
Relativity of Computational Descriptions

Piotr Jablonski
 1

Abstract. Computational Theory of Mind (CTM) claims that

mental processes and states are grounded in, or even identical to,

the computational processes and states of the human brain. As a
general paradigm it occupies a middle ground between

physicalism, which equates mental states with the physical states

of the brain, and behaviourism, which proposes that only input-

output dependencies, manifested by the agent in his behavioural

reactions to the stimuli, matter. The opponents of CTM, notably
represented by Searle and Putnam, argued that computational

formalisms are not intrinsic properties of the physical systems

but merely observer-relative ascriptions that map abstract formal

structures onto the physical world in an arbitrary way. These

arguments focus on the notion of ‘realisation’, i.e. the mapping
from the abstract formalism to the physical world. I will argue

that the computational explanation is not a single abstract

algorithm, but rather a hierarchy of implementations with the

various levels of detail accounted for. Computationalism remains

observer-dependent because it fails to distinguish a privileged
level of formal description that ought to be used as a basis for

mentality.12

1 INTRODUCTION

Advocates of the CTM propose that mental properties of

cognizing agents are based on the fact that the brain is a
computing hardware, realising a particular algorithm. Mental

states are grounded in computational states, independent of the

underlying hardware or a ‘wetware’ in the case of organic neural

systems.

CTM tries to find a middle ground between behaviourism that
ignores any notion of internal mental states and limits the

understanding of cognitive processes to merely behavioural

reactions to the environmental stimuli, and physicalism, which

identifies mental states with the physical states of the brain and

equates cognitive processes with the physiological activity of
neuronal assemblies. The differences between these three

approaches become clear when we ask what conditions have to

be fulfilled by the two agents so we could determine that they

possess identical mental states. Proponents of behaviourism

would be satisfied if the two agents respond identically to the
same stimulus. For a physicalist, they have to possess an

identical physical composition of their brains. An advocate of

the CTM would demand that they both have to realise the same

computations in their brains. It is not however, clear what

properties the two physical systems must possess in order to
realise the same algorithm.

1
 Institute for Language, Cognition and Computation, School of

Informatics, Univ. of Edinburgh, EH8 9AD, UK. Email:
piotr.jablons@gmail.com

According to the CTM, details of human neurobiology,

physiology or biochemistry, while helpful for understanding of

the computational processes, are not essential to the cognitive or
mental phenomena happening in our heads.

Classically defined computations as proposed by Turing [1]

are formally defined, abstract transformations of symbols

performed by equally abstract machines. Turing Machines (TM),

Finite State Automata or any other equivalent formalizations are
mathematical abstractions that do not exist in the physical

domain. Moreover, they may possess qualities that cannot be

realised by any physical system, e.g. TM require an infinite

storage capacity, they are immune to errors in the execution of

the algorithm etc. The physically realised computers are always
a crude approximation of the ideal ‘blueprint’ that exists in the

domain of the mathematical objects.

Whenever we claim that a physical system performs a

computation, we ought to show a mapping that, within the

constraints of the physical medium, will assign the appropriate
physical states to the computational states of the ideal machine

and map formal transformations of symbols onto the physical

processes occurring in the artefact. However, the physical nature

of the system remains irrelevant as long as the physical

realisation remains structurally isomorphic to the abstract
formalism [2].

As a result, every algorithm is multiply realisable i.e. it can be

instantiated in many physically different arrangements of matter

and energy. The same algorithm may be realised by the modern
electronic computer, a mechanical system of gears and levers or

a human being rigorously executing prescribed instructions.

This leads to the conclusion that a machine can exhibit mental

states that are identical to human, as long as the computations

realised by the computer are the same as the algorithm
instantiated in the human brain.

But what does it mean that the two physical systems perform

identical computations? I will argue that the answer to this

question is, to a degree, subjective and can vary from the

requirement for the identity at the most basic, ‘hardware level’ of
description to the most general identity of functional input -

output dependencies for the system.

While this argument does not negate the existence of

computational levels of description, stuck in between the

physical implementation and behavioural function, it shows that
there is no single, privileged formalism that may serve as a basis

for mental properties. Although I will not claim that we can

make computational ascriptions ad-hoc in a way traditional

opponents of the CTM suggest, nevertheless this relativism

poses a serious problem to computationalism as a legitimate
paradigm for cognitive sciences.

2 TRIVIALIZATION ARGUMENTS

Searle and Putnam [3][4] criticized CTM on the fact that

computation per se is not a physical process or a phenomenon

that can be observed in nature. It is not an intrinsic property of

physical systems but merely an idealized description of the
actual process. Their critique was aimed at the notion of

‘realization’, a mapping between abstract, formal procedure and

the physical phenomenon.

