
Algorithms Implemented in Space and Time

Paul Schweizer
1

Abstract. A fundamental question regarding computation

viewed as a physical phenomenon concerns the criteria under

which a physical system can properly be said to implement an

abstract formal procedure. I advocate the Simple Mapping

Account (SMA) and defend this position against a number of

critiques, including semantic and causal accounts. In line with

SMA I support the conclusion that realizing or implementing an

abstract computational procedure is not an intrinsic property of

physical systems, but rather is based on a purely observer-

dependent act of ascription. This 'anti-realist' conclusion has

traditionally been invoked in an attempt to undermine the

Computational Theory of Mind (CTM), which in turn has led

supporters of CTM to criticize SMA and propose competing

accounts. In contrast, I argue that the version of CTM directly

threatened by SMA is one that should not be accepted in any

case, and propose an alternative strategy for those who would

defend CTM against charges of 'triviality'. 1the

1 INTRODUCTION

A fundamental question regarding computation viewed as a

physical phenomenon concerns the criteria under which a

physical system can properly be said to implement an abstract

formal procedure. A very straightforward and elegant account

articulated by Putnam [1] is based on a simple mapping between

formalism and physical structure. Accordingly, a physical

system P performs a computation C just in case there is a

mapping from the physical states of P to the abstract

computational states of C, such that the transitions between

physical states reflect the abstract state transitions as specified by

the mapping. The minimalism and elegance of the Simple

Mapping Account (SMA) make it the natural choice as the in-

principle standard for physical implementation − it takes the

Mathematical Theory of Computation (MTC) as its starting point

and adds no substantive assumptions.

 Central to MTC is the intuitive notion of an effective

or ‘mechanical’ procedure, which is simply a finite set of

instructions for syntactic manipulations that can be followed by a

machine, or by a human being who is capable of carrying out

only very elementary operations on symbols. A key constraint is

that the machine or the human can follow the rules without

knowing what the symbols mean. The notion of an effective

procedure is obviously quite general – it doesn’t specify what

form the instructions should take, what the manipulated symbols

should look like, nor precisely what manipulations are involved.

The underlying restriction is simply that they are finitary and can

proceed ‘mindlessly’ i.e. without any additional interpretation or

understanding. So there are any number of different possible

1
 Institute for Language, Cognition and Computation, School of

Informatics, Univ. of Edinburgh, EH8 9AD, UK. Email:

paul@inf.ed.ac.uk.

frameworks for filling in the details and making the notion

rigorous and precise. Turing’s ‘automatic computing machines’

[2] (TMs), supply a very intuitive and elegant rendition of the

notion of an effective procedure, and in the ensuing discussion

TMs will be taken as the conceptual archetype. But there is a

variety of well known alternative frameworks, including

Church’s Lambda Calculus, Gödel’s Recursive Function Theory,

Lambek’s Infinite Abacus Machines, etc.

Turing machines and other types of computational

formalisms are mathematical abstractions and don’t exist in real

time or space. In order to perform actual computations, an

abstract Turing machine must be realized by a suitable

arrangement of matter and energy, and as Turing observed long

ago [3], there is no privileged or unique way to do this. Like

other abstract structures, Turing machines are multiply realizable

- what unites different types of physical implementation of the

same abstract TM is nothing that they have in common as

physical systems, but rather a structural isomorphism expressed

in terms of a higher level of description. Hence it’s possible to

implement the very same computational formalism using modern

electronic circuitry, a human being executing the instructions by

hand with paper and pencil, a Victorian system of gears and

levers, as well as more atypical arrangements of matter and

energy including beer cans serving as tokens of the symbol ‘1’

and rolls of toilet paper serving as the tape.

Adopting notational conventions introduced in

Schweizer [4], let us call this ‘downward’ multiple realizability,

wherein, for any given abstract structure or formal procedure,

this same abstract structure can be implemented via an arbitrarily

large number of distinct physical systems. And let us denote this

type of downward multiple realizability as ‘↓MR’. After the

essential foundations of MTC were laid, the vital issue then

became one of engineering – how best to utilize state of the art

technology to construct rapid and powerful physical

implementations of our abstract mathematical blueprints, and

hence perform actual high speed computations automatically.

This is a clear and deliberate ↓MR endeavour, involving the

intentional construction of artefacts, painstakingly designed to

follow the algorithms that we have created. From this top-down

perspective, there is an obvious and pragmatically indispensible

sense in which the hardware that we have designed and built can

be said to perform genuine computations in physical space-time.

2 COMPUTATIONAL THEORY OF MIND

According to the widely embraced computational theory of mind

(CTM), which underpins cognitive science, Strong AI and

various allied positions in the philosophy of mind, computation

(of one sort or another) is held to provide the scientific key to

explaining and, in principle, reproducing mentality artificially.

