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Abstract. The development of procedural content generation
(PCG) methods for video games is an established area of research.
There are many approaches to the problem that utilise a variety of
techniques from different fields of computer science. The use of An-
swer Set Programming (ASP) for PCG in video games is relatively
new, however recent research has demonstrated valuable aspects of
ASP in the generation and evaluation of design spaces.

This research takes the good work already achieved using ASP for
PCG and progresses it to investigate the open issue of scalability. The
genre of Roguelike games provides the design space of sufficient size
and complexity to investigate this scalability issue. Preliminary find-
ings indicate that ASP is a viable option for PCG in video games, in
particular demonstrating that a hierarchical application of this tech-
nology can deal with such complex game environments.

1 INTRODUCTION
PCG has been used in the games industry for over three decades, to
assist level designers by automatically, or semi-automatically, gener-
ating game content. A variety of approaches are employed that range
from pseudo-random number generators and fractal algorithms, to
multi-agents and genetic algorithms. Each approach has its own
strengths and weaknesses, resulting in a diverse and disparate range
of methods.

One approach that has recently emerged is the use of Answer
Set Programming (ASP) with the AnsProlog language, which has
shown much promise. The Chromatic Maze [13] illustrates how the
non-monotonic nature of ASP is useful for procedural content gen-
eration by allowing the user to refine the game space by iteratively
adding constraints to the AnsProlog program. The Refraction game
[11] demonstrates the ability of AnsProlog to identify and remove
unwanted solutions, in this case puzzles that have shortcut solutions,
a valuable capability for procedural content generation. The Varia-
tions Forever game [12] relates how AnsProlog can be used to define
game rulesets as well as game content, indicating the versatility of
this approach.

ASP has already shown much potential for generating procedural
content, however the open issues of scalability will be considered in
our present research. The scalability issue relates to how well ASP
can scale up to more complex game environments. ASP is a search-
based technique where the AnsProlog program defines and refines a
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search space of solutions. For simple puzzle games this search space
will be relatively small, however for more complex games the search
space can dramatically increase, leading to an exponential increase
in the PCG execution time. For example, Smith et al. (2013) report
a solving time in excess of 2 minutes for an extreme case of their
10x10 puzzle game Refraction[11].

The main contribution of our research will be to explore the is-
sue of scalability by using ASP for PCG for Roguelike games. We
propose a hierarchical approach comprising two phases to PCG, the
first phase providing the level structure, the second phase providing
the level content. Here we outline in detail the first phase of this hi-
erarchical PCG method since this phase is critical to addressing the
scalability issue.

We have outlined the case for using ASP for PCG in games, iden-
tified the open issues of scalability, and identified Roguelike games
as a vehicle for this research. The remainder of this document will
provide a concise survey of the current technologies and methods ap-
plicable to our research, outline the method and implementation of
the first phase of PCG, present and discuss our preliminary results,
and suggest future work.

2 BACKGROUND
The aim of this research is to explore the opportunities provided by
ASP for generating game level data. Of primary concern is how well
ASP can deal with complex game spaces. This scalability issue will
be explored by implementing PCG for Roguelike games. Here we
survey contemporary PCG methods used in games, take an overview
of ASP and how it has been used for PCG to date, and then review
Roguelike games and the PCG methods they tend to employ.

2.1 Procedural Content Generation
Procedural content generation has been used in the video games in-
dustry since the late 1970s where it was pioneered in games such as
Rogue and Elite. There is currently no uniform approach to the prob-
lem, however there exist a number of methods from different areas
of computer science that can be seen as a toolbox for PCG.

A standard PCG method is to randomly create content and dis-
tribute that content randomly within the design space. The use of
Pseudo-Random Number Generation is one such approach where
the data is generated using a seeded algorithm allowing the process
to be deterministic. This is an important feature since the automat-
ically generated data can be consistently reproduced and therefore



tested. Perlin Noise is a pseudo-random number technique devel-
oped to make computer generated images look more realistic [10].
This technique can be applied to a height map to create suitable ter-
rain details such as water, cliffs and plains, or it can be applied to
game objects prior to rendering to give them a more realistic (less
homogenous) appearance. Fractal algorithms are used to create veg-
etation and realistic landscapes, these algorithms tend to require very
little code to implement, however they can be expensive in process-
ing time.

A variety of methods from AI have been used for PCG including
genetic algorithms, neural networks, agent based simulation, con-
straint satisfaction and search. For example, agent base simulation
has been used to manipulate a basic terrain by a set of prescribed
software agents in a controlled and specified manner to create realis-
tic landscapes [2].

