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Abstract. My aim here is to show that an underlying assumption 

in computational approaches in cognitive and brain sciences is 

that the brain is a model of the world in the sense that it mirrors 

certain mathematical relations in the surrounding environment. I 

will give here three examples. One is from David Marr's 

computational-level theory of edge-detection. The second one is 

the computational work on the oculomotor system. And the third 

one is a Bayesian model of causal reasoning. One might wonder 

why this brain-as-a-model-of-the-world assumption is so 

prevalent in computational cognitive science and neuroscience. 

My proposed answer (for which I will not argue here) is that in 

these fields computation just means a dynamical process that 

models another domain. Thus saying that the brain computes just 

means that its processes models certain mathematical, or other 

high-order, relations in another domain, often the surrounding 

world. 1   
 

1 MARR'S COMPUTATIONAL LEVEL 
 

In Vision, Marr famously advances a three-level approach to 

the study of visual processes. The computational level specifies 

what is being computed and why. The algorithmic level 

characterizes the system of representations that is being used, 

e.g., decimal vs. binary, and the algorithm for the transformation 

from input to output. The implementation level specifies how the 

representations and algorithm are physically realized. What Marr 

meant by these levels and how he saw the relations between 

them have been a topic of debate for many years. My focus here 

is the most distinctive, and least well understood, of Marr’s three 

types of analysis, which is the computational level. Marr's notion 

of computational-level theory has received a variety of 

interpretations. Many have argued that the computational level 

aims at stating the cognitive phenomenon to be explained; the 

explanation itself is then provided at the algorithmic and 

implementation levels [1, 2, 3]. Others have described it as 

providing sketches of mechanism [4]. Yet others have associated 

the computational level with an idealized competence and the 

algorithmic and implementation levels with actual performance 

[5, 6]. Finally, Egan [7] associates the computational level with 

an explanatory formal theory, which mainly specifies the 

computed mathematical function.  I have defended a different 

interpretation that emphasizes the role of the environment in 

Marr's notion of computational analysis [8,9].  Marr 

characterizes the computational type of analysis as specifying 

“what the device does and why” ([10], p. 22) Most 

commentators have addressed the what aspect, and I agree with  

Egan that Marr aims to characterize the mathematical 

function that is being computed. According to the computational 

theory of edge-detection, for example, early visual processes 

compute the zero-crossings of (Laplacian) second derivative 

filterization of 2GI ( is a Laplacian, G is a Gaussian and I is 

the retinal image). Marr, however, repeatedly insists that 
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computational-level theories also include the why aspect whose 

aim is to demonstrate the basis of the computed function in the 

physical world ([11], p. 37). Marr associates this why aspect with 

what he calls physical constraints, which are physical facts and 

features in the physical environment of the perceiving individual 

([10], pp. 22-23). These are constraints in the sense that they 

limit the range of functions that the system could compute to 

perform a given visual task successfully.   

What exactly are the relations between the physical 

constraints and the computed function? How do these constraints 

substantiate the basis of the computed function in the physical 

world? The gist of my interpretation is that Marr's working 

hypothesis is that the visual system is a model of the world in the 

sense that it mirrors or preserves certain structural relations in 

the visual field. By structural relations we mean "high order" 

mathematical, geometrical, or other formal relations. The visual 

system would preserve these relations if there were an 

isomorphic mapping from the visual system onto the visual field; 

more realistically we talk about homomorphism or partial-

isomorphism and even these mappings involve a vast amount of 

approximation and idealization. Our claim is that a 

computational analysis appeals to the physical constraints in 

order to underscore these morphism relations, and in doing this, 

these constraints play both explanatory and methodological roles 

in theories of vision. Explanatorily they serve to demonstrate the 

appropriateness and adequacy of the computed function to the 

information-processing task ([10], pp. 24-25). Methodologically 

they serve to guide discovery of the function that the visual 

system computes [12].  