Trivialisation arguments try to demonstrate that such mapping

can be defined for:
A) an arbitrary algorithm and arbitrary physical process

B) an arbitrary algorithm and some, or a class of physical

processes

C) some physical process and more than one algorithm.

Searle famously argued that the wall behind his desk may be
interpreted as a realisation of the ‘WordStar’ word processing

program. His vague remarks may be interpreted as a version of

the Lycan’s ‘bucket argument’[5]. In both cases, the main idea

seems to be that every macroscopic object when analysed on the

molecular level contains a vast number of elements (particles)
that are in some relations with each other and those relations

change and evolve over time. Since we can label any part or

property of a physical system as a realisation of an abstract

symbol, we would be able to pick and label some particles in a

way that the structure and evolution of the selected molecular
subsystem would be isomorphic to the given algorithm and its

execution. The difference between Lycan’s bucket and Searle’s

wall would be that while Searle claims that he would always be

able to pick an appropriate arrangement of particles for an

arbitrary algorithm, Lycan only states that the water molecules in
a bucket could by chance form the fitting pattern.

Putnam offered a different argument based on the fact that an

execution of every algorithm may be represented as a sequence

of state transitions of the inputless Finite State Automaton

(iFSA), and since physical phenomena are continuous in time,
we can map such sequence on the temporally adjacent states of

the physical system. As a result, under the chosen labelling, the

temporal evolution of the physical system would be interpreted

as a realisation of the sequence of the computational states, and

thereby the execution of the algorithm.
Responding to the arguments above, Chalmers [6] argued,

among other things, that representation of the algorithmic

procedure as a sequence of monadic computational states is an

oversimplification. According to him, any formalisation of

cognitive processes should possess a rich internal structure
comparable to TM or proposed by him a combinatorial state

automaton. At each step of the algorithm, the state of the

machine is not given by the single monad but rather by the

complex pattern or at least a vector of internal ‘substates’. Every

legitimate realisation of such automaton has to label this rich
internal structure onto the appropriate arrangement of matter and

energy.

It is worth noticing that all participants of the discussion seem

to agree that the formal, abstract structure that is realised in a

physical medium is a well-defined entity. While Chalmers
argued that the formalism of iFSA is not appropriate, he seems

to agree that the formalisation of a cognitive process would be a

single abstract structure under the condition that it had the

appropriate, rich internal composition.

I will argue that when we look into the actual practise of
cognitive science we will have to face the fact, that every

cognitive process can be formalised in many different ways, and

we have no tool to distinguish the one that is privileged and

essential for the process.

3 LEVELS OF COMPUTATIONAL

DESCRIPTION

Marr has verbalized the main paradigm of cognitive science in
his book "Vision" [7] where he suggested that we should be

interested in some "high level" computational description of the

cognitive processes, more fine grained than behavioural but

much more general than the neurobiological level.

He defined three levels of understanding of any computing
system as:

“- Computational theory - What is the goal of computation,

why is it appropriate, and what is the logic of the strategy by

which it can be carried out?

- Representation and algorithm - How can this computational
theory be implemented? In particular, what is the representation

of the input and output, and what is the algorithm for the

transformation?

- Hardware implementation - How can the representation and

algorithm be realised physically?”

While the two lower levels seem well defined, we should

examine the level of ‘Computational theory’ with scrutiny. We

may understand the goal of the computation as an environmental

problem that needs a solution. Alternatively we may think of the
goal as a map from the sensory input to the behavioural output

that is appropriate and beneficial for the agent. In other words,

the goal of the computation is to produce the right kind of output

for the given input. I would argue for the later since it fits the
discussion that will follow.

The second part of the definition, however poses a problem.

What is “the logic of the strategy” and, more importantly, how

does it differ from the ‘algorithm’ at the second level? The

intuition behind it seems to be taken from programming
experience. A programmer may have a general idea, how the

algorithm should work, but she has not figured out all the details

of the program. The ‘logic of the strategy’ would be this kind of

general idea. However in the context of the three levels of

understanding this addition seems superfluous. All the
information that can be regarded as “logic of the strategy” is

already included in the lower level of the algorithmic

description.

I suggest that we should limit the higher level of description to

simple input-output dependencies, which will be equivalent to
the behavioural or functional description of the cognitive

process.