A common approach for PCG is to divide the game space into a
number of useful areas, thus providing structure to the game space,
and then populate these areas with content. Johnson et al. [5] used
cellular automata for such an approach to generate infinite cave lev-
els, they claim that their method provides a good level of control
over the resulting design space, thus tackling one of the open issues
with PCG. A similar approach is used in architecture to model towns
and cities by dividing the space into regions with a road network,
and then populating those regions with buildings. For instance In-
stant Architecture [15], and CityGen [6] use generative grammars
for both organic and structural generation of content. Developed to
understand the rules of language, generative grammars use a set of
symbols that are modified by a set of rewriting rules that are applied
to the symbols to modify and replicate them.

L-systems are a fractal like grammar that has been used to grow
road networks within a design space [9], providing the basic struc-
ture of the cities being created. Tensor fields is another method that
has been used to generate road networks as an initial process for
generating cities[1]. L-systems can further be used to generate the
buildings to populate the city [9], however other generative grammars
such as split-grammars, wall-grammars, and shape-grammars which
are more suited to generating structured components, have also been
used. Split-grammars are similar to L-systems, however they manip-
ulate encoded shapes rather than strings (as with L-systems). The
process works by using the rewriting rules to convert shapes into
new shapes, the process being repeated until the desired shapes are
produced [15]. Shape-grammars are like split-grammars in that they
perform rewriting rules on encoded shapes, however the rewriting
process is influenced by the neighbours of the shape being processed.
This allows shape-grammars to produce more complex structures
than split-grammars [8]. Wall-grammars are used to generate build-
ing facades from shapes that are manipulated by a rewriting process
to extrude flat shapes into the third dimension [7]. These approaches
produce good results that can be manipulated in real-time, however
their genotype to phenotype mapping is weak meaning that the re-
sultant cityscape lacks the semantic meaning needed for a game en-
vironment. However, the ability for these methods to produce high
quality structures could be very useful in game genres such as Rogue-
like.

2.2 Answer Set Programming

One approach that has recently been adopted for procedural con-
tent generation is to use Answer Set Programming (ASP). ASP is
a form of logic programming that falls into the declarative program-
ming paradigm; where the program describes the requirements for

the solution to a certain problem [3, p. 40]. The program, written
in AnsProlog, comprises a set of rules and predicates, that are run
through a solver to produce a list of all the possible solutions, re-
ferred to as the answer sets.

Following sound software engineering practices an AnsProlog
program will be coded in four distinct sections. The define section
is where all the known facts and rules about the system are encoded.
The generate section is where derived facts about the system are gen-
erated. The test section is where integrity constraints are used to re-
move unwanted solutions. The evaluate section is where a stepwise
assessment of the system is conducted.

Typically the initial state of the problem is defined by a set of facts
that represent the known conditions of the problem space. A set of
rules are then defined to represent all the legal changes to the problem
space that are allowed. Finally a set of constraints are applied to the
problem space, these identify all the illegal states that the system
must avoid.

The AnsProlog language realises these constructs with rules, facts,
and integrity constraints. A rule is defined as head :- body. where
the head represents the rule being defined, and the body defines the
logic components that satisfy the rule. A fact is defined as head. it
represents something that is known unconditionally, it is a rule with-
out a body. An integrity constraint is defined as :- body. it represents
all the things that are known not to be, it is a rule without a head. A
further useful AnsProlog construct is the choice rule, represented as
l{rule}u, this provides a convenient way of choosing randomly a
number of rules from the set of valid rules, the number of which is in
the range l and u.

The Variations Forever game is a set of mini-games that have pro-
cedurally generated rules [12]. This game illustrate how ASP can be
used for PCG demonstrating the generate-and-test approach for PCG
development, as well as using ASP to produce both game content
and game mechanics. The Chromatic Maze is a game that automati-
cally generates a maze puzzle represented by a grid of coloured tiles,
where the player must find a valid route from the start location to the
finish [13]. This simple game illustrate the non-monotonic nature of
ASP that allows for abductive reasoning, thus enabling the PCG to
be adapted by the level designer. Refraction is an educational game
that comprises a tiled game space where beam splitters, combiners
and benders are placed to manipulate laser beams between emitters
and receptors [11]. This game illustrates how ASP can be used to re-
move unwanted solutions from the set of possible solutions, in this
case those puzzles that have unwanted short cuts. A dungeon map
generator for a fictional Roguelike game uses a hybrid of ASP and
evolution computation for PCG [14]. The genetic algorithm is used
to generate parameters for the ASP program, the resulting level map
is then evaluated against prescribed metrics.