The paradigm maintains that cognitive processes are essentially

computational processes, and hence that intelligence in the

natural world arises when a material system implements the

appropriate kind of computational formalism. Various critics of

CTM have put forward a family of 'trivialization arguments',

stemming directly the SMA above. The arguments are based on

the contention that the notion of a physical system implementing

a computational formalism is overly liberal to the point of

vacuity, since a mapping will obtain between any sufficiently

complex physical system and virtually any computational

formalism. This would appear to trivialize CTM, since whatever

computational formalism is held to account for our cognitive

attributes will also be realized by a myriad of other ‘deviant’

arrangements of matter and energy, from buckets of water to

microwave ovens to possibly even stones. By CTM it would

seem to follow that such obviously insentient systems have the

same cognitive attributes that we do, since they can be

interpreted as implementing exactly the same computations. For

example, assuming SMA, Putnam offers a proof of the thesis

that every open physical system can be interpreted as the

realization of every finite state automaton. In a closely related

vein, Searle [5] argues that virtually any physical system can be

interpreted as following virtually any program. Thus hurricanes,

our digestive system, the motion of the planets, even an

apparently inert lecture stand, all possess a level of description at

which they instantiate any number of different abstract formal

procedures. The stomach has inputs, internal processing states

and outputs, and if one wanted to, one could interpret the inputs

and outputs as code for any number of different symbolic

processes. And in [6] Searle attempts to illustrate the extreme

conceptual looseness of the notion of implementing an abstract

formalism by claiming that the molecules in his wall could be

interpreted as running the WordStar program.

 In this manner, critics of CTM utilize SMA to argue

for 'multiple realization' in the form of a one-to-many-relation

between physical structure and abstract interpretation. Again,

adopting notational conventions introduced in Schweizer, let us

label multiple realizability in this direction, wherein any given

physical system can be interpreted as implementing an arbitrarily

large number of different computational formalisms ‘upward

MR’ and denote it as ‘↑MR’. The basic import of ↑MR is the

non-uniqueness of computational ascriptions to particular

physical systems. In the extreme versions suggested by Putnam,

Searle, and more recently Bishop [7], there are apparently no

significant constraints whatever – it is possible in principle to

interpret every open physical system as realizing every

computational procedure. Let us call this extreme version

‘universal upward MR’ and denote it as ‘↑MR*’. Mere ↑MR is

weaker than ↑MR*, since the former does not assert that there

are no salient constraints, and hence ↑MR would be consistent

with the denial that, e.g., the molecules in Searle’s wall can in

fact be interpreted as implementing the WordStar program,

although every physical system is still interpretable as

implementing some very large set of distinct computations.

 In the present discussion I will not argue for or against

↑MR* but restrict consideration to the more modest ↑MR. In

view of ↑MR, it’s still never the case that any given

computational interpretation of a physical system is privileged or

unique, and this is far more difficult to deny than the powerful

and broad sweeping ↑MR*. In turn, the non-intrinsic status of

computation would seem to follow as a direct consequence of

mere ↑MR alone. As long as there are at least two distinct

interpretations, there is no objective fact of the matter regarding

which computation is ‘actually’ being performed, nor which of

the alternatives is the ‘correct’ or ‘real’ account. And this is

because the computation itself is not an intrinsic property of the

physical device, and is instead dependent on a human observer to

supply the various alternative interpretations.

 This is not to say that it’s purely a matter of caprice,

and that there are no objective constraints that the interpretation

must satisfy. Instead, the situation is perhaps comparable to the

distinction between natural kinds, such as water, and

conventional kinds, such as being a table. Even though

membership in either kind might be based on criteria whose

satisfaction (or not) is a matter of objective truth, still the criteria

for conventional kinds are not intrinsic, and there is nothing

about the particular arrangement of matter now holding up my

desk top computer which makes it intrinsically a table. The

salient criteria stem purely from human practices and

stipulations rather than from, e.g., fundamental microstructure or

natural law.

3 THE SEMANTIC ACCOUNT

Advocates of CTM typically attempt to defend their paradigm

against such trivialization arguments by rejecting SMA as itself

overly liberal, and advocating additional constraints on the

notion of ‘true’ or ‘genuine’ implementations, to distinguish

them from the many presumably ‘false’ cases countenanced by

SMA. In this manner, the hope is that the myriad of apparent

counterexamples generated by SMA will be screened off as

‘fakes’, and the cogency of CTM thereby preserved. Three

primary categories of constraint put forward by defenders of

CTM include the semantic account (SA), the causal account and

the counterfactual account. Each of these will be explored and

critiqued in turn, beginning with the first.

 Concerning the semantic account of computation, the

‘received view’ in the philosophy of mind is that computation

must involve representational content. This view is encapsulated

in Fodor's [8] famous edict that there is "no computation without

representation". According to SA, computation is stipulated to be

the processing of representations, and only physical states that

are ‘representational’ can serve as implementations of the

computational states in question. However, I will presently argue

that this move is infelicitous for a number of reasons, and later in

the paper will propose an alternative strategy for those who

would defend CTM against trivialization. The SA is infelicitous

because:

 (1) It advocates a departure from MTC, whereas MTC

is the canonical source of our conceptual grasp of computation.

As above, classical computation is defined as rule governed

symbol manipulation, and a key proviso is that the rules can be

followed without any knowledge of what the ‘symbols’ are

supposed to mean. As Piccinini [9] aptly observes,

representational content plays no role whatever in MTC.

 (2) MTC is clear and rigorous, while the further

restrictive notion of ‘representation/reference’ invoked by SA is

imprecise and problematic. Hence this is a retrograde step from

clarity and generality to narrowness and potential obscurity.

Indeed, given the notorious difficulties in providing a

satisfactory rendition of ‘representation’ in objective scientific

terms, SA is in the rather ironic position of promulgating a

restriction on the global notion of computation in the physical

world that is itself unlikely to be successfully naturalized.

