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Abstract.  This paper reviews the concepts behind a brain-

computer interface and some of the machine learning methods 

used to classify a signal coming from an electroencephalogram 

for brain-controlled game use. After several decades of research, 

development and application in the rehabilitation domain, 

modern brain computer interface techniques show a relative 

maturity, receiving more attention in real world applications, 

also for the general population, and in particular in the domain of 

NeuroGames. These are games that use the latest emotional, 

cognitive, sensory and behavioural techniques to create radically 

compelling experiences to engage and entertain gamers. 

1 INTRODUCTION 

Human-computer interaction has become ubiquitous and the 

traditional keyboard and mouse approach has been replaced by 

more natural touch and gesture interfaces as a main stream 

interaction modality. Furthermore there is a need to develop 

even more natural or involving interaction methods that can also 

be used in situations where other types of interface are not viable 

(e.g. disability) or where the experience needs to be enhanced 

beyond what other interaction methods can offer. Brain-

computer interfaces (BCI) provide an alternative communication 

path based on the brain’s neural activity, that is independent 

from the normal output pathways of peripheral nerves and 

muscles [1].  

The traditional application for BCI mainly focuses on improving 

the personal assistance and interaction experience for disabled 

people. Modern BCI techniques are receiving more and more 

attention in real world applications,  particularly in the domain of 

BCI applications, such as NeuroGames [2]. NeuroGames include 

brain-controlled games, also called Neurofeedback games or 

brain-computer interfacing games, but also augmented reality 

experiences, cognitive enhancing devices, neuromodulation 

systems, eye tracking, voice activation, and many more 

techniques that can improve gamers’ immersion. A review of 

some Brain-Controlled Games is given in section 4, while 

section 2 and 3 review BCI concepts and classifiers. 1 

2 BCI AND ELECTROENCEPHALOGRAM 

A brain–computer interface is based on the idea that we can 

record the electrical activity in the brain by means of the 

electroencephalogram (EEG) and use it to interact with a 

computer program. 

EEG is defined traditionally as the electrical activity of the brain 

recorded from the scalp [3]. It also referred to as the continuous 

measurement of electrical potential differences between points 

on the scalp. These electrical differences or activity is the result 
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from ionic current flow within the brain’s neurons and some 

extent glial cells. The measured voltage is in µV (microvolt) and 

typically recorded at multiple sites on the scalp simultaneously 

[4]. 

The scalp EEG considered an important diagnostic and research 

tool for many reasons as it allows researchers to: 

• Monitor the activity of neurons in time of milliseconds, 

with its high temporal resolution 

• Utilise a non-invasive method 

• Record using an inexpensive and simple method 

• Monitor brain activity in a freely moving subject 

EEG signals vary from low to high frequencies, in which there is 

a general consensus to divide the frequency range within which 

EEG signals can occur into a number of frequency bands that 

have been named after Greek letters[3]: 

• Delta= 1.0 - 3.5 Hz 

• Theta= 4.0 – 7.5 Hz 

• Alpha= 8.0 – 13.0 Hz 

• Beta= 14.0 – 30.0 Hz 

• Gamma= 30.0 – 100.0 Hz 

However, despite EEG’s limitations of suffering from high 

susceptibility to noise and poor spatial resolution, it has been 

widely used to study the brain dynamics as it is effective in 

detecting immediate responses to stimuli with a good temporal 

resolution. EEG based BCI systems have been developed to be 

more practical by being mobile and cost-effective with less 

physical restrictions. For these reasons, EEG has been 

considered as a primary option for developing BCI systems[5]. 

 

2.2. The BCI approach 

In brain-controlled games, or games driven by a brain-

computer interface, in order to exercise control, the user 

voluntarily or involuntarily produces different brain activity 

patterns that are identified by the computer system and translated 

into commands. This is usually performed via signal processing 

and classification algorithms. In figure 1 a simplified model of a 

BCI system is described.  

In particular the brain signal is collected via and EEG and 

artefacts are eliminated. Artefacts are errors introduced into the 

signal due to both patient-related issues (e.g. minor body 

movements, eye movements, sweating) and technical issues (e.g. 

Hz, impedance fluctuation, cable movements, broken wire 

contact, too much gel or too little, low battery).  

 

 
Figure 1 – Simplified functional model of a BCI System 



    Artefacts can be eliminated automatically or manually. For 

example, artefacts can be eliminated automatically by utilizing 

other sensors and electrodes to monitor and remove them. An 

example of manual artefact elimination could involve video 

recording the user during the experiment and reviewing the 

signal at times in which movements have occurred. Once the 

artefacts are eliminated, feature extraction is performed. This is 

needed in order to transform the input signal into a set of 

features (variables) which are identified as the most relevant 

information for representing the signal, whilst reducing its size. 