2.3 Roguelike Games

Roguelike games are based on the dungeon questing games such as
Rogue (1980) and Moria (1983). These games where originally de-
signed for computers that had limited or no graphics capabilities,
hence they used ASCII characters positioned on the 2D grid that
made up the screens display space. Procedural content generation
has been used in Roguelike games since their inception, a concept
that has been widely adopted in most Roguelike games to the present
day

Roguelike game have a typical set of attributes that are common
across the genre. The game space will comprise a 2D grid of navi-
gable tiles, such that the environment is discrete rather than continu-



ous. Each level will comprise a number of rooms, of varying size and
shape, connected by corridors that will be positioned such that nei-
ther the rooms or the corridors overlap or crossover. The rooms will
be populated by a variety of monsters, treasure, equipment, weapons,
and traps. The generation of level content will be driven by factors
such as the current level difficulty, the chosen game difficulty, and
the current level of the player’s character, to produce levels that are
progressively challenging for the player.

A traditional approach for Roguelike games is to use a pseudo-
random technique to generate content, for example NetHack uses
random numbers to generate its dungeons and creatures. The game
space is easily represented as a 2D grid of tiles that depict the dis-
crete navigable positions within the game. Pseudo-random number
generation (PRNG) techniques can then be used to randomly create
content and randomly place the content within the game space. This
approach has the benefit of being deterministic, allowing it to be used
at run-time to generate known level content in real-time. Fractal algo-
rithms have also been used in Roguelike games, for instance Dwarf
Fortress use fractals to generate elevation maps and other environ-
ment features that are combined into a world map.

3 METHOD

The main focus of our present research is to assess whether ASP is
a good candidate for generating procedural content for large design
spaces (in the order of 100 times the size of the Chromatic Maze). For
this purpose, procedural content will be generated for a Roguelike
game.

3.1 System Overview

Here we describe the system that has been developed to achieve this.
The system comprises a python program and some AnsProlog code,
that in conjunction take input parameters from the user (level de-
signer) and generate a file containing the level data. This level data
file can then be used in the Roguelike game Dungeon Crawl Stone
Soup by copying it to the appropriate directory in the game installa-
tion.

Figure 1. System Overview: The python program takes input parameters
from the level designer, these are encoded as logic rules in the AnsProlog

program init section. The python program then uses clingo to solve the
AnsProlog program that produces the answer sets. The python program then

interprets the answer sets into a dungeon level map.

3.1.1 Python Program

The main program is written in python. It provides the user with
the facility to set a number of parameters to control the level gen-
eration. From these parameters it generates the AnsProlog code for
initialising the procedural content generation. It then uses the clingo
grounder/solver to solve the AnsProlog code, which generate the an-
swer sets. It then reads back the answer set to interpret the level con-
tent to generate, this is written to an ASCII text file in the format
appropriate for the chosen game.

3.1.2 AnsProlog

Answer Set Programming will be used to implement the procedural
content generation. The core of this system will be an AnsProlog
program. This program will generate the game level data as answer
sets, based on a given set of parameters.

The AnsProlog code will be split across two files; one file contains
the core of the procedural content generation code, the other file con-
tains initialisation code. The initialisation code will be created by the
python program based on the user defined input parameters. This file
will contain definitions for parameterised values such as the number
of regions to use, and lists of data such as types of monsters to use in
the level. The following code segment illustrates the content of this
initialisation file.

# c o n s t n u m b e r o f r e g i o n s = 6 .
# c o n s t r e g i o n s i z e = 1 0 .
m o n s t e r t y p e s ( r a t ) .
m o n s t e r t y p e s ( b a t ) .
m o n s t e r t y p e s ( kobo ld ) .
m o n s t e r t y p e s ( o r c ) .
m o n s t e r t y p e s ( zombie ) .
m o n s t e r t y p e s ( s p e c t r e ) .
m o n s t e r t y p e s ( hydra ) .

The core code has been developed to perform the PCG, this file is
manually coded and does not change during or between invocations
of the system. Examples of the content of this file is shown in the
section 3.4.