 (3) Our computational artefacts are the paradigmatic

instances of physical computation and can yield any number of

counterexamples to SA. A Turing machine designed to compute

the values of a particular truth function, say inclusive

disjunction, can be easily reinterpreted as computing

conjunction instead, simply by flipping the intended reference of

the symbols ‘0’ and ‘1’. There is no independent fact of the

matter regarding what these syntactic tokens ‘really represent’ −

their referential value is entirely dependent upon an arbitrary

scheme of interpretation. As a consequence, there is no unique

meaning determined by the formal procedure as such, and a

multitude of distinct and incompatible interpretations are always

possible. This highlights a fundamental flaw related to (1) above:

computation is essentially pure syntax manipulation, and how the

syntax is interpreted is an additional feature not intrinsic to

computation per se. SA stipulates that this extrinsic feature is

essential, even though the discipline of Computer Science makes

no such claim. I would argue that SA commits the mistake of

conflating ‘computation’ simpliciter with ‘syntax manipulation

under an intended interpretation’. But of course, the formal

syntax manipulation can take place in the absence of any

interpretation. Hence in a very clear, rigorous and universal

sense, contra Fodor there is computation without representation,

because semantics is purely extrinsic to effective procedures as

such.

 (4) The primary reason for making the foregoing

conflation and attempting to tether the notion of computation to

some story about representation does not stem from any issues

concerning the general theory of computation itself, but rather is

driven by a particular stance within a specialized explanatory

project in the philosophy of mind. And this is an overly parochial

source for deriving restrictions on physical computation in

general.

 In response to these infelicities, I would contend that

SA is not a viable approach to computation per se. So rather than

adopt this limiting and undermotivated standpoint, we should

instead take MTC, one of the towering intellectual achievements

of 20th century theorizing, as the canonical framework for

understanding computation in the general abstract sense, and we

should adopt SMA as the global, theory-neutral template for the

concomitant notion of physical implementation. These two

standards are utterly rigorous, comprehensive and impartial, and

are not themselves in any need of tweaks or alterations. As noted

above, the main reason for the restrictions imposed by SA stems

not from the general nature of computation, but instead serve to

protect vested theoretical interests held by other disciplines that

assume computation as a primary ingredient in their specialized

explanatory frameworks. In section 7. I will return to the issue

of CTM and propose an alternate strategy for those who would

defend the paradigm against charges of empirical vacuity.

4 CAUSAL CONSTAINTS

In response to ↑MR* and the associated trivialization arguments,

a number of other authors including Chrisley [10], Chalmers

[11], Copeland [12], and Block [13] propose further constraints

on computational interpretations. Two of the most intuitively

compelling restrictions are supplied by (i) causal and (ii)

counterfactual considerations. Although both (i) and (ii) are

plausible and natural suggestions, I will argue that neither are

ultimately unsuccessful in blocking ↑MR*.

 Regarding point (i), Chalmers, for example, contends

that it is a necessary condition (for counting as a legitimate

implementation) that the pattern of abstract state transitions

constituting a particular run of the computational procedure on a

particular input, must map to an appropriate transition of

physical states of the machine, where the relation between

succeeding states in this sequence is governed by proper causal

regularities. This suggestion constitutes quite a natural and

immediate corrective measure in response to the extreme laxity

that might seem to underwrite ↑MR*, since the physical states in

the chronological progression exploited by Putnam's method

have no nomological connection.

 Nevertheless, I would argue that the constraint is too

strong in general and rules out cases which should not be

excluded. There are many instances of sequences of physical

states that we count as realizing a particular computation simply

because, according to our abstract blueprint, the correct series

of physical sate transitions actually occurs. For example,

standard computers rely on a hierarchy of levels of description

pertaining to 'virtual machines', and it is entirely natural to

construe high level virtual machines as genuinely implementing

computations, even though the states at this level of description

are not themselves causally connected. Furthermore, we do not

need to know anything about the complex underlying

architecture nor its causal underpinning in the electromechanical

hardware, in order to ascertain that the respective computation is

successfully being carried out. All we need to take into account

is what actually happens at the given level of virtual machine

description.

 In an analogous manner, consider the following

sequence of Turing Machine tape configurations, where each

digit corresponds to the contents of one square of the tape, and

the underlined digit to the currently scanned square:

 Begin 110100

 110100

 110100

 110100

 110100

 110100

 110000

 110000

 111000

 111000

 111000 Halt

This sequence is the implementation of a particular program for

addition positive integers in monadic notation, and constitutes a

computation of 2+1=3. Yet the entries in this sequence bear no

decipherable causal relations to each other, and now that the

sequence is completed it can be revisited at any future date and

still confirmed as a computation of 2+1=3, even though there is

no longer any causal or even temporal connection between the

already finished entries in the sequence of digits constituting the

implementation.

 Similarly, in various situations where a human being is

following an abstract computational procedure, the transition

from one state to the next is not causal in any straightforward

physical or mechanical sense. When I take a machine table set of

instructions specifying a particular TM and then perform a given

computation with pencil and paper by sketching the

configuration of the tape at each step in the computation, the

transitions sketched on the piece of paper are not themselves

causally connected: one sketch in the sequence in no way causes

the next. It is only through my understanding and intentional

choice to execute the procedure that the next state appears on the

paper. Clear-cut physical causation of the sort required by

Chalmers comes in only very indirectly, as in light rays

illuminating the page and allowing me to see the symbols, and at

an elementary and extraneous level, as in the friction between

the pencil lead and the paper’s surface causing various marks to

appear.