Feature extraction algorithms can use various techniques; for 

example, the probabilistic procedure used in Principal 

Component Analysis, which uses the orthogonal transformations 

to covert a set of observations of possibly correlated variable 

into a set of uncorrelated variables (the principal components). 

Programs like MATLAB, or EEGLab, which is a toolbox for 

data processing dedicated to the analysis and visualization of 

continuous data, can be used for such task.  

After the feature extraction, and before the signal can be used 

as the controller for the game, feature classification needs to take 

place.  

3 CLASSIFIERS USED IN BCI: 

Lotte et al. in 2007 [6] provide a review of the commonly 

employed signal classification algorithms together with a review 

of their critical properties, and guidelines on how to choose the 

right classifier for the given context of use of the BCI. Here we 

provide a short review also including research beyond 2007.  

Classifiers used to categorise the brain signals can be divided 

into four different categories: a) linear classifiers, b) neural 

networks, c) nonlinear Bayesian classifiers and d) nearest 

neighbour classifiers, as shown in Figure 1. This section will 

discuss briefly the popular classifiers and their most important 

properties for BCI applications [6]. These are shown in table 1 

and reviewed in the sections below. 

 

3.1. Linear classifiers 

Linear classifiers are probably the most popular algorithms 

for BCI applications. Two kinds of linear classifier have been 

used for BCI design, Linear Discriminant Analysis (LDA) and 

Support Vector Machine (SVM).  

LDA, or Fisher’s LDA, has a very low computational 

requirement that makes it suitable for online BCI system. 

Moreover this classifier is simple to use and generally provides 

good results. Consequently, LDA has been used with success in 

a great number of BCI systems such as motor imagery based 

BCI like P300 speller which is a spelling device with a 300ms 

delay that utilises the P300 visual response signal. The main 

drawback of LDA is its linearity; this can provide poor results on 

complex nonlinear EEG data. A Regularized Fisher’s LDA 

(RFLDA) has also been used in the field of BCI; this regularized 

version of LDA may give better results for BCI than the non-

regularized version according to Muller et al. 2004 [7]. 

Surprisingly, RFLDA is much less used than LDA for BCI 

applications.  

Support Vector Machine (SVM) classifier has been applied 

with success to a relatively large number of BCI problems but 

this success is gained at the expense of a low speed of execution 

[8] . 

 

3.2. Neural networks 

Neural networks (NN) along with linear classifiers are the 

classifiers that mostly used in BCI research. The most widely 

neural network used for BCI is the Multilayer Perceptron (MLP) 

and briefly present other neural network classifiers used for BCI 

applications. Below are described two of the most used 

classifiers. 

MLP has been applied to almost all BCI problems, due to the 

fact that it can classify any number of classes, giving this 

classifier the flexibility to adapt to a variety of problems. A 

Multilayer Perceptron without hidden layers is known as a 

Perceptron. A perceptron is equivalent to LDA and, as such, has 

occasionally been used for BCI applications.  

According to Millan et al. [9] a Gaussian classifier,  

outperforms MLPs on BCI data, and can perform efficient 

rejection of uncertain samples. Consequently, this classifier has 

been applied with success to motor controlled classification 

experiments.  

Other NN methods mentioned by Lotte et al. [6] that can be 

used in BCI are:  

• Learning Vector Quantization (LVQ) Neural Network 

• Fuzzy ARTMAP Neural Network  

• Dynamic Neural Networks such as the Finite Impulse 

Response Neural Network (FIRNN), Time-Delay Neural 

Network (TDNN) or Gamma dynamic Neural Network. 

• RBF Neural Network 

• Bayesian Logistic Regression Neural Network (BLRNN) 

• Adaptive Logic Network (ALN) 

• Probability estimating Guarded Neural Classifier (PeGNC). 

3.3. Nonlinear Bayesian classifiers 

This section introduces two Bayesian classifiers used for BCI: 

Bayes quadratic and the Hidden Markov Model (HMM). 

Although Bayesian Graphical Network (BGN) classifiers have 

been employed for BCI, BGN is not described here as it is not 

common, and is not currently fast enough for real-time BCI and 

games. However, these classifiers are not as widespread as linear 

classifiers or Neural Networks in BCI applications.  