The python program invokes the AnsProlog by making a
system call to the clingo tool. Clingo is an Answer Set
Programming grounder/solver developed by Potsdam Univer-
sity, further information and the ASP tools can be found at
http://potassco.sourceforge.net. The tool is invoke using the follow-
ing command:-

$ clingo init.pl core.pl

3.1.3 Dungeon Crawl Stone Soup

The ASCII text files generated can be visually checked by the de-
signer to ensure that the level generated looks right. Inaccessable
rooms, unconnected passage ways and poorly distributed content will
be easily apparent, however it is more difficult to assess the playabil-
ity of a level.

Dungeon Crawl Stone Soup is an open source Roguelike game that
provides some facility of importing game levels. DCSS has an official
website at http://crawl.develz.org/wordpress/. The python program
generates the level content in the format appropriate for this game,
and example of which is shown in figure 2. The level content file is
simply copied to the appropriate directory in the game installation
where it is picked up by the game. The ability to play the level will
provide much better feedback regarding how playable the level is.



NAME: ASP Generated Map 1
MONS: rat, bat, kobold, orc, zombie, hydra
DEPTH: 1
MAP
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx.....xxxxxxxxxxxxxxxx.....x
xxxxxxxxxxxxxxx.....xxxxxxxxxxxxxxxx.....x
xxxxxxxxxxxxxx.......xxxxxxxxxxxxxx......x
xxxxxxxxxxxxxxx.....xxxxxxxxxxxxxxxx.....x
xxxxxxxxxxxxxxx.....xxxxxxxxxxxxxxxx.....x
xxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
x.....xxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
x.....xxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
x.................xxxxxxxxxxxxxxxxxxxx.xxx
x.....xxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
x.....xxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx......................xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxx.xxx
xxx.xxxxxx.xxxxxx.xxxxxxxxxxxxx.xxxxxx.xxx
xxx.xxxx.....xxxx.xxxxxxxxxxxx...xxxxx.xxx
xxx.xxxx.....xxxx.xxxxxxxxxxx.....xxxx.xxx
xxx.xxx...........xxxxxx...........xxx.xxx
xxx.xxxx.....xxxxxxxxxxx.xxxx.....xxxx.xxx
xxx.xxxx.....xxxxxxxxxxx.xxxxx...xxxxx.xxx
xxx.xxxxxx.xxxxxxxxxxxxx.xxxxxx.xxxxxx.xxx
xxx.xxxxxxxxxxxxxxxxxxxx.xxxxxx.xxxxxx.xxx
xxx.xxxxxxxxxxxxxxxxx.......xxx.xxx......x
xxx.xxxxxxxxxxxxxxxxx..x.x..xxx.xxx......x
xxx........xxxxxxxxxx....................x
xxx.xxxxxx.xxxxxxxxxx..x.x..xxx.xxx......x
xxx.xxxxxx.xxxxxxxxxx.......xxx.xxx......x
xxx.xxxxxx.xxxxxxxxxxxxx.xxxxxx.xxxxxx.xxx
xxx.xxxxxx.xxxxxxxxxxxxxxxxxxxx.xxxxxxxxxx
x......xxx.xxxxxxxxxxxxxxxxx.......xxxxxxx
x......xxx.xxxxxxxxxxxxxxxxx.......xxxxxxx
x..................................xxxxxxx
x......xxxxxxxxxxxxxxxxxxxxx.......xxxxxxx
x......xxxxxxxxxxxxxxxxxxxxx.......xxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ENDMAP

Figure 2. Example Level File for Dungeon Crawl Stone Soup. Here the
design space is a 42-by-42 grid of ASCII characters where x and . represents
wall and floor section respectively. The design space was divided into 6-by-6

regions where each region was assigned a room or passage section.

3.2 Investigating the Scalability Issue
ASP is able to solve NP-hard problems, therefore it makes a good
candidate for scaling well as the problem complexity increases [4].
However, generating procedural content for games is often required
to be performed online in real-time, or at least to be responsive
enough for an interactive design tool. From the recent work on the
Chromatic Maze [13], and Refraction [11], we know that relatively
small design spaces can be expensive in terms of time to evaluate.
Here we are generating a two-dimensional dungeon map that is made
up of 60-by-60 tiles, this is 100 times the size of the Chromatic Maze
and 36 times the size of the Refraction design spaces.

3.2.1 Distinguishing between Structure and Content

A key idea in this research towards generating procedural content is
to realise that some of the content generated is structural, and the
rest of the content are artefacts. Structural components define the en-
vironment of the design space, in effect the level map. These struc-
tural components are items that do not tend to move, and cannot be
picked up, these include walls, floors, water, stairs, and doors. Arte-
facts are the other components of a typical Roguelike dungeon such
as monsters, weapons, food, and gold. These artefacts can move, can
be moved, or can be picked up.