Thus to take edge-detection, the mathematical function being 

computed (zero-crossings of second-derivatives) reflects sharp 

changes in light reflection in the visual field that often occur 

along physical edges such as object boundaries (whereas the 

latter changes can be described in terms of extreme points of 

first-derivatives or zero-crossings of second derivatives of the 

reflection function; see figure 1). 

 

 
Figure 1. Edge-detection. Early visual system detects edges by 

computing the zero-crossings of the function 2GI (lower-span), 

whereas different filters come with different Gaussians, G. The elements 

("pixels") that constitute retinal image, I(x,y), encode (dashed arrow) 
light intensities in the visual field. The visual edges (formed by segments 

of zero-crossings) encode physical edges such as object boundaries. The 

relation between light intensities and physical edges can be described too 
in terms of extreme points of first derivatives or zero-crossings of second 

derivatives (lower-span), as illumination and reflection often change 

sharply along (say) object boundaries.  
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This physical fact ("constraint") – that sharp changes in 

reflection often occurs along physical edges – explains why the 

visual system computes derivation, and not (say) factorization or 

exponentiation, for the task of edge-detection. It also guides the 

visual theorist in discovering the mathematical function that the 

system computes, namely, derivation. 

Marr never discusses isomorphism or structural similarities 

explicitly. Nevertheless, I have shown that it is central to his 

computational analysis of other visual tasks as well. My aim here 

is to show that Marr's notion of computational analysis is not 

confined to vision but is widely applicable in computational 

brain and cognitive science.  
 

2 THE NEURAL INTEGRATOR IN THE 

OCULOMOTOR SYSTEM 
 

The neural integrator converts eye-velocity inputs to eye-

position-outputs, and thus enables the oculomotor system to 

move the eyes to the right position [13, 14]. The inputs arrive 

from fibers coding vestibular, saccadic or pursuit movements. 

 
 

 

Figure 2: The neural integrator (NI). NI receives eye-velocity coded 

inputs, Ė, and, computing integration, produces eye-velocity coded 

outputs, E. The hypothesis is that the integrator is common to vestibular, 
saccadic and pursuit movements, thus receiving vestibular (Ėv), saccadic 

(Ėr), and pursuit (Ėp), velocity coded inputs. On the right it is shown how 

the head velocity signals, Ḣ are converted into eye-velocity codes (Ėv). 
These codes are projected directly to the motoneurons (mn) that have to 

produce velocity commands, but also the neural integrator (NI) which 

produces position codes projected to the motoneurons  for position 
commands (from [13], p. 35). 

 

The system produces eye-position codes by computing 

mathematical integration over these eye-velocity encoded inputs.  

Take vestibular movements, where the eyes are moved in the 

same velocity and opposite direction to head movements. The 

task of the integrator is to compute the new eye-position based 

on the velocity signals transduced through the canals behind our 

ears. On the right side of figure 2 it is shown how the head 

velocity signals, Ḣ are converted into eye-velocity codes (Ėv). 

These codes are projected directly to the motoneurons (mn) that 

have to produce velocity commands, but also the neural 

integrator (NI) which produces position codes projected to the 

motoneurons for position commands. In cats, monkeys, and 

goldfish, the network that computes horizontal eye movements 

appears to be localized in two brainstem nuclei, the nucleus 

prepositushypoglossi (NPH) and the medial vestibular nucleus 

(MVN).  

Mathematical integration characterizes operations performed 

in two very different places. One is in the neural representing 

system, namely, the neural integrator. It performs integration on 

the neural inputs to generate neural commands. This is of course 

the reason that the system is known as integrator. Another and 

very different place, however, is in the target domain being 

represented, in our case the eyes. The relation between position 

and velocity of the eye can be described in terms of integration 

too! The distance between the previous and current positions of 

the eye is determined by integrating over its velocity with 

respect to time. So what we have here is an (iso-)morphism 

between the representing sensory-motor neural system (the 

integrator) and the represented target domain (the eyes and their 

properties). The neural integrator mirrors or preserves certain 

relation in the target domain, namely the distances between two 

successive eye positions. By computing integration, the neural 

function mirrors, reflects or preserves the integration relation 

between eye velocity and eye positions.   