 Yet this is a perfectly legitimate and indeed

paradigmatic case of implementing a Turing machine. And

likewise in the Chinese room, it is merely through Searle’s

understanding of English, his voluntary choice to behave in a

certain manner, and a number of highly disjointed physical

processes (finding bits of paper in a certain location, turning the

pages in the instruction manual, all mediated by the human

agent) that the implementation takes place. Searle, as an

intentional agent, is choosing to cause various things to happen

in accordance with a set of rules that he chooses to follow. And

Searle's intentionally characterized behaviour is not something

that we currently have any hope of ever being able to recast in

terms of causal regularities at the purely physical level of

description.

 One might rejoin that, at least in principle, it's still

theoretically possible to characterize the overall system purely in

terms of natural laws and causal regularities, a la Dennett's [14]

Martian superscientist, who doesn't require the intentional stance

to predict human behavior. And while this may well be true in

principle, I don't think it really helps, since we can't do so, and

we're the ones interpreting Searle as performing a computation.

One could perhaps simply assert that, since Searle is indeed

performing a computation, then there must be the appropriate

sort of causal regularities underpinning his behavior, even

though we don't know what they are and can't foresee a time in

the future when we will. But why must there be such

regularities? ‒ presumably because Searle is performing a

computation and the causal account is true... But such a line of

reasoning would clearly beg the question. Undoubtedly Searle's

behavior must have a cause, but from this it does not follow that

it is governed by any physically characterizable regularities that

even remotely resemble the structure of the algorithm.

 Furthermore, we can let chance and randomness into

the scenario. Suppose at each step in the computation Searle flips

a coin, and will only follow the rule if the coin comes up heads.

And suppose further that, for a particular run on an input

question, the coin comes up heads every time and Searle

successfully outputs the answer. He has still implemented the

formalism, even though this outcome was not predictable on the

basis of causal regularities or natural law.

 And how could we know that the right causal

connections are preserved via Searle's agency, even in the cases

where he sincerely intends to follow the rule book? ‒ how do we

know that at some crucial stage he did not misunderstand the

rules, and the step he actually intended to perform would have

been a mistake, but that by a slip of attention he did not perform

the step he intended but rather accidentally performed the correct

one? As long as the step was correct we should count this as a

physical realization of the abstract procedure. And indeed, how

do we know that such self cancelling pairs of mistakes don't

sometimes occur in our computational artefacts?

 In such cases, the physical sequences count as

implementations simply because what can be interpreted as the

appropriate states in the procedure occur in the correct linear

order. In other words, the intended mapping, a la SMA, has been

preserved. And this highlights a very key point ‒ the

fundamental criterion is normative rather than causal.

Underlying causal considerations are the wrong level of analysis,

partly because there is then no sense in which error or

malfunction can occur. Physical processes 'obey' natural law-like

regularities in a purely descriptive manner, and over the time

evolution of a physical system the trajectory of states in the

process may or may not correspond to our projected

computational interpretation. If not, then there has been a

'malfunction' in the hardware. But of course, systems governed

by causal regularities cannot malfunction as such, and it is only

at a higher and non-intrinsic level of description that

'breakdowns' can take place. We characterize these phenomena

as hardware malfunctions, not because underlying scientific laws

have been broken, but rather because the intended interpretation,

which is prescriptive and non-intrinsic in nature, has. And there

is always a non-zero probability of error for any algorithms

executed in physical space-time. Files become 'corrupted', signal

transmissions convey 'misinformation', overheating induces

processing 'faults', etc.

 All these mechanically mundane occurrences take

place in complete accord with the causal regularities that govern

the evolution of physical systems through time. Hence their

status as 'malfunctions' has nothing to do with causal

considerations, and they can be interpreted as such only relative

to our projected formal mapping. In such cases, the physical

system fails to count as an implementation on the purely

normative grounds that the correct sequence of states did not

occur, and so our intended mapping is violated. To be sure, there

will be an underlying causal story for why the hardware

performed the way it did, but this has nothing to do with the

question of whether or not the device has successfully

implemented the algorithm in question. Likewise, there will be a

causal story for why the hardware performed the way it did when

our projected interpretation is respected and the physical device

counts as a 'valid' implementation. In both cases the issue of

success or failure is determined relative to our intended

interpretation, and hence is settled on purely normative rather

than causal grounds. And this is in perfect agreement with SMA.

 Questions regarding the mechanics of how the correct

sequence of states happen to occur are not relevant to answering

the question of whether or not the procedure has been physically

implemented. In the Chinese Room we can know that the

procedure has been implemented without knowing how Searle

himself (or his brain) manages to do the requisite internal

processing and control his limbs in order to make the correct

marks on the slips of paper. The physical how is a different

question, and is not on the same level of analysis as that invoked

when determining whether or not the desired computation has

been performed. But this then critically loosens the requirements

for counting a physical system as instantiating a program. As

long as what can be described or interpreted as the correct

sequence of states actually occurs, then the underlying

mechanics of how this takes place are not strictly relevant.

 The right sort of causal connections and regularities

are needed if the instantiation in question is to be fully

automatic, and if we want to be able to rely on the automatic

device to perform systematically correct computations yielding

outputs with the potential to supply us with new information.

And although this is the engineering norm when constructing

and interpreting computational artefacts, it does not exhaust the

general space of possibilities. The causal requirements advocated

by Chalmers constitute (at best) a sufficient but not a necessary

condition – in the general case we must still allow for chance

and human agency to play a role, as well as chronological

sequences of states that are not themselves governed by

overarching causal regularities.