The distinction is important, since the generation and placement
of these artefacts is dependent on the size, shape and placement of
the structural components. For instance it would be unusual to place
a monster within a wall section. Therefore the process of procedural
content generation will generate the structure of the dungeon (the
level environment) and then generate the artefacts that populate the
dungeon (the level contents).

3.2.2 Using the Chromatic Maze as a Benchmark

The Chromatic Maze puzzle [13] can be used as a good benchmark.
Here a six by six grid of coloured tiles represents a maze, where
movement is only allowed to adjacent tiles that have the permitted
colour. The colours used to generate the maze can be thought as
forming a colour wheel. Permitted movements around the maze are
restricted to adjacent tiles with the same colour or the colour of the
two neighbouring colours in the imagined colour wheel.

Using six colours for the maze Smith & Mateas claim a genera-
tion time of 2.5 seconds, for a 35 step (optimal solution) puzzle that
utilises every location in the maze. This increases to two hours for a
maze that has a 21-by-21 grid of coloured tiles, for a sub-optimal so-
lution using 114 steps. Figure 3 shows an example of the Chromatic
Maze, with solution illustrated by arrows, and the imagined colour
wheel for clarity.

Figure 3. The Chromatic Maze puzzle [13] is used as a benchmark for our
research. It has striking similarities to Roguelike dungeon maps: they are
both based on a 2-D grid of tiles that contain semantic information which

can be used to evaluate the usefulness of the level.

A dungeon map for a Roguelike game is also a two-dimensional
grid of tiles containing semantic information about the level. Instead



of colours the dungeon map contains glyphs that represent the con-
tent of the dungeon including walls, floors and monsters. This se-
mantic information can be used to evaluate the level to ensure that
the player will be able to navigate the complete dungeon, in much
the same way as the Chromatic Maze is evaluated.

3.2.3 A Naive Approach to Dungeon Building

A level map for a Roguelike game can be represented by a two-
dimensional grid, in much the same way as the Chromatic Maze is
represented, only it will tend to be much larger. It is not unreason-
able to define a Roguelike level to comprise a 60-by-60 grid, this is
one hundred times the size of the Chromatic Maze. Furthermore, the
possible content for each location of the grid will increase from six
to something in the order of 20 content artefacts.

The level content can be generated in exactly the same way as for
the Chromatic Maze, by randomly placing content at each location
in the grid. This method is able to generate every possible level con-
figuration, since it has a direct mapping between the content being
generated and the level map. The advantage of this approach is that it
has the potential of producing the best level content, however, most of
the levels produced will be useless. Evaluating the level content pro-
duced to discard the useless levels and find the best levels would be
complex and expensive in time. A 60-by-60 grid will take far longer
to solve then the two hours to solve the 21-by-21 Chromatic Maze
[13].

Figure 4. Blocks for Dungeon Building: A set of building blocks are
derived that can be placed in the design space to construct a dungeon. They
represent four different types of room layout, the four t-junction passages,

the four corner passages, the crossing passage, the two straight passages and
a blank room/passage. These blocks are of a known size and shape, therefore

they can easily be positioned so that they do not overlap.

3.2.4 Building Blocks for Dungeons

The naive approach randomly generates content at each grid location,
this leads to completely random structures appearing in the level con-
tent. An evaluation of such level content, using a step-by-step walk

through the level similar to that used in the Chromatic Maze, will not
evaluate the quality of the structures produced. This approach would
require a much more sophisticated evaluation technique that would
be even more costly in terms of the amount of time that would be re-
quired to solve than the relatively simple evaluation technique used
for the Chromatic Maze.

An alternative approach is to create some structured components
to represent rooms and corridor sections, and then randomly position
these in the design space. The components could be prefabricated
or generated by another PCG technique, to form a set of building
component templates of known sizes and shapes that can be utilised
to construct a dungeon.

Although placement is random it is relatively easy to prevent over-
laying components, and distributing them within the design space. A
more difficult issue is ensuring the positioning of the components is
such that rooms and corridor sections line up correctly to provide a
useful extended dungeon. The evaluation of such a level would be
much easier than evaluating a naiver level, however it would still
require a much more sophisticated technique than that used for the
Chromatic Maze puzzle.

Figure 4 suggest some basic building blocks could be used to gen-
erate a level structure. They represent four different types of room
layout, the four t-junction passages, the four corner passages, the
crossing passage, the two straight passages and a blank room/pas-
sage.