Let us put these findings in the context of Marr's notion of 

computational analysis. The what aspect describes the 

mathematical function, integration, computed by the neural 

integrator. The why aspect relates the computed function with 

the physical environment, namely, the eyes with their properties. 

The analysis invokes a physical constraint, which in our case is 

the velocity-position relation, namely the relation between eye-

velocity and the distance between two successive eye-positions. 

Using this constraint, it is shown that there is a morphism 

mapping between the neural function and the target domain. This 

mapping relation is underscored by the fact that the two domains 

have a shared structure, which is mathematical integration.   

As said, the physical, environmental, constraints play both 

explanatory and methodological roles. On the explanatory side, 

they serve to explain why computing integration is appropriate 

for the task of controlling eye movement. The neural network 

computes integration and not, say, multiplication, 

exponentiation, or factorization, because integration preserves 

the velocity-position relation, namely, the integration relation 

between eye movement and eye positions in the target domain. 

Factorizing numbers would not result in moving the eyes to the 

right place, precisely because it does not preserve relations in the 

target domain that are relevant to eye movements. Integration 

does: When you compute integration over eye-velocity encoded 

inputs, you mirror the integration relation between velocity and 

position; hence, you output representations of a new eye 

position. The algorithmic and implementation levels complement 

this explanation by specifying how this integration function is 

carried out in the neural system.  

On the methodological side, the velocity-position relation is 

instrumental in discovering what function is computed. In our 

example, experimental electrophysiological results indicated that 

the neural system converts eye-velocity pulses into eye-position 

codes. Looking at the relation between the represented velocity 

and position, theoreticians quickly inferred that the internal 

relations between the representing states must be of integration. 

This logic of discovery assumes that the computed function is 

that of integration since the computed function must correspond 



to the velocity-position integration relation, which is already 

known.  
 

3 A BAYESIAN MODEL OF CAUSAL 

REASONING  
 

Bayesian models of cognition have taken a central place in 

cognitive science. Their aim is to explain how humans should 

update their beliefs in the face of sparse experiential data. The 

models combine two trends. One is a rationality or optimality 

analysis that aims to single out the optimal solution for a given 

problem. In the context of cognition the aim is to account for 

how a rational agent should reason in a situation of uncertainty. 

The assumption is that this normative account will also tell us 

something about how the agent does reason, for example, by 

approximating the optimal solution. The other trend is a 

probabilistic approach that aims to explain inferences in terms of 

subjective probabilities, namely, degrees of belief. The idea, in 

general, is to update the probabilities ("degrees of belief") in 

some hypotheses space with regard to incoming data about the 

world; the central tool in calculating these probabilities is usually 

the Bayes' rule.  Bayesian models have been invoked to account 

for human reasoning, but also for many other aspects of 

cognition, including problems in concept formation, visual 

perception, motor control, language processing, causal learning 

and reasoning, and even social cognition.  

To give you some flavor of it, assume that we want to model 

how an ideal doctor should reason given certain intuitive 

assumptions about causal relations between various variables, 

some of which are overt and some are hidden (fig. 3). In this 

example, the observed events are risks and symptoms, and the 

hidden ones are diseases. This particular model assumes certain 

intuitive causal principles that constraint the structure. The 

arrows in the structure represent hypotheses about the causal 

relations, that are assigns certain probabilities. The structure (in 

black) represents the prior assumptions and probabilities about 

this kind of causal reasoning. The model updates probabilities 

when more data is entering. In this example, the red arrows 

represent new hypotheses that are added to the structure given 

the new data about the patient who works in the factory and 

suffers from chest pain. 

Interestingly, Bayesians often compare their approach to 

Marr's conceptual framework [15, 16]. One thing that they mean 

by this comparison is that they aim to specify a formal or 

mathematical function that is in some sense an optimal solution 

for the cognitive task at hand. In our example, the pertinent 

mathematical function is provided in terms of the directed graph. 

