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Abstract. A fundamental question regarding computation 

viewed as a physical phenomenon concerns the criteria under 

which a physical system can properly be said to implement an 

abstract formal procedure. I advocate the Simple Mapping 

Account (SMA) and defend this position against a number of 

critiques, including semantic and causal accounts. In line with 

SMA I support the conclusion that realizing or implementing an 

abstract computational procedure is not an intrinsic property of 

physical systems, but rather is based on a purely observer-

dependent act of ascription. This 'anti-realist' conclusion has 

traditionally been invoked in an attempt to undermine the 

Computational Theory of Mind (CTM), which in turn has led 

supporters of CTM to criticize SMA and propose competing 

accounts. In contrast, I argue that the version of CTM directly 

threatened by SMA is one that should not be accepted in any 

case, and propose an alternative strategy for those who would 

defend CTM against charges of 'triviality'.        1the  

1     INTRODUCTION 

A fundamental question regarding computation viewed as a 

physical phenomenon concerns the criteria under which a 

physical system can properly be said to implement an abstract 

formal procedure. A very straightforward and elegant account 

articulated by Putnam [1] is based on a simple mapping between 

formalism and physical structure. Accordingly, a physical 

system P performs a computation C just in case there is a 

mapping from the physical states of P to the abstract 

computational states of C, such that the transitions between 

physical states reflect the abstract state transitions as specified by 

the mapping. The minimalism and elegance of the Simple 

Mapping Account (SMA) make it the natural choice as the in-

principle standard for physical implementation − it takes the 

Mathematical Theory of Computation (MTC) as its starting point 

and adds no substantive assumptions.  

 Central to MTC is the intuitive notion of an effective 

or ‘mechanical’ procedure, which is simply a finite set of 

instructions for syntactic manipulations that can be followed by a 

machine, or by a human being who is capable of carrying out 

only very elementary operations on symbols. A key constraint is 

that the machine or the human can follow the rules without 

knowing what the symbols mean. The notion of an effective 

procedure is obviously quite general – it doesn’t specify what 

form the instructions should take, what the manipulated symbols 

should look like, nor precisely what manipulations are involved. 

The underlying restriction is simply that they are finitary and can 

proceed ‘mindlessly’ i.e. without any additional interpretation or 

understanding. So there are any number of different possible 
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frameworks for filling in the details and making the notion 

rigorous and precise. Turing’s ‘automatic computing machines’ 

[2] (TMs), supply a very intuitive and elegant rendition of the 

notion of an effective procedure, and in the ensuing discussion 

TMs will be taken as the conceptual archetype. But there is a 

variety of well known alternative frameworks, including 

Church’s Lambda Calculus, Gödel’s Recursive Function Theory, 

Lambek’s Infinite Abacus Machines, etc. 

Turing machines and other types of computational 

formalisms are mathematical abstractions and don’t exist in real 

time or space. In order to perform actual computations, an 

abstract Turing machine must be realized by a suitable 

arrangement of matter and energy, and as Turing observed long 

ago [3], there is no privileged or unique way to do this. Like 

other abstract structures, Turing machines are multiply realizable 

- what unites different types of physical implementation of the 

same abstract TM is nothing that they have in common as 

physical systems, but rather a structural isomorphism expressed 

in terms of a higher level of description. Hence it’s possible to 

implement the very same computational formalism using modern 

electronic circuitry, a human being executing the instructions by 

hand with paper and pencil, a Victorian system of gears and 

levers, as well as more atypical arrangements of matter and 

energy including beer cans serving as tokens of the symbol ‘1’ 

and rolls of toilet paper serving as the tape. 

Adopting notational conventions introduced in  

Schweizer [4], let us call this ‘downward’ multiple realizability, 

wherein, for any given abstract structure or formal procedure, 

this same abstract structure can be implemented via an arbitrarily 

large number of distinct physical systems. And let us denote this 

type of downward multiple realizability as ‘↓MR’. After the 

essential foundations of MTC were laid, the vital issue then 

became one of engineering – how best to utilize state of the art 

technology to construct rapid and powerful physical 

implementations of our abstract mathematical blueprints, and 

hence perform actual high speed computations automatically. 

This is a clear and deliberate ↓MR endeavour, involving the 

intentional construction of artefacts, painstakingly designed to 

follow the algorithms that we have created. From this top-down 

perspective, there is an obvious and pragmatically indispensible 

sense in which the hardware that we have designed and built can 

be said to perform genuine computations in physical space-time.    

 

2     COMPUTATIONAL THEORY OF MIND   

 
According to the widely embraced computational theory of mind 

(CTM), which underpins cognitive science, Strong AI and 

various allied positions in the philosophy of mind, computation 

(of one sort or another) is held to provide the scientific key to 

explaining and, in principle, reproducing mentality artificially. 