Figure 5. Components for Dungeon Building: The building blocks are
represented as logical components in the AnsProlog program. The design

space is divided into a number of regions with each region being assigned a
logical component.

3.2.5 A Structured Approach to Dungeon Building

To alleviate this problem further, a structured approach is adopted to
restrict the placement of the dungeon components. The level grid is
divided up into a number of equally sized regions, allowing for two
phases of PCG. The first phase of PCG decides which components
are located in each region, the second level of PCG determines how



that content is positioned within the region. If we take the 60x60 grid
example, this can be broken down into a 6x6 grid of regions, where
each region is now a 10x10 grid of tiles.

Figure 6. Structured Dungeon Building: A logical representation of the
dungeon structure is built by assigning logical components to each of the

regions of the design space. The approach allows the AnsProlog program to
validate and evaluate the structure of the dungeon layout at a high level.

The first phase of PCG now equates to the same order of magni-
tude as the Chromatic Maze, depending on the number of different
content components available. At this level the PCG process is de-
ciding if the region contains a room or a corridor section, and if so
what type of room or corridor section to use. The generation process
will also perform some tests to ensure that rooms and corridor sec-
tions fit together properly. The room/corridor type will define where
the walls and floor are within the region, this provides the overall
dungeon environment. An illustration of a dungeon layout for phase
one of the PCG is shown in figure 6. This as a visual representation
of the logical contents of each of the regions, a rendering of the dun-
geon where each tile in the 2-D level map is assigned a ASCII glyph
is performed during phase two of the PCG.

During the first phase there is a second stage of PCG where the
random allocation of artefacts such as monsters and pick-ups is per-
formed for each region (room/passage).

A second phase of PCG will render the detailed content of each re-
gion, this is performed in two stages, as with the first phase. The first
stage is to generate the environment for each region (room or pas-
sage), providing the structure to that part of the dungeon. The second
stage places the artefacts, such as monsters and pick-ups, in valid lo-
cations within the room/passage. Figure 7 depicts the dungeon level
on completion of phase two (note that only stage one of both phases
has been performed), with an actual rendering given in figure 2.

3.3 Hierarchical Procedural Content Generation

In the previous section we described the scalability issue as it per-
tains to large design spaces such as level maps for roguelike games.
The method outlined to avoid the problem is to apply a structured

Figure 7. Depiction of Rendered Dungeon Map following Phase 2 of
PCG. Using the blocks from figure 4 the 6-by-6 grid of regions from figure 6
can be rendered to achieve a 60-by-60 level map of the complete dungeon.

The actual rendering using ASCII character glyphs is given in figure 2

hierarchy to the design space by splitting the design space into a
number of equal regions. This results in two distinct phases of PCG,
where the first phase determines the properties associated with each
region, then the second phase deals with the detail of content place-
ment within the region. This section will outline the method used to
implement the first phase of PCG.

Stage 1 - Environment Stage 2 - Artefacts
Phase 1 Rooms/Passages for Regions Content of Rooms/Passages
Phase 2 Room/Passage details Positioning of Artefacts

Table 1. PCG: Stages and Phases. The PCG process has been split into two
phases: phase one generates the logical content of each region of the design

space, and phase two performs the detailed placement of content in each
region. Both phases have two stages: the first stage generates the level

environment content, the second stage generates the level artefacts (e.g.
monsters)

3.3.1 Applying Structure to the Design Space

The following AnsProlog code segment shows how room are as-
signed to regions within the design space. The structural hierarchy
is defined by splitting the design space into a number of equal re-
gions, these are defined by raxes that divides the space into x region
columns and y region rows. Three types of room are specified: spe-
cial, normal and corridor. The generate section uses choice rules to
create nine rooms and 18 corridor sections in random regions. The
integrity constraints in the test section remove solutions that have
regions that contain multiple room sections.

% --- Define -------------------------------------------
#const n_regions = x_regions * y_regions.
#const n_rooms = n_regions/4.
#const n_special = 3.
#const n_normal = n_rooms - n_special.
#const n_corrs = n_regions - n_rooms.



raxes(0..x_regions-1,0..y_regions-1).
types_of_room(special; normal; corridor).
special_type(tomb_of_fear;

chamber_of_death;
pit_of_flame).