4 HIERARCHY OF ALGORITHMIC

DESCRIPTIONS

Computational descriptions, at what Marr would call the level

of ‘Representation and algorithm’, form, in fact, a hierarchy or
rather a tangled mess of different formalisations. We can picture

it as a hierarchy of idealized programming languages. On the

very top we can describe any cognitive process or, in fact, any

computation as a single input-output operation. This is the level

of behavioural or functional description. At this level we do not

ask how something is computed but only what is computed.

When we start asking how something is computed we have to

choose the programming language in which the answer will be

given. By programming language I do not mean any specific
language but rather a formal framework with syntax, basic data

representations, symbols and operations. Every teacher of

algorithmic methods faces such a dilemma. Even though the

techniques discussed are very general and can be used in many

programming environments, the presentation has to be made in
some specific language. Usually we choose some high-level

programming language with the appropriate set of basic data

structures and operations to make the presentation clear and

simple. Often we would choose to include some libraries that

render the demonstration even briefer and focused on the
presented techniques instead of, on the specifics of data

structures implementation or subroutines utilised for the

execution of some fairly well understood operations. In this

sense the ‘programming language’ consists of every

representation and method for which we know ‘what’ it
computes but we do not care or know ‘how’ it is computed. In

other words for every programming language the basic

operations and data representations are defined in a functional

way.

However, each primitive operation may be defined as a
composite of many operations on the lower, more fine-grained

level. Similarly, each representation can be defined as a

composite of variables on the lower level.

This approach is well known in the IT industry where it serves

as a basis for many programming techniques. High-level
languages are developed so developers do not have to deal with

the hardware specific details; programming libraries serve as a

source of pre-made operations that can be used by the

programmer without any insight into the internal implementation

of the procedure. More general, the concept of the Application
Programming Interface is based on exactly this idea. At the level

of API a programmer is only interested in what the given method

does, not in how it is done.

We should stress however, that such relativisation of the

algorithm to the chosen programming language is not a merely
pragmatic endeavour. There is no way to present an algorithm

without some formal framework. We always have to accept a set

of functionally defined basic blocks from which we will build

the algorithm. We may choose a binary data representation,

logical gates and memory registers as in the Von Neuman
architecture or a tape, a set of symbols, internal states of the head

and primitive read-write operations as in the TM formalism, or

some high level programming language augmented with libraries

like Java. We cannot, however present an algorithm outside of

any such context.
Hardware implementation may be understood in two ways. It

may be a physical description of the artefact that realises the

algorithm. In this case it will be formed in the language of some

scientific theory and does not belong to the computational

description. On the other hand it may be a formal description of
the algorithm in programming language which primitive

operations and representations are mapped directly onto the

physical processes and properties of the system. In the second

case, hardware implementation is a special case of algorithmic

description that is privileged by the fact that we are able to
design and build the appropriate machine or by the biological

architecture of the neural systems we happen to investigate. It is

not, however some fundamentally basic level of description and

we could always come up with another, even lower level of

implementation.

The last point is nicely illustrated by the work of Paul Rendell
[8] [9], who demonstrated how the TM can be implemented on

the Conway's ‘Game of Life’ cellular automaton. Even though

we tend to think about TM as a very basic structure, where every

operation can be executed by an “idiot” (i.e. someone without

any understaning of the computational process), we may always
ask ‘how’ these operations are implemented and give the answer

in the form of the detailed description of spatio-temporal patterns

of the ‘Game of Life’ and the primitive operations governing the

behaviour of the cellular automaton.

On the other hand, if the TM formalism was a description on
the level of Hardware implementation, we would be unable to

answer this question and could only point outside of the

computational world, to the physical description of the actual

machine.

In a sense, an algorithm is multiply realizable or rather
multiply implementable long before we reach the physical

domain.

Alternatively, one could hold the radical view, that at every

level of implementation we deal with a separate algorithm. This

view however, seems overly strict. First, it would mean that any
physical realisation of a computing device realises many

algorithms at once or only the one directly mappable onto the

hardware (this however would mean that we could not claim that

a high-level computational formalism akin to Fodor’s Language

of Thought [10] is realised by the hardware). The second
problem with this position is that we cannot say that two slightly

different implementations are still the same algorithm. E.g. we

would have to conclude that two compilations of a program for

two different hardware architectures are in fact, two distinct

algorithms.
The question arises, what is the proper level of computational

description of cognitive, and more general, mental processes. If

we treat CTM as merely epistemic paradigm, a research method

useful for cognitive sciences, we can argue that the level that

gives the simplest description is the one that should be accounted
for in the theories of cognitive science. However if one wants to

defend the strong version of CTM, he has to present more

fundamental reasons why any level of description should be

privileged and why only it sustains mental states. For example, if

an algorithm for visual recognition called for a sorting routine
that returns some specific arrangement of data, we could ask if

the way ‘how’ the sorting is implemented is important for the

mental aspects of the process or not.

