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Abstract.  Computational Theory of Mind (CTM) claims that 

mental processes and states are grounded in, or even identical to, 

the computational processes and states of the human brain. As a 
general paradigm it occupies a middle ground between 

physicalism, which equates mental states with the physical states 

of the brain, and behaviourism, which proposes that only input-

output dependencies, manifested by the agent in his behavioural 

reactions to the stimuli, matter. The opponents of CTM, notably 
represented by Searle and Putnam, argued that computational 

formalisms are not intrinsic properties of the physical systems 

but merely observer-relative ascriptions that map abstract formal 

structures onto the physical world in an arbitrary way. These 

arguments focus on the notion of ‘realisation’, i.e. the mapping 
from the abstract formalism to the physical world. I will argue 

that the computational explanation is not a single abstract 

algorithm, but rather a hierarchy of implementations with the 

various levels of detail accounted for. Computationalism remains 

observer-dependent because it fails to distinguish a privileged 
level of formal description that ought to be used as a basis for 

mentality.12 

1 INTRODUCTION 

Advocates of the CTM propose that mental properties of 

cognizing agents are based on the fact that the brain is a 
computing hardware, realising a particular algorithm. Mental 

states are grounded in computational states, independent of the 

underlying hardware or a ‘wetware’ in the case of organic neural 

systems. 

CTM tries to find a middle ground between behaviourism that 
ignores any notion of internal mental states and limits the 

understanding of cognitive processes to merely behavioural 

reactions to the environmental stimuli, and physicalism, which 

identifies mental states with the physical states of the brain and 

equates cognitive processes with the physiological activity of 
neuronal assemblies. The differences between these three 

approaches become clear when we ask what conditions have to 

be fulfilled by the two agents so we could determine that they 

possess identical mental states. Proponents of behaviourism 

would be satisfied if the two agents respond identically to the 
same stimulus. For a physicalist, they have to possess an 

identical physical composition of their brains. An advocate of 

the CTM would demand that they both have to realise the same 

computations in their brains. It is not however, clear what 

properties the two physical systems must possess in order to 
realise the same algorithm. 
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According to the CTM, details of human neurobiology, 

physiology or biochemistry, while helpful for understanding of 

the computational processes, are not essential to the cognitive or 
mental phenomena happening in our heads. 

Classically defined computations as proposed by Turing [1] 

are formally defined, abstract transformations of symbols 

performed by equally abstract machines. Turing Machines (TM), 

Finite State Automata or any other equivalent formalizations are 
mathematical abstractions that do not exist in the physical 

domain. Moreover, they may possess qualities that cannot be 

realised by any physical system, e.g. TM require an infinite 

storage capacity, they are immune to errors in the execution of 

the algorithm etc. The physically realised computers are always 
a crude approximation of the ideal ‘blueprint’ that exists in the 

domain of the mathematical objects. 

Whenever we claim that a physical system performs a 

computation, we ought to show a mapping that, within the 

constraints of the physical medium, will assign the appropriate 
physical states to the computational states of the ideal machine 

and map formal transformations of symbols onto the physical 

processes occurring in the artefact. However, the physical nature 

of the system remains irrelevant as long as the physical 

realisation remains structurally isomorphic to the abstract 
formalism [2]. 

As a result, every algorithm is multiply realisable i.e. it can be 

instantiated in many physically different arrangements of matter 

and energy. The same algorithm may be realised by the modern 
electronic computer, a mechanical system of gears and levers or 

a human being rigorously executing prescribed instructions. 

This leads to the conclusion that a machine can exhibit mental 

states that are identical to human, as long as the computations 

realised by the computer are the same as the algorithm 
instantiated in the human brain. 

But what does it mean that the two physical systems perform 

identical computations? I will argue that the answer to this 

question is, to a degree, subjective and can vary from the 

requirement for the identity at the most basic, ‘hardware level’ of 
description to the most general identity of functional input -

output dependencies for the system. 

While this argument does not negate the existence of 

computational levels of description, stuck in between the 

physical implementation and behavioural function, it shows that 
there is no single, privileged formalism that may serve as a basis 

for mental properties. Although I will not claim that we can 

make computational ascriptions ad-hoc in a way traditional 

opponents of the CTM suggest, nevertheless this relativism 

poses a serious problem to computationalism as a legitimate 
paradigm for cognitive sciences.   