The paradigm maintains that cognitive processes are essentially 

computational processes, and hence that intelligence in the 



natural world arises when a material system implements the 

appropriate kind of computational formalism. Various critics of 

CTM have put forward a family of 'trivialization arguments', 

stemming directly the SMA above. The arguments are based on 

the contention that the notion of a physical system implementing 

a computational formalism is overly liberal to the point of 

vacuity, since a mapping will obtain between any sufficiently 

complex physical system and virtually any computational 

formalism. This would appear to trivialize CTM, since whatever 

computational formalism is held to account for our cognitive 

attributes will also be realized by a myriad of other ‘deviant’ 

arrangements of matter and energy, from buckets of water to 

microwave ovens to possibly even stones. By CTM it would 

seem to follow that such obviously insentient systems have the 

same cognitive attributes that we do, since they can be 

interpreted as implementing exactly the same computations. For 

example, assuming SMA, Putnam offers a proof of the thesis 

that every open physical system can be interpreted as the 

realization of every finite state automaton. In a closely related 

vein, Searle [5] argues that virtually any physical system can be 

interpreted as following virtually any program. Thus hurricanes, 

our digestive system, the motion of the planets, even an 

apparently inert lecture stand, all possess a level of description at 

which they instantiate any number of different abstract formal 

procedures. The stomach has inputs, internal processing states 

and outputs, and if one wanted to, one could interpret the inputs 

and outputs as code for any number of different symbolic 

processes. And in [6] Searle attempts to illustrate the extreme 

conceptual looseness of the notion of implementing an abstract 

formalism by claiming that the molecules in his wall could be 

interpreted as running the WordStar program. 

 In this manner, critics of CTM utilize SMA to argue 

for 'multiple realization' in the form of a one-to-many-relation 

between physical structure and abstract interpretation. Again, 

adopting notational conventions introduced in Schweizer, let us 

label multiple realizability in this direction, wherein any given 

physical system can be interpreted as implementing an arbitrarily 

large number of different computational formalisms ‘upward 

MR’ and denote it as ‘↑MR’. The basic import of ↑MR is the 

non-uniqueness of computational ascriptions to particular 

physical systems. In the extreme versions suggested by Putnam, 

Searle, and more recently Bishop [7], there are apparently no 

significant constraints whatever – it is possible in principle to 

interpret every open physical system as realizing every 

computational procedure. Let us call this extreme version 

‘universal upward MR’ and denote it as ‘↑MR*’. Mere ↑MR is 

weaker than ↑MR*, since the former does not assert that there 

are no salient constraints, and hence ↑MR would be consistent 

with the denial that, e.g., the molecules in Searle’s wall can in 

fact be interpreted as implementing the WordStar program, 

although every physical system is still interpretable as 

implementing some very large set of distinct computations. 

 In the present discussion I will not argue for or against 

↑MR* but restrict consideration to the more modest ↑MR. In 

view of ↑MR, it’s still never the case that any given 

computational interpretation of a physical system is privileged or 

unique, and this is far more difficult to deny than the powerful 

and broad sweeping ↑MR*. In turn, the non-intrinsic status of 

computation would seem to follow as a direct consequence of 

mere ↑MR alone. As long as there are at least two distinct 

interpretations, there is no objective fact of the matter regarding 

which computation is ‘actually’ being performed, nor which of 

the alternatives is the ‘correct’ or ‘real’ account. And this is 

because the computation itself is not an intrinsic property of the 

physical device, and is instead dependent on a human observer to 

supply the various alternative interpretations. 

 This is not to say that it’s purely a matter of caprice, 

and that there are no objective constraints that the interpretation 

must satisfy. Instead, the situation is perhaps comparable to the 

distinction between natural kinds, such as water, and 

conventional kinds, such as being a table. Even though 

membership in either kind might be based on criteria whose 

satisfaction (or not) is a matter of objective truth, still the criteria 

for conventional kinds are not intrinsic, and there is nothing 

about the particular arrangement of matter now holding up my 

desk top computer which makes it intrinsically a table. The 

salient criteria stem purely from human practices and 

stipulations rather than from, e.g., fundamental microstructure or 

natural law. 

 

3    THE SEMANTIC ACCOUNT 
 

Advocates of CTM typically attempt to defend their paradigm 

against such trivialization arguments by rejecting SMA as itself 

overly liberal, and advocating additional constraints on the 

notion of ‘true’ or ‘genuine’ implementations, to distinguish 

them from the many presumably ‘false’ cases countenanced by 

SMA. In this manner, the hope is that the myriad of apparent 

counterexamples generated by SMA will be screened off as 

‘fakes’, and the cogency of CTM thereby preserved. Three 

primary categories of constraint put forward by defenders of 

CTM include the semantic account (SA), the causal account and 

the counterfactual account. Each of these will be explored and 

critiqued in turn, beginning with the first. 

 Concerning the semantic account of computation, the 

‘received view’ in the philosophy of mind is that computation 

must involve representational content. This view is encapsulated 

in Fodor's [8] famous edict that there is "no computation without 

representation". According to SA, computation is stipulated to be 

the processing of representations, and only physical states that 

are ‘representational’ can serve as implementations of the 

computational states in question. However, I will presently argue 

that this move is infelicitous for a number of reasons, and later in 

the paper will propose an alternative strategy for those who 

would defend CTM against trivialization. The SA is infelicitous 

because: 

 (1) It advocates a departure from MTC, whereas MTC 

is the canonical source of our conceptual grasp of computation. 

As above, classical computation is defined as rule governed 

symbol manipulation, and a key proviso is that the rules can be 

followed without any knowledge of what the ‘symbols’ are 

supposed to mean. As Piccinini [9] aptly observes, 

representational content plays no role whatever in MTC. 

 (2) MTC is clear and rigorous, while the further 

restrictive notion of ‘representation/reference’ invoked by SA is 

imprecise and problematic. Hence this is a retrograde step from 

clarity and generality to narrowness and potential obscurity. 

Indeed, given the notorious difficulties in providing a 

satisfactory rendition of ‘representation’ in objective scientific 

terms, SA is in the rather ironic position of promulgating a 

restriction on the global notion of computation in the physical 

world that is itself unlikely to be successfully naturalized. 