5 COUNTERFACTUAL CONSTAINTS

In line with (ii) above, Chalmers’ proposed counterfactual

requirement is aimed at another apparently ‘slack’ feature

incorporated by Putnam and the SMA, viz. the mapping from

formalism to physical system is defined for only a single run,

and says nothing about what would have happened if a different

input had been given. And it is objected that this is too weak to

satisfy the more rigorous operational notion of being a ‘genuine’

realization. However, in response to Chalmers' (again quite

natural) proposal, it is worth noting that for a physical system to

realize a rich computational formalism with proper input and

output capacities, such as an abstract TM, this will always be a

matter of mere approximation. For example, any given physical

device will have a finite upper bound on the size of input strings

it is able to process, its storage capacities will likewise be

severely limited, and so will its actual running time. In principle

there are computations that formal TMs can perform which, even

given the fastest and most powerful physical devices we could

imagine, would take longer than the lifespan of our galaxy to

execute. Hence even the fastest and most powerful physical

devices we could envision will still fail to support all the salient

counterfactuals.

 It will never be possible to construct a complete

physical realization of an abstract TM – the extent to which the

concrete device can execute the full range of state transitions of

which the abstract machine is capable will always be a matter of

degree. For example, consider the sequence of configurations

exhibited in section 4, which constitute an implementation of a

particular TM program for addition of positive integers

expressed in monadic notation. The extremely simple program

can be specified in terms of the following set of six quadruples

 q11Bq1; q1BRq2; q21Rq2; q2B1q3; q31Lq3; q3BRq4

where the first element in each quadruple (e.g. q1 in the first

quadruple) is the current state, the second element is the

currently scanned symbol (either 1 or B for blank, i.e. 0) the

third element is the overt action (move R or L one square, or

print a 1 or a B), and the last element is the covert ‘act’ of

entering the next state. The exhibited sequence of configurations

depicts the behavior of the machine given 2 and 1 as inputs, and

it's a simple matter to implement this particular computation in

space and time. However, there is no finite upper bound on the

size of input strings that this abstract machine can deal with. The

set of six quadruples yields a mathematically well defined and

effective procedure for adding two strings, each of which

contains in excess of, say, 10100000000000000000000 1's. And although

it may be a simple matter to construct an implementation of the

machine capable of carrying out computations on small input

numbers, it's not physically possible for any such

implementation to carry out the computation for the

astronomical inputs above. Hence no physical implementation of

this simple four state TM can deal with the full range of possible

inputs.

 So, in general, the class of counterfactual cases on

alternative inputs with which a physical realization can cope is

by necessity limited – not all counterfactual cases will be

supported by any physical device implementing any TM. And

this renders the appeal to counterfactuals inescapably ad hoc.

The restrictive strategy demands that the mapping be able to

support counterfactual sequences of transitions on inputs not

actually given - but precisely how many inputs not actually

given? One, two, twenty million? For any implementation, there

will be a finite upper bound on the size of input string it can

process, and beyond that size there will be infinitely many

potential inputs for it will not be able to perform the salient

computation.

 This indicates that there is no clear or principled cut

off point demarking ‘genuine’ implementations from ‘false’ ones

in terms of counterfactuals. As another, more common place,

illustration of the ad hoc nature of the appeal to counterfactuals,

consider a standard pocket calculator that can intake numbers up

to, say, 6 digits in decimal notion. Is this a ‘false’ realization of

the corresponding algorithm for addition, since it can’t calculate

106 + 106? It’s an approximate instantiation which is nonetheless

exceedingly useful for everyday sums. It will always be a matter

of degree how many counterfactuals can be supported, where a

single run on one input is the minimal case. Where in principle

can the line be drawn after that? It’s a matter of our purposes and

goals as interpreters and epistemic agents, and is not an objective

question about the ‘true’ nature of the physical device as an

implementation. In some cases we might only be interested in

the answer for a single input, a single run.

 Hence for a physical device to successfully ‘perform a

computation’ is distinct from ‘fully instantiating a computational

formalism’. Performing a computation is an occurrent series of

events, an actual sequence of physical state transitions yielding

an output value in accord with the normative requirements of the

mapping from abstract formalism to physical process. And this

can be satisfied in the case of computing the value of a single

output on a given input. In contrast, instantiating a complete

computational formalism is a much more stringent and

hypothetical notion, requiring appeal to counterfactuals, and as

above, this will only ever obtain as a matter of degree. In light of

this distinction, it is clearly possible for a physical device to

successfully perform a computation without instantiating a

complete computational formalism, which distinction in turn

fatally undermines the theoretical force of counterfactuals in

attempting to determine whether a physical process has 'really'

performed a computation.

 In this section I've argued that the question of whether

a given physical process or device implements a computational

formalism does not have a proper yes/no answer, and even in the

most clear cut and paradigmatic case of a custom designed

artefact, the implementation is a finitely bounded approximation

which must fall far short of the abstract ideal. And the problem

of error noted in the preceding section can also be seen to lend

strong support to the claim that there is no realist true/false

answer. Even in the case of a custom designed artefact executing

a single run on one input, there is always a non-zero probability

of error, which indicates that the physical device is merely a

concrete 'estimate' of the abstract mathematical blueprint, and

satisfies the normative procedures only as a matter of degree.

The artefact may actually compute the correct value in the given

case, but suppose we then start considering the counterfactual

class of alternative inputs, and on one of these possible

alternative runs it would have made an error and outputted an

incorrect value. Surely this very genuine counterfactual

possibility does not undermine the actual case, and support the

claim that the machine does not 'really' implement the intended

algorithm. But then neither does tactic (ii) successfully rule out

↑MR* (nor weaker but extremely wide ranging versions of

↑MR).