 

 

 



2 TRIVIALIZATION ARGUMENTS  

Searle and Putnam [3][4] criticized CTM on the fact that 

computation per se is not a physical process or a phenomenon 

that can be observed in nature. It is not an intrinsic property of 

physical systems but merely an idealized description of the 
actual process. Their critique was aimed at the notion of 

‘realization’, a mapping between abstract, formal procedure and 

the physical phenomenon. 

Trivialisation arguments try to demonstrate that such mapping 

can be defined for: 
A) an arbitrary algorithm and arbitrary physical process 

B) an arbitrary algorithm and some, or a class of physical 

processes 

C) some physical process and more than one algorithm. 

Searle famously argued that the wall behind his desk may be 
interpreted as a realisation of the ‘WordStar’ word processing 

program. His vague remarks may be interpreted as a version of 

the Lycan’s ‘bucket argument’[5]. In both cases, the main idea 

seems to be that every macroscopic object when analysed on the 

molecular level contains a vast number of elements (particles) 
that are in some relations with each other and those relations 

change and evolve over time. Since we can label any part or 

property of a physical system as a realisation of an abstract 

symbol, we would be able to pick and label some particles in a 

way that the structure and evolution of the selected molecular 
subsystem would be isomorphic to the given algorithm and its 

execution. The difference between Lycan’s bucket and Searle’s 

wall would be that while Searle claims that he would always be 

able to pick an appropriate arrangement of particles for an 

arbitrary algorithm, Lycan only states that the water molecules in 
a bucket could by chance form the fitting pattern. 

Putnam offered a different argument based on the fact that an 

execution of every algorithm may be represented as a sequence 

of state transitions of the inputless Finite State Automaton 

(iFSA), and since physical phenomena are continuous in time, 
we can map such sequence on the temporally adjacent states of 

the physical system. As a result, under the chosen labelling, the 

temporal evolution of the physical system would be interpreted 

as a realisation of the sequence of the computational states, and 

thereby the execution of the algorithm. 
Responding to the arguments above, Chalmers [6] argued, 

among other things, that representation of the algorithmic 

procedure as a sequence of monadic computational states is an 

oversimplification. According to him, any formalisation of 

cognitive processes should possess a rich internal structure 
comparable to TM or proposed by him a combinatorial state 

automaton. At each step of the algorithm, the state of the 

machine is not given by the single monad but rather by the 

complex pattern or at least a vector of internal ‘substates’. Every 

legitimate realisation of such automaton has to label this rich 
internal structure onto the appropriate arrangement of matter and 

energy. 

It is worth noticing that all participants of the discussion seem 

to agree that the formal, abstract structure that is realised in a 

physical medium is a well-defined entity. While Chalmers 
argued that the formalism of iFSA is not appropriate, he seems 

to agree that the formalisation of a cognitive process would be a 

single abstract structure under the condition that it had the 

appropriate, rich internal composition. 

I will argue that when we look into the actual practise of 
cognitive science we will have to face the fact, that every 

cognitive process can be formalised in many different ways, and 

we have no tool to distinguish the one that is privileged and 

essential for the process.  

3  LEVELS OF COMPUTATIONAL 

DESCRIPTION 

Marr has verbalized the main paradigm of cognitive science in 
his book "Vision" [7] where he suggested that we should be 

interested in some "high level" computational description of the 

cognitive processes, more fine grained than behavioural but 

much more general than the neurobiological level. 

He defined three levels of understanding of any computing 
system as: 

“- Computational theory - What is the goal of computation, 

why is it appropriate, and what is the logic of the strategy by 

which it can be carried out? 

- Representation and algorithm - How can this computational 
theory be implemented? In particular, what is the representation 

of the input and output, and what is the algorithm for the 

transformation? 

- Hardware implementation - How can the representation and 

algorithm be realised physically?” 
 

While the two lower levels seem well defined, we should 

examine the level of ‘Computational theory’ with scrutiny. We 

may understand the goal of the computation as an environmental 

problem that needs a solution. Alternatively we may think of the 
goal as a map from the sensory input to the behavioural output 

that is appropriate and beneficial for the agent. In other words, 

the goal of the computation is to produce the right kind of output 

for the given input. I would argue for the later since it fits the 
discussion that will follow. 

The second part of the definition, however poses a problem. 

What is “the logic of the strategy” and, more importantly, how 

does it differ from the ‘algorithm’ at the second level? The 

intuition behind it seems to be taken from programming 
experience. A programmer may have a general idea, how the 

algorithm should work, but she has not figured out all the details 

of the program. The ‘logic of the strategy’ would be this kind of 

general idea. However in the context of the three levels of 

understanding this addition seems superfluous. All the 
information that can be regarded as “logic of the strategy” is 

already included in the lower level of the algorithmic 

description. 