 (3) Our computational artefacts are the paradigmatic 

instances of physical computation and can yield any number of 

counterexamples to SA. A Turing machine designed to compute 

the values of a particular truth function, say inclusive 

disjunction, can be easily reinterpreted as computing 

conjunction instead, simply by flipping the intended reference of 

the symbols ‘0’ and ‘1’. There is no independent fact of the 

matter regarding what these syntactic tokens ‘really represent’ − 

their referential value is entirely dependent upon an arbitrary 

scheme of interpretation. As a consequence, there is no unique 

meaning determined by the formal procedure as such, and a 

multitude of distinct and incompatible interpretations are always 

possible. This highlights a fundamental flaw related to (1) above: 

computation is essentially pure syntax manipulation, and how the 

syntax is interpreted is an additional feature not intrinsic to 

computation per se. SA stipulates that this extrinsic feature is 

essential, even though the discipline of Computer Science makes 

no such claim. I would argue that SA commits the mistake of 

conflating ‘computation’ simpliciter with ‘syntax manipulation 

under an intended interpretation’. But of course, the formal 

syntax manipulation can take place in the absence of any 

interpretation.  Hence in a very clear, rigorous and universal 

sense, contra Fodor there is computation without representation, 

because semantics is purely extrinsic to effective procedures as 

such. 

 (4) The primary reason for making the foregoing 

conflation and attempting to tether the notion of computation to 

some story about representation does not stem from any issues 

concerning the general theory of computation itself, but rather is 

driven by a particular stance within a specialized explanatory 

project in the philosophy of mind. And this is an overly parochial 

source for deriving restrictions on physical computation in 

general. 

 In response to these infelicities, I would contend that 

SA is not a viable approach to computation per se. So rather than 

adopt this limiting and undermotivated standpoint, we should 

instead take MTC, one of the towering intellectual achievements 

of 20th century theorizing, as the canonical framework for 

understanding computation in the general abstract sense, and we 

should adopt SMA as the global, theory-neutral template for the 

concomitant notion of physical implementation. These two 

standards are utterly rigorous, comprehensive and impartial, and 

are not themselves in any need of tweaks or alterations. As noted 

above, the main reason for the restrictions imposed by SA stems 

not from the general nature of computation, but instead serve to 

protect vested theoretical interests held by other disciplines that 

assume computation as a primary ingredient in their specialized 

explanatory frameworks.  In section 7. I will return to the issue 

of CTM and propose an alternate strategy for those who would 

defend the paradigm against charges of empirical vacuity.  

4     CAUSAL CONSTAINTS 

In response to ↑MR* and the associated trivialization arguments, 

a number of other authors including Chrisley [10], Chalmers 

[11], Copeland [12], and Block [13] propose further constraints 

on computational interpretations. Two of the most intuitively 

compelling restrictions are supplied by (i) causal and (ii) 

counterfactual considerations. Although both (i) and (ii) are 

plausible and natural suggestions, I will argue that neither are 

ultimately unsuccessful in blocking ↑MR*. 

 Regarding point (i), Chalmers, for example, contends 

that it is a necessary condition (for counting as a legitimate 

implementation) that the pattern of abstract state transitions 

constituting a particular run of the computational procedure on a 

particular input, must map to an appropriate transition of 

physical states of the machine, where the relation between 

succeeding states in this sequence is governed by proper causal 

regularities. This suggestion constitutes quite a natural and 

immediate corrective measure in response to the extreme laxity 

that might seem to underwrite ↑MR*, since the physical states in 

the chronological progression exploited by Putnam's method 

have no nomological connection.  

 Nevertheless, I would argue that the constraint is too 

strong in general and rules out cases which should not be 

excluded. There are many instances of sequences of physical 

states that we count as realizing a particular computation simply 

because, according to our abstract blueprint,  the correct series 

of physical sate transitions actually occurs. For example, 

standard computers rely on a hierarchy of levels of description 

pertaining to 'virtual machines', and it is entirely natural to 

construe high level virtual machines as genuinely implementing 

computations, even though the states at this level of description 

are not themselves causally connected. Furthermore, we do not 

need to know anything about the complex underlying 

architecture nor its causal underpinning in the electromechanical 

hardware, in order to ascertain that the respective computation is 

successfully being carried out. All we need to take into account 

is what actually happens at the given level of virtual machine 

description.  

 In an analogous manner, consider the following 

sequence of Turing Machine tape configurations, where each 

digit corresponds to the contents of one square of the tape, and 

the underlined digit to the currently scanned square: 

                  Begin   110100 

                 110100 

  110100 

  110100 

  110100 

  110100 

  110000 

  110000 

  111000 

  111000 

  111000    Halt 

This sequence is the implementation of a particular program for 

addition positive integers in monadic notation, and constitutes a 

computation of 2+1=3. Yet the entries in this sequence bear no 

decipherable causal relations to each other, and now that the 

sequence is completed it can be revisited at any future date and 

still confirmed as a computation of 2+1=3, even though there is 

no longer any causal or even temporal connection between the 

already finished entries in the sequence of digits constituting the 

implementation. 

 Similarly, in various situations where a human being is 

following an abstract computational procedure, the transition 

from one state to the next is not causal in any straightforward 

physical or mechanical sense. When I take a machine table set of 

instructions specifying a particular TM and then perform a given 

computation with pencil and paper by sketching the 

configuration of the tape at each step in the computation, the 

transitions sketched on the piece of paper are not themselves 



causally connected: one sketch in the sequence in no way causes 

the next. It is only through my understanding and intentional 

choice to execute the procedure that the next state appears on the 

paper. Clear-cut physical causation of the sort required by 

Chalmers comes in only very indirectly, as in light rays 

illuminating the page and allowing me to see the symbols, and at 

an elementary and extraneous level, as in the friction between 

the pencil lead and the paper’s surface causing various marks to 

appear.  