Bayes quadratic classifier is not widely used for BCI, but it 

has been applied with success to motor controlled classification 

[6].  

Hidden Markov Models (HMM) are popular dynamic 

classifiers used in the field of speech recognition, and are 

perfectly suitable algorithms for the classification of time series. 

As EEG components used to drive BCI have specific time 

courses, HMM have been applied to the classification of 

temporal sequences of BCI features and even to the classification 

of raw EEG. HMM are not widespread within the BCI 

community. 

Another kind of HMM which has been used to design BCI is 

the Input-Output HMM (IOHMM). The main advantage of this 

classifier is that one IOHMM can discriminate between several 

classes, whereas one HMM per class is needed to achieve the 

same operation.  

 

3.4. Nearest Neighbour classifiers 

This section will cover two types of classifiers, the K Nearest 

Neighbours (KNN) and Mahalanobis distance.  

KNN algorithms are not very popular in the BCI literature, 

probably because they are known to be very sensitive to the 

dimensionality of the EEG signal, and they have failed in several 

BCI experiments [8][7][10]. However, when used in BCI 



systems with low-dimensional feature vectors, KNN prove to be 

efficient [11].  

Mahalanobis distance is simple yet robust classifier which has 

proved to be suitable for BCI systems [10][12]. Despite its good 

performances, it is still scarcely used in the BCI literature. 

 

Table 1 – Classifiers used in BCI research [6] 
Linear Classifiers Linear 

Discriminant 

Analysis (LDA) 

Fisher’s LDA 
(FLDA) 

Regularized 

Fisher’s LDA 
(RFLDA) 

Support Vector 

Machine (SVM) 

Gaussian SVM 

Radial Basis 
Function SVM 

(RBF SVM) 

Neural Network (NN) Multilayer Perceptron (MLP) 

Gaussian NN 

Learning Vector Quantization (LVQ 

NN) 

Fuzzy ARTMAP NN 

Dynamic NN Finite Impulse 
Response 

(FIRNN) 

Time-Delay NN 

(TDNN) 

Gamma Dynamic 

(GDNN) 

RBF NN 

Bayesian Logistic Regression NN 
(BLRNN) 

Adaptive Logic Network (ALN NN) 

Probability estimating Guarded Neural 

Classifier (PeGNC) 

Perceptron 

Nonlinear Bayesian 

Classifiers 

Bayes Quadratic 

Hidden Markov-

Model (HMM) 

HMM 

Input-output 
(IOHMM) 

Bayesian Graphical Network (BGN) 

Nearest Neighbour Classifier K Nearest Neighbour (KNN) 

Mahalanobis Distance 

 

4. BCI GAMES 

Several Brain Controlled Games have been developed though 

out the years. Bos at al. [13] provided a review of the state of the 

art of the use of BCI in games in 2010. Here we report them 

considering a different point of view, which is how the signal is 

used in the game, or paradigm. Additionally, some of the games 

that have been missed as well as some methodological 

advancement from 2010 onwards are reviewed and summarised 

in table 2. 

One of the first brain-controlled games was created by Vidal 

(1977) [14]. In the game, the user can move around the maze in 

four directions by focusing one's eyes or attention on one of four 

fixation points displayed off-screen. A diamond-shaped 

checkerboard is periodically flashed between the four points that 

will result in neural activity on different sites of the primary 

visual cortex. This visually evoked potential (VEP) is recognized 

using an online classification method to move in the maze. The 

game performance was remarkable despite being the first game 

of its kind. The use of online artefact rejection and adaptive 

classification made Vidal’s approach way ahead of its time. One 

factor to note is the fact that Vidal’s game used eye movements, 

which are considered artefacts capable of interfering with the 

original EEG signal [15]. 

A simpler method to integrate brain signals into a game is the 

interpretation of broadband frequency power of the brain such as 

alpha, beta, gamma and mu-rhythms. This method is used in the 

game called “Brainball” by Hjelm (2000) [16], where the EEGs 

of the two players is measured using a headband. A relaxation 

score is derived from the ratio between the alpha and beta 

activity in the EEG signal. The relaxation score is used to move 

a steel ball across the table and away from the most relaxed 

player; However, when the ball is almost at the opponent’s side, 

and the player realizes s/he is about to win, if excitement sets in, 

the player might lose instead [15]. Another BCI game by Van 

der Laar et al. (2013) [17] is called “World of Warcraft” (WoW) 

and it uses the power in the alpha band over parietal regions. 