% --- Generate -----------------------------------------
1{special_rooms(Rx,Ry,S):raxes(Rx,Ry)}1 :- special_type(S).
rooms(Rx,Ry,special) :- special_rooms(Rx,Ry,S).
n_normal{rooms(Rx,Ry,normal) :raxes(Rx,Ry)}n_normal.
n_corrs{rooms(Rx,Ry,corridor):raxes(Rx,Ry)}n_corrs.
% --- Test ---------------------------------------------
:- rooms(Rx,Ry,T1), rooms(Rx,Ry,T2), T1!=T2.
:- rooms(Rx,Ry,normal), rooms(Ru,Rv,normal),

adjacent_region(Rx,Ry,Ru,Rv).
:- rooms(Rx,Ry,normal), rooms(Ru,Rv,special),

adjacent_region(Rx,Ry,Ru,Rv).
:- rooms(Rx,Ry,special), rooms(Ru,Rv,normal),

adjacent_region(Rx,Ry,Ru,Rv).
:- shapes(Rx,Ry,S1), shapes(Rx,Ry,S2), S1!=S2.
:- special_rooms(Rx,Ry,S1), special_rooms(Rx,Ry,S2),

S1!=S2.

3.3.2 Generating Building Components

Following the allocation of rooms to regions it is necessary to assign
those rooms a shape, this will not only affect the way the room com-
ponent looks, but determines legal movement through the dungeon.
There are four room shapes: rectangular, oval, diamond and open,
and 12 corridor shapes to represent t-junctions, corners, straight sec-
tions and crossing sections. In the generate section each room is ran-
domly assigned a rooms shape, and each corridor section is randomly
assigned a corridor shape. A test is made to ensure that no solution
has any rooms (regions) that contain more than one shape.

% --- Define -------------------------------------------
room_shapes(rectangular; oval; diamond; open).
corridor_shapes(cross; s_hor; s_ver; blank;

t_tlr; t_ltb; t_blr; t_rtb;
el_lt; el_rt; el_lb; el_rb).

% --- Generate -----------------------------------------
1{shapes(Rx,Ry,S) : room_shapes(S)}1 :- rooms(Rx,Ry,T),

T!=corridor.
1{shapes(Rx,Ry,S) : corridor_shapes(S)}1 :- rooms(Rx,Ry,T),

T==corridor.
% --- Test ---------------------------------------------
:- shapes(Rx,Ry,S1), shapes(Rx,Ry,S2), S1!=S2.

3.3.3 Testing for Unwanted Configurations

The rooms and shapes predicates defined above form the concept of
a building component. So far we have populated the regions of the
design space with these building components, however their place
meant has been completely random. Integrity constraints are used to
ensure that these building components tie up with their neighbouring
components. These tests remove any solutions where the adjacent
building components do not have compliant access routes. Note that
for sake of space only the integrity constraints for the cross building
component is listed, but you get the idea.

% --- Define --------------------------------
up_sections (cross; s_ver; t_tlr; t_ltb; t_rtb;

el_lt; el_rt; rectangular; oval; diamond; open).
down_sections (cross; s_ver; t_blr; t_ltb; t_rtb;

el_lb; el_rb; rectangular; oval; diamond; open).
left_sections (cross; s_hor; t_tlr; t_ltb; t_blr;

el_lt; el_lb; rectangular; oval; diamond; open).
right_sections(cross; s_hor; t_tlr; t_blr; t_rtb;

el_rt; el_rb; rectangular; oval; diamond; open).
% --- Generate ------------------------------
% --- Test ----------------------------------
:- shapes(Rx,Ry,cross), shapes(Rx+1,Ry,S),

not right_sections(S).
:- shapes(Rx,Ry,cross), shapes(Rx-1,Ry,S),

not left_sections(S).
:- shapes(Rx,Ry,cross), shapes(Rx,Ry-1,S),

not up_sections(S).
:- shapes(Rx,Ry,cross), shapes(Rx,Ry+1,S),

not down_sections(S).
...

3.3.4 Evaluating Level Suitablility

By this stage we should have solutions that contain building compo-
nents placed in regions such that access is possible between adjacent
regions depending on the building component type. The final step to

ensure that the level is practical is to ensure that the player is able to
navigate around the dungeon from the start location to the end loca-
tion. Dungeons in Roguelike games tend to have a number of level
exits that are located throughout the dungeon. However we envisage
that a good level will have an objective to achieve, this is represented
in its simplest form as a special room that contains a tempting piece
of treasure alongside the level boss and his henchmen. Moreover, the
placement of stairs between levels will be allocated by the level gen-
erator.