 Yet this is a perfectly legitimate and indeed 

paradigmatic case of implementing a Turing machine. And 

likewise in the Chinese room, it is merely through Searle’s 

understanding of English, his voluntary choice to behave in a 

certain manner, and a number of highly disjointed physical 

processes (finding bits of paper in a certain location, turning the 

pages in the instruction manual, all mediated by the human 

agent) that the implementation takes place. Searle, as an 

intentional agent, is choosing to cause various things to happen 

in accordance with a set of rules that he chooses to follow. And 

Searle's intentionally characterized behaviour is not something 

that we currently have any hope of ever being able to recast in 

terms of causal regularities at the purely physical level of 

description.  

 One might rejoin that, at least in principle, it's still 

theoretically possible to characterize the overall system purely in 

terms of natural laws and causal regularities, a la Dennett's [14]  

Martian superscientist, who doesn't require the intentional stance 

to predict human behavior. And while this may well be true in 

principle, I don't think it really helps, since we can't do so, and 

we're the ones interpreting Searle as performing a computation. 

One could perhaps simply assert that, since Searle is indeed 

performing a computation, then there must be the appropriate 

sort of causal regularities underpinning his behavior, even 

though we don't know what they are and can't foresee a time in 

the future when we will. But why must there be such 

regularities? ‒ presumably because Searle is performing a 

computation and the causal account is true... But such a line of 

reasoning would clearly beg the question. Undoubtedly Searle's 

behavior must have a cause, but from this it does not follow that 

it is governed by any physically characterizable regularities that 

even remotely resemble the structure of the algorithm.  

 Furthermore, we can let chance and randomness into 

the scenario. Suppose at each step in the computation Searle flips 

a coin, and will only follow the rule if the coin comes up heads. 

And suppose further that, for a particular run on an input 

question, the coin comes up heads every time and Searle 

successfully outputs the answer. He has still implemented the 

formalism, even though this outcome was not predictable on the 

basis of causal regularities or natural law.  

 And how could we know that the right causal 

connections are preserved via Searle's agency, even in the cases 

where he sincerely intends to follow the rule book? ‒ how do we 

know that at some crucial stage he did not misunderstand the 

rules, and the step he actually intended to perform would have 

been a mistake, but that by a slip of attention he did not perform 

the step he intended but rather accidentally performed the correct 

one? As long as the step was correct we should count this as a 

physical realization of the abstract procedure. And indeed, how 

do we know that such self cancelling pairs of mistakes don't 

sometimes occur in our computational artefacts?  

 In such cases, the physical sequences count as 

implementations simply because what can be interpreted as the 

appropriate states in the procedure occur in the correct linear 

order. In other words, the intended mapping, a la SMA, has been 

preserved. And this highlights a very key point ‒ the 

fundamental criterion is normative rather than causal. 

Underlying causal considerations are the wrong level of analysis, 

partly because there is then no sense in which error or 

malfunction can occur. Physical processes 'obey' natural law-like 

regularities in a purely descriptive manner, and over the time 

evolution of a physical system the trajectory of states in the 

process may or may not correspond to our projected 

computational interpretation. If not, then there has been a 

'malfunction' in the hardware. But of course, systems governed 

by causal regularities cannot malfunction as such, and it is only 

at a higher and non-intrinsic level of description that 

'breakdowns' can take place. We characterize these phenomena 

as hardware malfunctions, not because underlying scientific laws 

have been broken, but rather because the intended interpretation, 

which is prescriptive and non-intrinsic in nature, has. And there 

is always a non-zero probability of error for any algorithms 

executed in physical space-time.  Files become 'corrupted', signal 

transmissions convey 'misinformation', overheating induces 

processing 'faults', etc.   

 All these mechanically mundane occurrences take 

place in complete accord with the causal regularities that govern 

the evolution of physical systems through time. Hence their 

status as 'malfunctions' has nothing to do with causal 

considerations,  and they can be interpreted as such only relative 

to our projected formal mapping. In such cases, the physical 

system fails to count as an implementation on the purely 

normative grounds that the correct sequence of states did not 

occur, and so our intended mapping is violated. To be sure, there 

will be an underlying causal story for  why the hardware 

performed the way it did, but this has nothing to do with the 

question of whether or not the device has successfully 

implemented the algorithm in question. Likewise, there will be a 

causal story for why the hardware performed the way it did when 

our projected interpretation is respected and the physical device 

counts as a 'valid'    implementation. In both cases the issue of 

success or failure is determined relative to our intended 

interpretation, and hence is settled on purely normative rather 

than causal grounds. And this is in perfect agreement with SMA. 

 Questions regarding the mechanics of how the correct 

sequence of states happen to occur are not relevant to answering 

the question of whether or not the procedure has been physically 

implemented. In the Chinese Room we can know that the 

procedure has been implemented without knowing how Searle 

himself (or his brain) manages to do the requisite internal 

processing and control his limbs in order to make the correct 

marks on the slips of paper. The physical how is a different 

question, and is not on the same level of analysis as that invoked 

when determining whether or not the desired computation has 

been performed. But this then critically loosens the requirements 

for counting a physical system as instantiating a program. As 

long as what can be described or interpreted as the correct 

sequence of states actually occurs, then the underlying 

mechanics of how this takes place are not strictly relevant. 