5 EXAMPLE

Marr gives the example of simple cognitive operation found
in the flight control system of the housefly. The landing system

realises a simple operation: if the image in the visual field of the

fly ‘explodes’ fast enough as the fly approaches a surface, the fly

automatically lands on the approaching surface.

The description given above is made on the behavioural level.
It specifies only the input (image in the visual field), the output

(the behaviour), and the function from input to output (if the

image explodes - perform the landing behaviour).

It is hard to see what level of detail should be included into

the ‘computational theory’ of this process on the Marr’s original

account.

Representation and algorithm may be defined on different

levels. We may assume that visual field is represented as a
primitive, monadic representation, a ‘picture’, the ‘exploding’ or

rapid scaling-up of the picture can be detected by another

primitive operation and the landing operation is the third

primitive operation. Such an algorithm could be written in some

very high-level, script language specialised in programming
robotic houseflies.

On the lower level we may define the ‘picture’ as a binary

matrix of black and white pixels. Detection of ‘exploding’ can be

performed by comparing successive picture with the scaled up

versions of the previous picture for the different scaling factors.
If the successive picture matches the scaled-up version of the

previous one, the visual field exploded with the velocity

corresponding to the scaling factor.

On the, yet lower level we may define the scaling operation as

a complex routine where the pixels are represented in polar
coordinates and scaling takes form of multiplication of the

distance of the pixel from the centre of the image.

Lower still, multiplication can be a composite of bit wise

operations on the binary representations of the coordinates.

If we realize the given algorithm on the digital computer, at
some level we would define the procedure in the form that is

directly mappable onto the hardware, i.e. In terms of machine

level commands governing the access to the memory and logical

gates. It is worth noticing, however, that this ‘hardware

implementation’ level of description is privileged only because
we have chosen this specific hardware. In all probability, the

‘hardware implementation’ appropriate for the housefly neural

system will be completely different. The picture would be

represented as a pattern of neuronal activity, not a bitmap and

scaling detection would probably take the form of a very
different process.

The point here is that the two computational descriptions

would split at some level. They agree at the top, functional or

behavioural level, maybe at some lower levels but, eventually

they drift apart. The problem for the computational account is to
determine whether the two implementations are computationally

equivalent or not. They are behaviourally equivalent and

physically distinct. However, depending on the choice of the

computational level and the ‘programming language’ they will

be either equivalent or distinct in the computational sense. Since
we do not have any fundamental reasons for the choice of the

computational level, the answer to this question remains

subjective or observer-relative.

6 CONCLUSIONS

Computational descriptions form a hierarchy where only the
top, behavioural level is privileged. Hardware level description

is dictated by the choice of physical realization of the

computation.

Every level of algorithmic description is equally valid and

there is no reason to select one that may serve as a basis of the
mental properties as long as we want to keep multiple

realizability in the picture and steer clearly between behavioural

and hardware levels of description.

It is unclear what level of computational detail ought to be

preserved in different physical realizations in order to ‘generate’

the same mental properties. In other words, at what point, going

from hardware to behavioural levels, two different realizations

should converge to the same description?

REFERENCES

[1] Turing, A., ‘On Computable Numbers, with an Application to the

Entscheidungsproblem’, Proceeding of the London Mathematical
Society, (series 2), 42, 230-265, (1936).

[2] Turing, A., ‘Computing Machinery and Intelligence’, Mind, 59: 433-
460 (1950).

[3] Searle, J., ‘Minds, Brains and Programs’, Behavioral and Brain
Sciences 3: 417-424, (1980).

[4] Putnam, H., Representation and Reality, MIT Press, (1988).
[5] Lycan, W., G. Consciousness, MIT Press. (1987).

[6] Chalmers, D. J., ‘Does a Rock Implement Every Finite-State
Automaton?’, Synthese, 108, 309-333, (1996).
[7] Marr, D., Vision, CA: W. H. Freeman, (1982).
[8]Adamatzky, A., Durand-Lose, J., ‘Collision-Based Computing’,

Handbook of Natural Computing , 1949-1978, (2012).
[9] http://rendell-attic.org/gol/tm.htm
[10] Fodor, J., The Language of Thought, Harvard University Press,

(1975).

http://rendell-attic.org/gol/tm.htm