I suggest that we should limit the higher level of description to 

simple input-output dependencies, which will be equivalent to 
the behavioural or functional description of the cognitive 

process.  

4  HIERARCHY OF ALGORITHMIC 

DESCRIPTIONS 

Computational descriptions, at what Marr would call the level 

of ‘Representation and algorithm’, form, in fact, a hierarchy or 
rather a tangled mess of different formalisations. We can picture 

it as a hierarchy of idealized programming languages. On the 

very top we can describe any cognitive process or, in fact, any 

computation as a single input-output operation. This is the level 



of behavioural or functional description. At this level we do not 

ask how something is computed but only what is computed. 

When we start asking how something is computed we have to 

choose the programming language in which the answer will be 

given. By programming language I do not mean any specific 
language but rather a formal framework with syntax, basic data 

representations, symbols and operations. Every teacher of 

algorithmic methods faces such a dilemma. Even though the 

techniques discussed are very general and can be used in many 

programming environments, the presentation has to be made in 
some specific language. Usually we choose some high-level 

programming language with the appropriate set of basic data 

structures and operations to make the presentation clear and 

simple. Often we would choose to include some libraries that 

render the demonstration even briefer and focused on the 
presented techniques instead of, on the specifics of data 

structures implementation or subroutines utilised for the 

execution of some fairly well understood operations. In this 

sense the ‘programming language’ consists of every 

representation and method for which we know ‘what’ it 
computes but we do not care or know ‘how’ it is computed. In 

other words for every programming language the basic 

operations and data representations are defined in a functional 

way. 

However, each primitive operation may be defined as a 
composite of many operations on the lower, more fine-grained 

level. Similarly, each representation can be defined as a 

composite of variables on the lower level. 

This approach is well known in the IT industry where it serves 

as a basis for many programming techniques. High-level 
languages are developed so developers do not have to deal with 

the hardware specific details; programming libraries serve as a 

source of pre-made operations that can be used by the 

programmer without any insight into the internal implementation 

of the procedure. More general, the concept of the Application 
Programming Interface is based on exactly this idea. At the level 

of API a programmer is only interested in what the given method 

does, not in how it is done. 

We should stress however, that such relativisation of the 

algorithm to the chosen programming language is not a merely 
pragmatic endeavour. There is no way to present an algorithm 

without some formal framework. We always have to accept a set 

of functionally defined basic blocks from which we will build 

the algorithm. We may choose a binary data representation, 

logical gates and memory registers as in the Von Neuman 
architecture or a tape, a set of symbols, internal states of the head 

and primitive read-write operations as in the TM formalism, or  

some high level programming language augmented with libraries 

like Java. We cannot, however present an algorithm outside of 

any such context. 
Hardware implementation may be understood in two ways. It 

may be a physical description of the artefact that realises the 

algorithm. In this case it will be formed in the language of some 

scientific theory and does not belong to the computational 

description. On the other hand it may be a formal description of 
the algorithm in programming language which primitive 

operations and representations are mapped directly onto the 

physical processes and properties of the system. In the second 

case, hardware implementation is a special case of algorithmic 

description that is privileged by the fact that we are able to 
design and build the appropriate machine or by the biological 

architecture of the neural systems we happen to investigate. It is 

not, however some fundamentally basic level of description and 

we could always come up with another, even lower level of 

implementation. 

The last point is nicely illustrated by the work of Paul Rendell 
[8] [9], who demonstrated how the TM can be implemented on 

the Conway's ‘Game of Life’ cellular automaton. Even though 

we tend to think about TM as a very basic structure, where every 

operation can be executed by an “idiot” (i.e. someone without 

any understaning of the computational process), we may always 
ask ‘how’ these operations are implemented and give the answer 

in the form of the detailed description of spatio-temporal patterns 

of the ‘Game of Life’ and the primitive operations governing the 

behaviour of the cellular automaton. 

On the other hand, if the TM formalism was a description on 
the level of Hardware implementation, we would be unable to 

answer this question and could only point outside of the 

computational world, to the physical description of the actual 

machine. 

In a sense, an algorithm is multiply realizable or  rather 
multiply implementable long before we reach the physical 

domain. 