 The right sort of causal connections and regularities 

are needed if the instantiation in question is to be fully 

automatic, and if we want to be able to rely on the automatic 



device to perform systematically correct computations yielding 

outputs with the potential to supply us with new information. 

And although this is the engineering norm when constructing 

and interpreting computational artefacts, it does not exhaust the 

general space of possibilities. The causal requirements advocated 

by Chalmers constitute (at best) a sufficient but not a necessary 

condition – in the general case we must still allow for chance 

and human agency to play a role, as well as chronological 

sequences of states that are not themselves governed by 

overarching causal regularities.  

5     COUNTERFACTUAL CONSTAINTS 

In line with (ii) above, Chalmers’ proposed counterfactual 

requirement is aimed at another apparently ‘slack’ feature 

incorporated by Putnam and the SMA, viz. the mapping from 

formalism to physical system is defined for only a single run, 

and says nothing about what would have happened if a different 

input had been given. And it is objected that this is too weak to 

satisfy the more rigorous operational notion of being a ‘genuine’ 

realization. However, in response to Chalmers' (again quite 

natural) proposal, it is worth noting that for a physical system to 

realize a rich computational formalism with proper input and 

output capacities, such as an abstract TM, this will always be a 

matter of mere approximation. For example, any given physical 

device will have a finite upper bound on the size of input strings 

it is able to process, its storage capacities will likewise be 

severely limited, and so will its actual running time. In principle 

there are computations that formal TMs can perform which, even 

given the fastest and most powerful physical devices we could 

imagine, would take longer than the lifespan of our galaxy to 

execute. Hence even the fastest and most powerful physical 

devices we could envision will still fail to support all the salient 

counterfactuals. 

 It will never be possible to construct a complete 

physical realization of an abstract TM – the extent to which the 

concrete device can execute the full range of state transitions of 

which the abstract machine is capable will always be a matter of 

degree. For example, consider the sequence of configurations 

exhibited in section 4, which constitute an implementation of a 

particular TM program for addition of positive integers 

expressed in monadic notation. The extremely simple program 

can be specified in terms of the following set of six quadruples  

           q11Bq1; q1BRq2; q21Rq2; q2B1q3; q31Lq3; q3BRq4 

where the first element in each quadruple (e.g. q1 in the first 

quadruple) is the current state, the second element is the 

currently scanned symbol (either 1 or B for blank, i.e. 0) the 

third element is the overt action (move R or L one square, or 

print a 1 or a B), and  the last element is the covert ‘act’ of 

entering the next state. The exhibited sequence of configurations 

depicts the behavior of the machine given 2 and 1 as inputs, and 

it's a simple matter to implement this particular computation in 

space and time. However, there is no finite upper bound on the 

size of input strings that this abstract machine can deal with. The 

set of six quadruples yields a mathematically well defined and 

effective procedure for adding two strings, each of which 

contains in excess of, say, 10100000000000000000000 1's. And although 

it may be a simple matter to construct an implementation of the 

machine capable of carrying out computations on small input 

numbers, it's not physically possible for any such 

implementation to carry out the computation for the 

astronomical inputs above. Hence no physical implementation of 

this simple four state TM can deal with the full range of possible  

inputs.  

 So, in general, the class of counterfactual cases on 

alternative inputs with which a physical realization can cope is 

by necessity limited – not all counterfactual cases will be 

supported by any physical device implementing any TM. And 

this renders the appeal to counterfactuals inescapably ad hoc. 

The restrictive strategy demands that the mapping be able to 

support counterfactual sequences of transitions on inputs not 

actually given - but precisely how many inputs not actually 

given? One, two, twenty million? For any implementation, there 

will be a finite upper bound on the size of input string it can 

process, and beyond that size there will be infinitely many 

potential inputs for it will not be able to perform the salient 

computation. 

 This indicates that there is no clear or principled cut 

off point demarking ‘genuine’ implementations from ‘false’ ones 

in terms of counterfactuals. As another, more common place, 

illustration of the ad hoc nature of the appeal to counterfactuals, 

consider a standard pocket calculator that can intake numbers up 

to, say, 6 digits in decimal notion. Is this a ‘false’ realization of 

the corresponding algorithm for addition, since it can’t calculate 

106 + 106? It’s an approximate instantiation which is nonetheless 

exceedingly useful for everyday sums. It will always be a matter 

of degree how many counterfactuals can be supported, where a 

single run on one input is the minimal case. Where in principle 

can the line be drawn after that? It’s a matter of our purposes and 

goals as interpreters and epistemic agents, and is not an objective 

question about the ‘true’ nature of the physical device as an 

implementation. In some cases we might only be interested in 

the answer for a single input, a single run. 

 Hence for a physical device to successfully ‘perform a 

computation’ is distinct from ‘fully instantiating a computational 

formalism’. Performing a computation is an occurrent series of 

events, an actual sequence of physical state transitions yielding 

an output value in accord with the normative requirements of the 

mapping from abstract formalism to physical process. And this 

can be satisfied in the case of computing the value of a single 

output on a given input. In contrast, instantiating a complete 

computational formalism is a much more stringent and 

hypothetical notion, requiring appeal to counterfactuals, and as 

above, this will only ever obtain as a matter of degree. In light of 

this distinction, it is clearly possible for a physical device to 

successfully perform a computation without instantiating a 

complete computational formalism, which distinction in turn 

fatally undermines the theoretical force of counterfactuals in 

attempting to determine whether a physical process has 'really' 

performed a computation. 