They also mean that, at this level, they do not aim to specify 

what kinds of representations are used, what algorithms are 

performed and how they are implemented in the brain. These 

issues belong to the algorithmic and implementation levels 

(which complements the computational level).    

But I think that that the analogy between the Marrian 

and the Bayesian approaches extends to the why aspect in the 

Marr's computational analysis, namely, to the relations between 

the computed mathematical function is related to the 

environment. In their programmatic paper, Griffith, Kemp and 

Tenenbaum [17] write that the big computational question that 

underlies the Bayesian approach is "How does the mind build 

rich, abstract, veridical models of the world (my emphasis) 

given only the sparse and noisy data that we observe through our 

senses?" Indeed, looking again at the model for causal reasoning 

we should note that models implicitly refers to two different 

domains. Firstly, the model represents a cognitive domain: The 

assumption is that a cognitive agent should employ a scheme 

that has the structure of a directed graph (again, how the 

structure is implemented in psychological and neural 

mechanisms is not part of the computational theory). In other 

words, the model specifies the parameters that the cognitive 

domain must employ and the functional relations between them 

(that are presented in terms of a directed graph). But, now, the 

cognitive domain itself is a representational system: It represents 

the world, in our case classes of risks, diseases and symptoms, 

and the causal relations between them. 

 

 

 
Figure 3: Bayesian causal induction. Knowledge in a medical domain 
is represented using directed graph. There are two classes of observed 

variables – risk factors, and symptoms – and one class of hidden 
variables – diseases – with causal relations from risks to diseases and 

diseases to symptoms only. Given a newly observed correlation (e.g. 

between working in a factory and chronic chest pain), the graph 
generates a constrained set of hypotheses for how that data might be 

explained (shown in red). The model represents an idealized cognitive 

inferential structure, which in turn, represents the causal relations 
between the three classes of variables (From [16], p. 315).  

  

In the presentation of the model this distinction between the 

latter two domains, the cognitive system and the world, is 

blurred. In fact, it is ambiguous whether "Flu  Fever" refers to 

a certain relation in the cognitive domain or in the world. This 

ambiguity takes place not because the relations are the same 

(they are not: a representation of flu is not sick). The ambiguity 

is innocuous because the implicit assumption is that there is a 

sort of morphism between the cognitive domain and the world. 

The assumption is that the inference relations between a 

representation of flu and a representation of fever mirrors the 

causal relations between flu and fever. Both relations are, for 

example, non-symmetric: The relation holds in one direction, but 

not necessarily in the other direction. So we see that Bayesians 

too assume that the brain (in this case the cognitive system) is a 

model of the world; it is a model of the world in the sense that it 

preserves certain high-level formal relations in the environment. 



CONCLUSION  
 

Is computation observer relative? Before answering this we 

should clarify what is meant by computation. I have shown that 

the idea that the nervous system models the world is quite 

prevalent in different computational approaches in cognitive and 

brain sciences, whereas 'model' here means a representational 

system that preserves structures in the world. One might wonder 

why this brain-as-a-model-of-the-world assumption is so 

prevalent in computational cognitive science and neuroscience. 

Elsewhere I argue that at least in cognitive and brain sciences 

computation just means a dynamical process that models another 

domain. Thus saying that the brain computes means that its 

processes models certain mathematical, or other high-order, 

relations in another domain, often the surrounding world.  

We can now return to the question about observer-relativity. 

In one sense computation is observer elative. An external 

observer could use, as it were, a physical system to model some 

other domain, mathematical or physical, that is isomorphic to it. 

Thus one could use the neural integrator, for example, to 

compute integration. In other senses computation is not observer 

relative. I can use the integrator to compute integration, but 

(arguably) I cannot use it to compute some other mathematical 

functions. Thus the function that is being computed is not 

observer relative. More importantly, there are cases in which the 

computation itself is not observer relative. That the neural 

integrator computes eye-positions from eye-velocity is not 

observer relative; it is a matter of objective fact about the brain. I 

hope to expand on these tentative remarks in the talk.        
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