 Furthermore, Bishop has importantly extended the

SMA strategy to show that any predetermined finite set of

counterfactuals can be accommodated on this approach. From

this I would conclude that the underlying and more general

constraint of concern to those who would delimit the range of

physical implementation is neither causal nor counterfactual.

Instead, the point to emphasize is that in ↑MR* exercises of this

sort, the mapping is entirely ex post facto. The abstract

procedural ‘trajectory’ is already known and used as the basis for

interpreting various state transitions in the open system and

hence characterizing it as an implementation. As long as this ex

post facto tactic is allowed, then even finite sets of

counterfactuals can be included. And as emphasized above, our

actual computational artefacts are themselves only capable of

handling finite sets of counterfactuals. Hence the pivotal issue is

not counterfactuals but rather the ex post facto character of the

mapping. I will return to this theme in a subsequent section of

the paper.

6 SYNTAX, SEMANTICS, PHYSICS

At the abstract, formal level, computation is an essentially

syntactic phenomenon, and how we choose to interpret

arrangements of matter and energy as constituting, say, tokens of

an abstract syntactic type, and thus specifying an implementation

of the basic computational vocabulary, is entirely independent of

physical composition. For example, in the downward ↓MR

direction there is a more or less limitless diversity in the ways in

which material patterns and arrangements can be viewed as

implementing the binary notation of ‘0’ and ‘1’, from ink marks

on a piece of paper, stones placed in wooden boxes, patterns on

old-fashioned punch cards, electric voltages, beer cans

positioned on rolls of toilet paper, … And this applies in the

reverse ↑MR direction as well, wherein the same stones placed

in wooden boxes can be interpreted as implementing any number

of distinct computational formalisms.

Classical computation is rule-governed syntax

manipulation, and it is no more intrinsic to physical

configurations than is syntax itself. It is also worth observing

that discrete states are themselves idealizations, since the

physical processes that we interpret as performing computations

are in fact continuous, and we must abstract away from the

continuity of the underlying substrate and impose a scheme of

conventional demarcations to attain discrete values. Hence even

this elemental building block of digital procedures must be

projected on to the natural order from the beginning. The

irresistible conclusion to be drawn is that there is a fundamental

gap separating ‘concrete’ physical reality from the human-based

ascriptions of abstract syntactic features.

 In turn, there is yet another fundamental gap

separating abstract syntactic features from their semantic

interpretation. Just as syntax is not intrinsic to physics, so too

semantics is not intrinsic to syntax. Just as being an instance of

the spoken English sentence ‘The cat is on the mat’ is not an

inherent property of the sound waves constituting any particular

utterance token, so too, the associated proposition comprising

the interpretation of the utterance is not intrinsic to the abstract

syntactic structure. Instead, the associated meaning is determined

via arbitrary human convention, and the same syntactic item

could just as well have had the interpretation currently expressed

in English by ‘The rat is on the table’ or ‘The dog is on the

hearth’.

In the context of classical computation, as above, one

of the key constraints in the notion of an effective procedure is

that the rules can be followed 'mindlessly', i.e. without knowing

what the manipulated symbols are supposed to mean. As a

consequence, there is no unique meaning determined by the

procedure as such, and a multitude of distinct and incompatible

interpretations are always possible. In the simple example given

previously, a Turing machine ‘intended’ to compute the values

of a particular truth function, say inclusive disjunction, can be

easily reinterpreted as computing conjunction instead, simply by

flipping our interpretation of the symbols ‘0’ and ‘1’. And the

same procedure interpreted as computing conjunction could

instead be construed as computing the values of the arithmetical

function of multiplication. restricted to the numerical inputs 0

and 1. Yet no causal nor counterfactual features of the device

have been altered by these reinterpretations, which indicates that

neither of these factors is sufficient to ground claims concerning

the purported ‘realist’ or non-observer-dependent status of

computation in the physical world.

Similarly, formal systems in general are such that the

transformations on symbols are not specified with reference to

their intended interpretation. Many classical negative results in

mathematical logic stem from this separability between formal

syntax and meaning. The various upward and downward

Löwenheim-Skolem theorems show that formal systems cannot

capture intended meaning with respect to infinite cardinalities.

As another eminent example, Gödel’s incompleteness results

involve taking a formal system designed to be ‘about’ the natural

numbers, and systematically reinterpreting it in terms of its own

syntax and proof structure. As a consequence of this

‘unintended’ interpretation, Gödel is able to prove that

arithmetical truth, an exemplary semantical notion, cannot, in

principle, be captured by finitary proof-theoretic means.

In summary, there are two fundamental gaps

separating formal procedures, standardly interpreted as

computing the values of given functions, from the physical

processes that we construe as implementing such procedures.

First there is the gulf dividing the intended semantic

interpretation from the bare syntactic formalism, and second

there is the chasm between abstract syntactic formalism and

physical reality. In both cases the gaps can only be bridged by an

act of purely conventional human interpretation. And it is in this

sense that computation in the physical world is inherently

observer dependent.

7 COMPUTATION AND PRAGMATICS

I would now like to propose a different perspective on the issue.

Rather than distinguishing ‘true’ from ‘false’ cases of

implementation, what these and other proposed constraints do

instead is to go some distance in distinguishing interesting,

conceptually rich and pragmatically useful implementations

from the many uninteresting, trivial and useless cases that

abound in the space of possibility. It’s certainly true that there is

no pragmatic value in most interpretive exercises compatible

with ↑MR and ↑MR*. Ascribing computational activity to

physical systems is useful to us only insofar as it supplies

informative outputs, which in most cases will come down to new

information acquired as a result of the implemented calculation.