 In this section I've argued that the question of whether 

a given physical process or device implements a computational 

formalism does not have a proper yes/no answer, and even in the 

most clear cut and paradigmatic case of a custom designed 

artefact, the implementation is a finitely bounded approximation 

which must fall far short of the abstract ideal. And the problem 

of error noted in the preceding section can also be seen to lend 

strong support to the claim that there is no realist true/false 

answer. Even in the case of a custom designed artefact executing 

a single run on one input, there is always a non-zero probability 

of error, which indicates that the physical device is merely a 

concrete 'estimate' of the abstract mathematical blueprint, and 



satisfies the normative procedures only as a matter of degree. 

The artefact may actually compute the correct value in the given 

case, but suppose we then start considering the counterfactual 

class of alternative inputs, and on one of these possible 

alternative runs it would have made an error and outputted an 

incorrect value. Surely this very genuine counterfactual 

possibility does not undermine the actual case, and support the 

claim that the machine does not 'really' implement the intended 

algorithm. But then neither does tactic (ii) successfully rule out 

↑MR* (nor weaker but extremely wide ranging versions of 

↑MR). 

 Furthermore, Bishop has importantly extended the 

SMA strategy to show that any predetermined finite set of 

counterfactuals can be accommodated on this approach. From 

this I would conclude that the underlying and more general 

constraint of concern to those who would delimit the range of 

physical implementation is neither causal nor counterfactual. 

Instead, the point to emphasize is that in ↑MR* exercises of this 

sort, the mapping is entirely ex post facto. The abstract 

procedural ‘trajectory’ is already known and used as the basis for 

interpreting various state transitions in the open system and 

hence characterizing it as an implementation. As long as this ex 

post facto tactic is allowed, then even finite sets of 

counterfactuals can be included. And as emphasized above, our 

actual computational artefacts are themselves only capable of 

handling finite sets of counterfactuals. Hence the pivotal issue is 

not counterfactuals but rather the ex post facto character of the 

mapping. I will return to this theme in a subsequent section of 

the paper. 

6     SYNTAX, SEMANTICS, PHYSICS 

At the abstract, formal level, computation is an essentially 

syntactic phenomenon, and how we choose to interpret 

arrangements of matter and energy as constituting, say, tokens of 

an abstract syntactic type, and thus specifying an implementation 

of the basic computational vocabulary, is entirely independent of 

physical composition. For example, in the downward ↓MR 

direction there is a more or less limitless diversity in the ways in 

which material patterns and arrangements can be viewed as 

implementing the binary notation of ‘0’ and ‘1’, from ink marks 

on a piece of paper, stones placed in wooden boxes, patterns on 

old-fashioned punch cards, electric voltages, beer cans 

positioned on rolls of toilet paper, … And this applies in the 

reverse ↑MR direction as well, wherein the same stones placed 

in wooden boxes can be interpreted as implementing any number 

of distinct computational formalisms.  

Classical computation is rule-governed syntax 

manipulation, and it is no more intrinsic to physical 

configurations than is syntax itself. It is also worth observing 

that discrete states are themselves idealizations, since the 

physical processes that we interpret as performing computations 

are in fact continuous, and we must abstract away from the 

continuity of the underlying substrate and impose a scheme of 

conventional demarcations to attain discrete values. Hence even 

this elemental building block of digital procedures must be 

projected on to the natural order from the beginning. The 

irresistible conclusion to be drawn is that there is a fundamental 

gap separating ‘concrete’ physical reality from the human-based 

ascriptions of abstract syntactic features. 

 In turn, there is yet another fundamental gap 

separating abstract syntactic features from their semantic 

interpretation. Just as syntax is not intrinsic to physics, so too 

semantics is not intrinsic to syntax. Just as being an instance of 

the spoken English sentence ‘The cat is on the mat’ is not an 

inherent property of the sound waves constituting any particular 

utterance token, so too, the associated proposition comprising 

the interpretation of the utterance is not intrinsic to the abstract 

syntactic structure. Instead, the associated meaning is determined 

via arbitrary human convention, and the same syntactic item 

could just as well have had the interpretation currently expressed 

in English by ‘The rat is on the table’ or ‘The dog is on the 

hearth’.  

In the context of classical computation, as above, one 

of the key constraints in the notion of an effective procedure is 

that the rules can be followed 'mindlessly', i.e. without knowing 

what the manipulated symbols are supposed to mean.  As a 

consequence, there is no unique meaning determined by the 

procedure as such, and a multitude of distinct and incompatible 

interpretations are always possible. In the simple example given 

previously, a Turing machine ‘intended’ to compute the values 

of a particular truth function, say inclusive disjunction, can be 

easily reinterpreted as computing conjunction instead, simply by 

flipping our interpretation of the symbols ‘0’ and ‘1’. And the 

same procedure interpreted as computing conjunction could 

instead be construed as computing the values of the arithmetical 

function of multiplication. restricted to the numerical inputs 0 

and 1. Yet no causal nor counterfactual features of the device 

have been altered by these reinterpretations, which indicates that 

neither of these factors is sufficient to ground claims concerning 

the purported ‘realist’ or non-observer-dependent status of 

computation in the physical world.      

Similarly, formal systems in general are such that the 

transformations on symbols are not specified with reference to 

their intended interpretation. Many classical negative results in 

mathematical logic stem from this separability between formal 

syntax and meaning. The various upward and downward 

Löwenheim-Skolem theorems show that formal systems cannot 

capture intended meaning with respect to infinite cardinalities. 