% --- Define --------------------------------
special_room_types(tomb_of_fear;

chamber_of_death;
pit_of_flame).

completed_at(S) :- end(Rx,Ry), move_to(Rx,Ry,S).
completed :- completed_at(S).
% --- Generate ------------------------------
1{objective_room(O) : special_room_types(O)}1.
1{special_rooms(Rx,Ry,S) : raxes(Rx,Ry)}1

:- special_room_types(S).
1{ start(Rx,Ry) : raxes(Rx,Ry) }1.
end(Rx,Ry) :- special_rooms(Rx,Ry,S), objective_room(S).
% --- Test ---------------------------------------------
:- not completed.
:- completed_at(S), S<n_regions/2.
% --- Evaluate -----------------------------------------
move_to(Rx,Ry,0) :- start(Rx,Ry).
move_to(Rx,Ry,S) :- step(S),

move_to(Px,Py,S-1),
adjacent_region(Px,Py,Rx,Ry),
move_region(Rx,Ry,Px,Py),
0{ move_to(Rx,Ry,0..S-1) }0.

4 PRELIMINARY RESULTS
The hierarchical PCG approach, where an initial phase generates the
structure of the dungeon followed by a second phase that then filled
in the detail, is key to providing a method that can generate content
for large design spaces in a timely manner. The emphasis of our cur-
rent research is on the first phase of procedural content generation.
The design space is split into a number of regions with the objec-
tive being to assign building components, in the form of rooms and
passages, to each region. For example, a 60-by-60 tile design space is
divided into 6-by-6 regions each of 10-by-10 tiles. The first phase has
now been reduced to solving for a 6-by-6 tile design space, which is
similar to the Chromatic Maze puzzle. Running the system on a sin-
gle core of a 2.66 GHz Intel Core 2 Duo, we obtain the solving times
show in table 2 for the first phase of our method.

Regions 1 Answer Set 10 Answer Sets 100 Answer Sets
6x6 6.100 6.110 6.240

Table 2. Results: Time to Generate Answer Sets (in Seconds). The times
shown are for the AnsProlog program to generate the answer sets for the first

phase of PCG.

A time of several seconds is quite long if the intent is to generate
the levels online in real-time. However, there are engineering solu-
tions that can help to reduce the effect of this time period. An obvi-
ous solution is to generate the level content whilst the player is still
occupied on the previous level or whilst they are distracted with an
animated cut scene. Another method is to generate smaller sections
of the level, which should be quicker to produce, and piece them to-
gether when the player enters that part of the dungeon.

The other approach is to generate the levels offline prior to playing
the game. In this way the level data is ready to be loaded at any point
during play. However, it would be useful from the level designers
point of view to have a system where the level maps can be viewed
whilst the level designer is adjusting the level parameters. This in-
teractive process would be an invaluable asset to the level designer,
aiding them to produce good quality level content in reasonable time.



5 CONCLUSION AND FUTURE WORK
Answer Set Programming is a powerful tool that can be used to
tackle NP-hard problems. However, when dealing with large prob-
lem spaces, such as the design space for a roguelike dungeon, a naive
approach can be very costly in terms of time. Procedural content gen-
eration needs to operate in real-time if the content generated is to be
generated and used online. Even where we may have the luxury of
generating content offline it is important that the tools used either
provide an interactive experience to the level designer, or provide
content that has be sufficiently evaluated.

The approach adopted here to avoid the large problem spaces, is
to restrict the problem space by applying structure in the form of re-
gions. The overall design space is divided into a number of equal re-
gions, where content is assigned to each region using a random PCG
technique. These regions relate to rooms or passages within the dun-
geon. This hierarchical method effectively reduces the design space
significantly reducing generation times form many hours to just a few
seconds. The process uses two phases of PCG where the first deals
with the random distribution of content between regions (rooms/pas-
sages), and the second phase deals with the detailed placement of
content within the region, most of which will be fixed.

There are a number of directions that we envisage taking this re-
search. Adopting a two phased approach to PCG is key to addressing
the scalability issue, where the first phase has been presented here.
The second phase, where the content of each location in the design
space is determined, can be achieved using ASP, however there is an
opportunity to assess the potential of utilising the strengths of another
PCG techniques to produce a PCG hybrid.

The parameter interface with the level designer could be devel-
oped to enhance the structure and content of the dungeon maps. The
development of a proper user interface or scripting format would go
a long way to improve this potential.

Finally, the concept of splitting the design space into regions could
be developed to be more flexible so as to produce more intricate dun-
geon environments. The assessment of the playability of the levels
generated would provide useful insight into how the dungeon maps
can be improved.
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