 So, interesting and useful observer dependent

computation takes place when we can directly read-off

something that follows from the implemented formalism, but

which we didn’t already know in advance and explicitly

incorporate into the mapping from the start. That’s the incredible

value of our computational artefacts, and it’s the only practical

motivation for playing the interpretation game in the first place.

Hence a crucial difference between our computational artefacts

and the attributions of formal structure to naturally occurring

open systems, as employed by ↑MR* exercises, is that the

mapping in the latter case is entirely ex post facto and thus

supplies us with no epistemic gains. The abstract procedural

‘trajectory’ is already known and used as the basis for

interpreting various state transitions in the open system and

hence characterizing it as an implementation. In sharp contrast,

we can use the intended interpretation of our artefacts both to

predict their future behaviour, as well as discover previously

unknown output values automatically.

 And this is obviously why an engineered correlation

obtains between fine-grained causal structure and abstract formal

structure in the case of our artefacts – we want them to be

informative and reliable! We also want them to be highly

versatile, and this is where counterfactual considerations come to

the fore in practice: over time we can do runs on a huge number

of different inputs, and in principle the future outputs follow as

direct consequences of the intended interpretation. So a physical

system is useful to us as a computer only when its salient states

are distinguishable by us with our measuring devices, and when

we can put the system into a selected initial state to compute the

output of our chosen algorithm on a very wide range of specific

input values.

 These pragmatic considerations supply clear and well

motivated criteria for differentiating useful from useless cases of

physical implementation. And I would advocate this type of

pragmatic taxonomy in lieu of attempts to give overarching

theoretical constraints purporting to distinguish ‘true’ from

‘false’ cases. Some basic desiderata for pragmatically valuable

implementations include (a) fully automatic, (b) reliable, (c)

versatile in the sense of computing values for a wide range of

different inputs (d) non ex post facto (e) yielding increased

predictive power with regard to future physical states of the

implementing mechanisms, (f) possessing technologically

manipulable initial configurations and output configurations

detectable by our measuring devices and (g) physical rather than

purely abstract constraints on the input and output

characterizations.

8 CTM REVISITED

The last desideratum above supplies a relevant link to one of the

opening themes of the paper, viz., defending CTM against SMA-

based charges of empirical vacuity. When it comes to physical as

opposed to purely abstract computation, we often want to place

physical constraints on the characterization of inputs and

outputs. In other words, the abstract inputs and outputs are given

canonical physical interpretations. So the device must be such

that it has certain types of causal powers to allow it to behave in

the desired manner. For example, a stone or a bucket of water

will never be able to pass the Turing test (TT), because the

system lacks the appropriate causal powers. In order to pass, the

computational device must produce English sentences as output,

and Searle's wall can't do this. It may output some thermal

energy that we could further interpret as code for the appropriate

English sentence, but then we as observers are performing an

extra step of interpretation which should not be required. And

this 'test' could not be interactive like the TT unless the mapping

from Searle's wall to the computational procedure were not ex

post facto (if it were, then we would have to settle for canned

'exchanges' or sample dialogues computed after the fact). At

least in the CRA, the set-up has the ability to interactively

process the relevant physically specified input patterns and

produce output in recognizable/readable Chinese syntax.

 Hence I would advance a purely formal account of

computation itself, as well as the SMA version of physical

implementation, but still disagree with the view that MTC alone

is sufficient to provide a full computational theory of particular

subject disciplines, such as a computational theory of vision, or a

computational theory of the mind. These are particular

applications of MTC, and will require additional resources

appropriate to the phenomena and subject areas in question. In

this respect SMA is not in conflict with more relaxed (and

empirically plausible) versions of CTM. What SMA directly

threatens, and what has served as the traditional fulcrum in the

dialectic, is the Computational Sufficiency Thesis (CST), which

maintains that merely implementing a computational formalism

of the appropriate sort constitutes a sufficient condition for

mentality in the physical world.

 It is salient to note that from a normal scientific

perspective, CST is curious indeed. There are many different

levels of description and explanation in the natural world, from

quarks all the way to quasars. But there is no comparable

sufficiency thesis in chemistry, biology, geology, astronomy. In

other 'special sciences', membership in the corresponding level

of description is a matter of degree and scientific utility, not a

matter of some uniformly applicable sufficient condition, an

essential or intrinsic property. 'Being a rock' is in no way an

intrinsic property of the conglomerations of particles categorized

as such, and this level of description is not captured by any

simple sufficiency thesis. In turn, I would diagnose much of the

controversy over CTM, the trivialization arguments, and

concomitant defensive critiques of SMA to be engendered by ill

advised allegiance to CST. The CTM camp places far too great a

theoretical burden on computation alone. How could the mere

fact of implementing the 'right' type of abstract procedure be

enough to magically transform an insentient arrangement of

matter and energy into a genuine cognitive system?

 In contrast, I would argue that much more is required

− the system must be anchored in and interact with the real

world in a host of rich and multifaceted ways not satisfied by a

mere stone or a bucket of water. In terms of a computationally

based science of mind, a number of pragmatic and application-

specific considerations should come to the fore, to critically

augment the bare and global framework provided by MTC and

SMA. Ideally, when treating the highly complex physical

organism as implementing some abstract computational

procedure, the ascribed formal structure should supply the high

level organizational key for the underlying causal structure

enabling the system to behave in the ways that it does, i.e. in the

ways salient to its status as a cognitive system. Concomitantly,

ascribed computational structure would then provide the high

level (and empirically testable) key for predicting its future

behaviour.