As another eminent example, Gödel’s incompleteness results 

involve taking a formal system designed to be ‘about’ the natural 

numbers, and systematically reinterpreting it in terms of its own 

syntax and proof structure. As a consequence of this 

‘unintended’ interpretation, Gödel is able to prove that 

arithmetical truth, an exemplary semantical notion, cannot, in 

principle, be captured by finitary proof-theoretic means. 

In summary, there are two fundamental gaps 

separating formal procedures, standardly interpreted as 

computing the values of given functions, from the physical 

processes that we construe as implementing such procedures. 

First there is the gulf dividing the intended semantic 

interpretation from the bare syntactic formalism, and second 

there is the chasm between abstract syntactic formalism and 

physical reality. In both cases the gaps can only be bridged by an 

act of purely conventional human interpretation. And it is in this 

sense that computation in the physical world is inherently 

observer dependent.    

 

 

7   COMPUTATION AND PRAGMATICS  
 



I would now like to propose a different perspective on the issue. 

Rather than distinguishing ‘true’ from ‘false’ cases of 

implementation, what these and other proposed  constraints do 

instead is to go some distance in distinguishing interesting, 

conceptually rich and pragmatically useful implementations 

from the many uninteresting, trivial and useless cases that 

abound in the space of possibility. It’s certainly true that there is 

no pragmatic value in most interpretive exercises compatible 

with ↑MR and ↑MR*. Ascribing computational activity to 

physical systems is useful to us only insofar as it supplies 

informative outputs, which in most cases will come down to new 

information acquired as a result of the implemented calculation.  

 So, interesting and useful observer dependent 

computation takes place when we can directly read-off 

something that follows from the implemented formalism, but 

which we didn’t already know in advance and explicitly 

incorporate into the mapping from the start. That’s the incredible 

value of our computational artefacts, and it’s the only practical 

motivation for playing the interpretation game in the first place.  

Hence a crucial difference between our computational artefacts 

and the attributions of formal structure to naturally occurring 

open systems, as employed by ↑MR* exercises, is that the 

mapping in the latter case is entirely ex post facto and thus 

supplies us with no epistemic gains. The abstract procedural 

‘trajectory’ is already known and used as the basis for 

interpreting various state transitions in the open system and 

hence characterizing it as an implementation. In sharp contrast, 

we can use the intended interpretation of our artefacts both to 

predict their future behaviour, as well as discover previously 

unknown output values automatically.  

 And this is obviously why an engineered correlation 

obtains between fine-grained causal structure and abstract formal 

structure in the case of our artefacts – we want them to be 

informative and reliable! We also want them to be highly 

versatile, and this is where counterfactual considerations come to 

the fore in practice: over time we can do runs on a huge number 

of different inputs, and in principle the future outputs follow as 

direct consequences of the intended interpretation.  So a physical 

system is useful to us as a computer only when its salient states 

are distinguishable by us with our measuring devices, and when 

we can put the system into a selected initial state to compute the 

output of our chosen algorithm on a very wide range of specific 

input values. 

 These pragmatic considerations supply clear and well 

motivated criteria for differentiating useful from useless cases of 

physical implementation. And I would advocate this type of 

pragmatic taxonomy in lieu of attempts to give overarching 

theoretical constraints purporting to distinguish ‘true’ from 

‘false’ cases. Some basic desiderata for pragmatically valuable 

implementations include (a) fully automatic, (b) reliable, (c) 

versatile in the sense of computing values for a wide range of 

different inputs (d) non ex post facto (e) yielding increased 

predictive power with regard to future physical states of  the 

implementing mechanisms, (f) possessing technologically 

manipulable initial configurations and output configurations 

detectable by our measuring devices and (g) physical rather than 

purely abstract constraints on the input and output 

characterizations. 

   
 

8     CTM REVISITED 
 

The last desideratum above supplies a relevant link to one of the 

opening themes of the paper, viz., defending CTM against SMA-

based charges of empirical vacuity. When it comes to physical as 

opposed to purely abstract computation, we often want to place 

physical constraints on the characterization of inputs and 

outputs. In other words, the abstract inputs and outputs are given 

canonical physical interpretations. So the device must be such 

that it has certain types of causal powers to allow it to behave in 

the desired manner. For example, a stone or a bucket of water 

will never be able to pass the Turing test (TT), because the 

system lacks the appropriate causal powers. In order to pass, the 

computational device must produce English sentences as output, 

and Searle's wall can't do this. It may output some thermal 

energy that we could further interpret as code for the appropriate 

English sentence, but then we as observers are performing an 

extra step of interpretation which should not be required. And 

this 'test' could not be interactive like the TT unless the mapping 

from Searle's wall to the computational procedure were not ex 

post facto (if it were, then we would have to settle for canned 

'exchanges' or sample dialogues computed after the fact). At 

least in the CRA, the set-up has the ability to interactively 

process the relevant physically specified input patterns and 

produce output in recognizable/readable Chinese syntax. 

 Hence I would advance a purely formal account of 

computation itself, as well as the SMA version of physical 

implementation, but still disagree with the view that MTC alone 

is sufficient to provide a full computational theory of particular 

subject disciplines, such as a computational theory of vision, or a 

computational theory of the mind. These are particular 

applications of MTC, and will require additional resources 

appropriate to the phenomena and subject areas in question. In 

this respect SMA is not in conflict with more relaxed (and 

empirically plausible) versions of CTM. What SMA directly 

threatens, and what has served as the traditional fulcrum in the 

dialectic, is the Computational Sufficiency Thesis (CST), which 

maintains that merely implementing a computational formalism 

of the appropriate sort constitutes a sufficient condition for 

mentality in the physical world. 