Alternatively, one could hold the radical view, that at every 

level of implementation we deal with a separate algorithm. This 

view however, seems overly strict. First, it would mean that any 
physical realisation of a computing device realises many 

algorithms at once or only the one directly mappable onto the 

hardware (this however would mean that we could not claim that 

a high-level computational formalism akin to Fodor’s Language 

of Thought [10] is realised by the hardware). The second 
problem with this position is that we cannot say that two slightly 

different implementations are still the same algorithm. E.g. we 

would have to conclude that two compilations of a program for 

two different hardware architectures are in fact, two distinct 

algorithms.  
The question arises, what is the proper level of computational 

description of cognitive, and more general, mental processes. If 

we treat CTM as merely epistemic paradigm, a research method 

useful for cognitive sciences, we can argue that the level that 

gives the simplest description is the one that should be accounted 
for in the theories of cognitive science. However if one wants to 

defend the strong version of CTM, he has to present more 

fundamental reasons why any level of description should be 

privileged and why only it sustains mental states. For example, if 

an algorithm for visual recognition called for a sorting routine 
that returns some specific arrangement of data, we could ask if 

the way ‘how’ the sorting is implemented is important for the 

mental aspects of the process or not.  

5 EXAMPLE  

Marr gives the example of simple cognitive operation found 
in the flight control system of the housefly. The landing system 

realises a simple operation: if the image in the visual field of the 

fly ‘explodes’ fast enough as the fly approaches a surface, the fly 

automatically lands on the approaching surface. 

The description given above is made on the behavioural level. 
It specifies only the input (image in the visual field), the output 

(the behaviour), and the function from input to output (if the 

image explodes - perform the landing behaviour). 



It is hard to see what level of detail should be included into 

the ‘computational theory’ of this process on the Marr’s original 

account.  

Representation and algorithm may be defined on different 

levels. We may assume that visual field is represented as a 
primitive, monadic representation, a ‘picture’, the ‘exploding’ or 

rapid scaling-up of the picture can be detected by another 

primitive operation and the landing operation is the third 

primitive operation. Such an algorithm could be written in some 

very high-level, script language specialised in programming 
robotic houseflies. 

On the lower level we may define the ‘picture’ as a binary 

matrix of black and white pixels. Detection of ‘exploding’ can be 

performed by comparing successive picture with the scaled up 

versions of the previous picture for the different scaling factors. 
If the successive picture matches the scaled-up version of the 

previous one, the visual field exploded with the velocity 

corresponding to the scaling factor. 

On the, yet lower level we may define the scaling operation as 

a complex routine where the pixels are represented in polar 
coordinates and scaling takes form of multiplication of the 

distance of the pixel from the centre of the image. 

Lower still, multiplication can be a composite of bit wise 

operations on the binary representations of the coordinates. 

If we realize the given algorithm on the digital computer, at 
some level we would define the procedure in the form that is 

directly mappable onto the hardware, i.e. In terms of machine 

level commands governing the access to the memory and logical 

gates. It is worth noticing, however, that this ‘hardware 

implementation’ level of description is privileged only because 
we have chosen this specific hardware. In all probability, the 

‘hardware implementation’ appropriate for the housefly neural 

system will be completely different. The picture would be 

represented as a pattern of neuronal activity, not a bitmap and 

scaling detection would probably take the form of a very 
different process. 

The point here is that the two computational descriptions 

would split at some level. They agree at the top, functional or 

behavioural level, maybe at some lower levels but, eventually 

they drift apart. The problem for the computational account is to 
determine whether the two implementations are computationally 

equivalent or not. They are behaviourally equivalent and 

physically distinct. However, depending on the choice of the 

computational level and the ‘programming language’ they will 

be either equivalent or distinct in the computational sense. Since 
we do not have any fundamental reasons for the choice of the 

computational level, the answer to this question remains 

subjective or observer-relative. 

6 CONCLUSIONS 

Computational descriptions form a hierarchy where only the 
top, behavioural level is privileged. Hardware level description 

is dictated by the choice of physical realization of the 

computation. 

Every level of algorithmic description is equally valid and 

there is no reason to select one that may serve as a basis of the 
mental properties as long as we want to keep multiple 

realizability in the picture and steer clearly between behavioural 

and hardware levels of description. 

It is unclear what level of computational detail ought to be 

preserved in different physical realizations in order to ‘generate’ 

the same mental properties. In other words, at what point, going 

from hardware to behavioural levels, two different realizations 

should converge to the same description? 
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