 So, even if we were to grant (purely for the sake of

argument and illustration) that the brain can be interpreted as

implementing something like Fodor’s [15] Language of Thought

(LOT), still, this would not be an intrinsic property of the brain

as a biochemical mechanism. Obviously, there would be no

scientific interest in a mere ad hoc mapping from LOT onto the

brain, although in principle this may be possible, a la ↓MR*.

Instead, for a theoretically substantive approach, there would be

a myriad of pre-existing and empirically intransigent ‘wet-ware’

constraints that the mapping would have to satisfy, in order to

respect the salient causal structure of brain activity as discovered

by neuroscience. The largely independent body of functional and

anatomical data from neuroscience would supply a host of highly

non-trivial restrictions on how the physical system itself is

characterized and what the material state transitions should look

like that are interpreted as implementations of the abstract

computational procedures. A scientifically significant mapping is

not free to view the arrangement of matter and energy

comprising the human brain in terms of brain-irrelevant aspects

such as cosmic ray bombardment, gravitational fields, arbitrary

molecular kinetics, etc. Instead, it must restrict itself to salient

causal factors pertaining to the physical system's time-evolution

when viewed as a brain. So a version of Chalmers' causal

regularities between states would in fact obtain in this more

regimented and specialized case, because, like a standard

computational artefact, the brain must perform the implemented

computational procedures automatically and reliably.

 If a physical system when viewed as a brain were

methodically interpretable as implementing the LOT, this would

entail that the transitions between the various neurological states

instantiating respective tokens of mentalese symbols, obeyed a

causal progression in accord with the transformation of these

symbols as prescribed by the abstract computational formalism.

If this could be done, it would provide a scientifically fruitful

and explanatorily powerful key to organic cognition, because it

would constitute a unifying perspective tying together actual

brain function and the standard belief-desire framework of

intentional explanation, as enshrined in the LOT.

 This abstract computational interpretation of brain

activity would also need to mesh with the input and output

capabilities that we want to explain via the attribution of internal

cognitive structure, e.g. intelligent linguistic performance as in a

Turing test. So the computational level of description would

have to conform with observable input and output patterns

interpreted symbolically, as, say, sentences in an English

conversation, to yield successful predictions of both new outputs

given novel inputs, and predictions correctly describing new

brain configurations entailed by the theory as realizations of the

appropriate formal transformations required to produce the

predicted symbolic output.

 Such a project would have exceedingly non-trivial

scientific/empirical value, not in the least undermined by

Putnam-Searle type arguments. Objections of this kind have

polemical force only against CST, and in light of the many

empirical constraints and opportunities for testing predictions of

both external behaviour and internal brain state, the CST would

be rendered a completely gratuitous consideration. There is no

single and simple sufficiency condition in this highly complex

and multifaceted scientific enterprise. Merely implementing the

LOT does not magically transform the brain into a mind. On this

more scientifically plausible version of CTM, computation

supplies the appropriate high level description of the brain for

prediction and explanation of actual events, as well as an

indispensible bridge between causally efficacious brain structure

and high level accounts in terms of content bearing mental states.

But computation alone does not make a mind. So I would argue

that we should retain both MTC and SMA, reject CST, and

embrace a more empirically grounded version of CTM. When

faced with the triviality challenge that even a bucket of water

could be interpreted as implementing the LOT, an advocate of

this latter version of CTM could happily respond "Yes, and so

what?".

REFERENCES

[1] Putnam, H., Representation and Reality, MIT Press, (1988).

[2] Turing, A., ‘On Computable Numbers, with an Application to the

 Entscheidungsproblem’, Proceeding of the London Mathematical
 Society, (series 2), 42, 230-265, (1936).

[3] Turing, A., ‘Computing Machinery and Intelligence’, Mind, 59: 433-

 460 (1950).
[4] Schweizer, P., ‘Physical Instantiation and the Propositional

 Attitudes’, Cognitive Computation, 4: 226-235 (2012).

[5] Searle, J., ‘Minds, Brains and Programs’, Behavioral and Brain
 Sciences 3: 417-424, (1980).

[6] Searle, J., ‘Is the Brain a Digital Computer?’, Proceedings of the
 American Philosophical Association, 64, 21-37, (1990).

[7] Bishop, J. M., ‘Why Computers Can’t Feel Pain’, Minds and

 Machines, 19, 507-516, (2009).
[8] Fodor, J., ‘The Mind-Body Problem’, Scientific American, 24 (1981).

[9] Piccinini, C., ‘Computation without Representation’, Philosophical

 Studies, 137, 205-241 (2006).
[10] Chrisley, R. L., ‘Why Everything Doesn’t Realize Every

 Computation’, Minds and Machines, 4, 403-420, (1994).

[11] Chalmers, D. J., ‘Does a Rock Implement Every Finite-State
 Automaton?’, Synthese, 108, 309-333, (1996).

[12] Copeland, J.,‘What is Computation?', Synthese, 108:335-359 (1996)

[13] Block, N., ‘Searle’s Arguments against Cognitive Science’. In J.
 Preston and J. M. Bishop Views into the Chinese Room, Oxford

 University Press, (2002).

[14] Dennett, D. ‘True Believers: the Intentional Strategy and Why it
 Works’. In A. F. Heath Scientific Explanation: Papers Based on

 Herbert Spencer Lectures given in the University of Oxford, Oxford

 University Press, (1981).
[15] Fodor, J., The Language of Thought, Harvard University Press,

 (1975).