 It is salient to note that from a normal scientific 

perspective, CST is curious indeed. There are many different 

levels of description and explanation in the natural world, from 

quarks all the way to quasars. But there is no comparable 

sufficiency thesis in chemistry, biology, geology, astronomy. In 

other 'special sciences', membership in the corresponding level 

of description is a matter of degree and scientific utility, not a 

matter of some uniformly applicable sufficient condition, an 

essential or intrinsic property. 'Being a rock' is in no way an 

intrinsic property of the conglomerations of particles categorized 

as such, and this level of description is not captured by any 

simple sufficiency thesis. In turn, I would diagnose much of the 

controversy over CTM, the trivialization arguments, and 

concomitant defensive critiques of SMA to be engendered by ill 

advised allegiance to CST. The CTM camp places far too great a 

theoretical burden on computation alone. How could the mere 

fact of implementing the 'right' type of abstract procedure be 

enough to magically transform an insentient arrangement of 

matter and energy into a genuine cognitive system?  

 In contrast, I would argue that much more is required 

− the system must be anchored in and interact with the real 



world in a host of rich and multifaceted ways not satisfied by a 

mere stone or a bucket of water. In terms of a computationally 

based science of mind, a number of pragmatic and application-

specific considerations should come to the fore, to critically 

augment the bare and global framework provided by MTC and 

SMA. Ideally, when treating the highly complex physical 

organism as implementing some abstract computational 

procedure, the ascribed formal structure should supply the high 

level organizational key for the underlying causal structure 

enabling the system to behave in the ways that it does, i.e. in the 

ways salient to its status as a cognitive system. Concomitantly, 

ascribed computational structure would then provide the high 

level (and empirically testable) key for predicting its future 

behaviour.  

 So, even if we were to grant (purely for the sake of 

argument and illustration) that the brain can be interpreted as 

implementing something like Fodor’s [15] Language of Thought 

(LOT), still, this would not be an intrinsic property of the brain 

as a biochemical mechanism. Obviously, there would be no 

scientific interest in a mere ad hoc mapping from LOT onto the 

brain, although in principle this may be possible, a la ↓MR*. 

Instead, for a theoretically substantive approach, there would be 

a myriad of pre-existing and empirically intransigent ‘wet-ware’ 

constraints that the mapping would have to satisfy, in order to 

respect the salient causal structure of brain activity as discovered 

by neuroscience. The largely independent body of functional and 

anatomical data from neuroscience would supply a host of highly 

non-trivial restrictions on how the physical system itself is 

characterized and what the material state transitions should look 

like that are interpreted as implementations of the abstract 

computational procedures. A scientifically significant mapping is 

not free to view the arrangement of matter and energy 

comprising the human brain in terms of brain-irrelevant aspects 

such as cosmic ray bombardment, gravitational fields, arbitrary 

molecular kinetics, etc. Instead, it must restrict itself to salient 

causal factors pertaining to the physical system's time-evolution 

when viewed as a brain. So a version of Chalmers' causal 

regularities between states would in fact obtain in this more 

regimented and specialized case, because, like a standard 

computational artefact, the brain must perform the implemented 

computational procedures automatically and reliably.  

 If a physical system when viewed as a brain were 

methodically interpretable as implementing the LOT, this would 

entail that the transitions between the various neurological states 

instantiating respective tokens of mentalese symbols, obeyed a 

causal progression in accord with the transformation of these 

symbols as prescribed by the abstract computational formalism. 

If this could be done, it would provide a scientifically fruitful 

and explanatorily powerful key to organic cognition, because it 

would constitute a unifying perspective tying together actual 

brain function and the standard belief-desire framework of 

intentional explanation, as enshrined in the LOT.  

 This abstract computational interpretation of brain 

activity would also need to mesh with the input and output 

capabilities that we want to explain via the attribution of internal 

cognitive structure, e.g. intelligent linguistic performance as in a 

Turing test. So the computational level of description would 

have to conform with observable input and output patterns 

interpreted symbolically, as, say, sentences in an English 

conversation, to yield successful predictions of both new outputs 

given novel inputs, and predictions correctly describing new 

brain configurations entailed by the theory as realizations of the 

appropriate formal transformations required to produce the 

predicted symbolic output.  

 Such a project would have exceedingly non-trivial 

scientific/empirical value, not in the least undermined by 

Putnam-Searle type arguments. Objections of this kind have 

polemical force only against CST, and in light of the many 

empirical constraints and opportunities for testing predictions of 

both external behaviour and internal brain state, the CST would 

be rendered a completely gratuitous consideration. There is no 

single and simple sufficiency condition in this highly complex 

and multifaceted scientific enterprise. Merely implementing the 

LOT does not magically transform the brain into a mind. On this 

more scientifically plausible version of CTM, computation 

supplies the appropriate high level description of the brain for  

prediction and explanation of actual events, as well as an 

indispensible bridge between causally efficacious brain structure 

and high level accounts in terms of content bearing mental states. 

But computation alone does not make a mind. So I would argue 

that we should retain both MTC and SMA, reject CST, and 

embrace a more empirically grounded version of CTM. When 

faced with the triviality challenge that even a bucket of water 

could be interpreted as implementing the LOT, an advocate of 

this latter version of CTM could happily respond "Yes, and so 

what?". 
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