in the first derivation, the
turtle abstraction will advance one step, turn right, advance another
step, turn twice left, advance one step more, turn right and advance
another step. In order to warranty that the turtle will respect the size
of the category approximation (ellipse in this case) a normalisation
of the distance from the centre of the ellipse to the perimeter of
it is being applied. Considering that the distance advanced by the
turtle on each step might be determined by the degree of expressive
deviation we want our system to produce the production possibilities
are greatly determined by the amount of derivations and that the
expressiveness and musical style coherence will depend on the
interpretation rules being used. For instance, it would not be sensible
to allow the system to have very big distance values on each of the
steps to be advanced when the music style being reproduced would



not allow to have much rubato. This step distance can be easily set
by adjusting the distance variable x; thus the same L-system can
produce quite different results. In Fig. 4 it is shown an example of
a hypothetical trajectory of expressiveness generation (using the
turtle) through different points of a rhythmic category.
A combination of the two mapping strategies above can be im-
plemented through modular mapping, in which some symbols of
the L-system string select perceptual categories while others create
self-similar trajectories within those categories.
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Figure 4. Top panel shows the full rhythm map of perceptual categories
corresponding to four onsets stimuli played at a tempo of 60 beats per

minute. Ellipses represent an approximation to the complex shapes of the
categories. Bottom panel shows a ’zoomed-in’ version showing category ”a”
with an elliptical approximation of its perceptual boundaries. The green line

marks a possible turtle path on that map after using an L-system

4.2 Evaluation
As already explained in §2, the perceptual categories in which the
expressive timing is generated were obtained through empirical ex-
periments. From this perspective we have a ground to understand that
the material over which the expressiveness will be generated should
be perceptually valid for a human listener. ”Yet, since the use of L-
systems can vary much depending on the different rules and alpha-
bets being used, to validate the hypothesis presented in this paper,

further experiments with other listeners should be carried for each of
the alternative systems being developed.

4.3 Practical and conceptual challenges in the
implementation of the model proposed

Some pitfalls from turning a reductionist approach into a microworld
have been previously addressed by Honing [12]. Consequently, in
this microworld abstraction of music and, in particular, rhythm,
the formulation of the rules and the assignment of their production
properties will need to attend a perceptual scenario also coherent
with the music theory grounds and style specifics that our generative
model is dealing with.
Based on the study done by Desain and Honing [10], Bååth et al.
[1] implemented a dynamical systems model making use of Large’s
resonance theory of rhythm perception [19]. This implementation
might be a solution to generate the data of other tempo values
or inter-onset intervals durations of the rhythm categories in case
empirical data is not available.

In the current microworld two issues have to be addressed to arrive
at an exploratory model of expressive timing:

• The first issue is whether tempo and perceptual categories can
be scaled proportionally by keeping a centroid relation derived
from a morphological inference between categories. Having the
results of centroids and categories for the BPM values of 40, 60
and 90 we could define an optimisation of the model to infer
shapes and sizes of rhythmic categories belonging to other BPMs.
However, as suggested by Sadakata et al. [32] the hypothesis is
that while score intervals scale proportionally with global tempo,
the deviation of the performed onsets with respect to the score is
invariant of that.

• The second issue to be addressed is concerned with how to cor-
relate positions of the turtle movement within the rhythm percep-
tual spaces being explored. We must clarify that this paper is con-
cerned on how to generate expressiveness within a bar, hence no
structural form of the music piece and its relation to musical style
is being considered at this stage. Solving the possibility of corre-
lating positions between categories is essential when applying this
model in a real scenario since music often has different rhythmic
patterns to be alternated and combined through several bars. In or-
der to address this issue, the expressive deviations of one rhythmic
category should be consistent with the deviations of the category
following or preceding it. This can be done by locating these devi-
ations according to the relative position of the ’turtles’ within the
different categories. The trajectory of the turtle, defined also by the
length of the step, should be coherent with the rhythmic category
in which it is being developed. Even when expressive timing is of-
ten oscillating between interpretations within an average of 50 to
100 ms, there is evidence that timing varies depending on tempo
[9]. Having then a bigger or smaller definition of the path of the
turtle might mainly make sense to be able to define concentrically
its movements around the centroid; to avoid great deviations at the
same time that we are aiming to achieve variation.

Scaling the modal centroid to a fitted or approximated area of the
category will allow the turtle to jump in a continuous music line
from a category to another one (”mirroring” these positions), be-
ing coherent with the degree of expressiveness among them; also



when approaching expressiveness complexity in musical passages in
which variation is needed. Considering the continuity and progres-
sion of time in music being produced by the model we can establish
mirror positions of the turtle within different categories that would
follow the turtle positions within the ellipse, depending on the pre-
determined context (music style, performer). In the case of repre-
senting scored music, it would be determined by a score follower to
choose the appropriate category representing a the rhythmic pattern,
and placement of the turtle before jumping between categories (dif-
ferent rhythmical patterns).

This scaling however implies the need to discretise the category
being represented. Using entropy (as pointed in §2) as a measure to
allow comparing categories and to estimate the amount of complex-
ity in performance before the boundary of a category is reached by
our turtle abstraction, seems as an optimal solution. Following the
work of Sadakata et al. [32], a more thorough study of the relation
of centroids to absolute tempos would be to fit a bayesian model to
the data, separating the probability of identifying a performance as
a certain rhythm (score), into the prior distributions of scores, and a
gaussian (normal) distribution of a performance given a score. The
last distribution is expected to be off-center by an amount which is
independent of global tempo [32].

In addition, moving through each of the rhythmic categories (e.g.
using just the first three inter-onset intervals in a 4/4 bar) implies
the necessity of defining a model to estimate the duration of a fourth
inter-onset interval to be able to move onto a next bar through an
score.

In order to determine the duration of a fourth inter-onset interval
and applying this model to generate expressiveness with symbolic
music scores we can use a weighting scheme such as the one pro-
posed by Pearce et al. [29]. Weighting the distribution of the first
three inter-onset intervals within a bar, we can effectively infer the
duration of the 4th inter-onset intervals. A method to extract the dis-
tribution of weights within the musical structure of the piece could
be done by using a parsing algorithm such as Sequitur, proposed by
Nevill-Manning [26].

5 SUMMARY AND CONCLUSIONS

Despite much research having been done in the field of music
expressiveness generation, little attention has been paid to the
possibility of using data from perceptual experiments to generate
expressiveness. In order to embrace the necessary versatility to
produce expressiveness in music, we have presented in this paper
a novel approach to modeling expressive timing performance by
combining cognitive symbolic and graphic representations of rhythm
spaces with Lindenmayer systems.

In §1 an approach to understanding expressiveness as deviations
within different perceptual categories has been presented. In §2 the
study done by Desain and Honing [10] to collect the data empirically
and the formation of the rhythmic categories has been presented. §3
introduced a resume on what Lindenmayer systems are and what the
state of the art on musical applications is. In addition, it has been
described how by means of a symbolic abstraction we can construct
rules, dictionaries or axioms using different L-systems types depend-
ing on the requirements of the music that wants to be generated. In or-
der to follow a scientific method in §4 a preliminary implementation
of the system has been presented together with a solution for further
validation of the system being implemented. Nevertheless, it remains

a challenge to scale from a microworld approach (as was presented
in this paper) to a more realistic model of expressive performance
and, in addition, all of the proposals made in this paper still await
proper evaluation, validation and empirical support. Yet, the initial
steps done on this expressive cognitive model seem promising to de-
velop automatic music performance systems as well as to understand
the cognitive aspects being involved in expressiveness perception and
generation of music.
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