This is a massive multiplayer online role-playing game where 

the objective is to level up and get a better abilities and weapons 

by achieving experience points through completing quests, 

slaying enemies and exploring the world. In the BCI version of 

the game, the user (character in the game) can change from one 

form to another by switching between a state of relaxation and 

alertness (increase of alpha band activity). The shape of the 

Night Elf in the druid shape who is strongly dependent on 

intelligence and mental concentration has been mapped to the 

state of relaxed alertness. The decrease in the alpha band 

activity, such as in a state of stress or agitation, provides a 

natural mapping to the bear shape, a figure eager to fight. Users 

can train in the use of their alpha levels very quickly. The 

authors report that a subject has learned to control alpha levels to 

such an extent that intentionally transforming every 5 seconds 

was possible.  

Another interaction method that makes use of the BCI 

techniques is as neuro-feedback. This is used for example in the 

experiment of Pope and Palsson (2003) where children with 

attention deficit hyperactive disorder (ADHD) were treated using 

neuro-feedback.  One group used standard neuro-feedback, while 

another group played Sony PlayStation™ video games where the 

controller input was modulated by a neuro-feedback system 

developed by NASA. In the latter the correct brainwave patterns 

were rewarded with a more responsive controller. Mastering 

control over brain signals is often the goal of the game in this 

sort of applications, where the characteristic of a neuro-feedback 

game is that the player has to discover how to control aspects of 

brain activity to play the game competently [15], where it is 

hope that such learning can be transferred to the real world. 

In contrast to the previous methods, motor-control based 

BCIs are considered as a traditional input device for BCI games. 

One example is a game by Pineda et al in 2003 [18], where they 

used the mu-rhythm power of the motor cortices to steer a first 

person 3D shooter game, while movement forward/backward 

was controlled using physical buttons. No machine learning was 

involved. The players learned to control their mu-power by 

training for 10 hours over the course of five weeks.   Another 

motor-control BCI game is “Pacman” by Krepki et al. (2007) 

[19], in which the detection of movement is based on the 

lateralised readiness potential (LRP). This is a slow negative 

shift in the electroencephalogram (EEG) signal that develops 

over the activated motor cortex starting sometime before the 



actual movement onset. In the BCI game, Pacman makes one 

step every 1.5–2 seconds, and moves straight until it receives a 

turn command or reaches a wall. Users sometimes reported the 

feeling that Pacman moves in the correct direction even before 

the user was consciously aware of that decision, this is an 

example of a new level of interaction mechanism that happens so 

naturally that is unconscious, such natural level of interaction 

can only be enabled within a BCI game [15]. 

 

Table 2 – BCI controlled games 
Author Game name Original 

Game author 

BCI method 

Vidal (1977)  - Vidal  Evoked 
Potentials 

(VEP) 

Hjelm (2000)  Brainball Hjelm  Neurofeedback 

(alpha and beta) 

Laar et al. 

(2013) 

World of 

Warcraft 

Blizzard 

Entertainment 

Neurofeedback 

(alpha band 

power) 

Pope and 
Palsson 

(2003) 

- Sony Neurofeedback 

Pineda et al 
in 2003  

3-D first-person 
shooter game 

- Motor-control 
(mu-rhythm 

power) 

Krepki et al. 

(2007) 

Brain Pacman Krepki et al. Motor-control 

(LRP) 

Bayliss et 

al.(2003, 

2004)  

Virtual reality 

scene 

Bayliss et al. Evoked 

Potentials 

(P300) 

Lalor et al. 
(2004, 2005)  

theMindBalance Lalor et al.  Evoked 
Potentials 

(SSVEP) 

Martinez et 
al. (2007)  

2D racing game Martinez et al. Evoked 
Potentials 

(SSVEP) 

Jackson et al. 
(2009)  

Shooter game - Evoked 
Potentials 

(SSVEP) 

Mühl et al. 

(2010)  

Bacteria Hunt Mühl et al. Evoked 

Potentials 
(SSVEP) 

Tangermann 

et al. (2009)  

Pinball - Motor control 

 

Evoked responses refers to a paradigm where the application 

measures the response to a stimulus. This is very different 

method from the neuro-feedback and the motor-controlled BCI 

games, where the user can initiate actions without depending on 

stimuli from the game. An example of an evoked response is the 

P300, an event related potential (ERP) that occurs after a task-

relevant stimulus is presented. Bayliss uses a P300 BCI in a 

virtual driving task and a virtual apartment (2003, 2004) 

[20][21]. Objects in the virtual apartment were highlighted using 

a red translucent sphere, evoking a P300 when the object that the 

user wanted to select was highlighted [15].  A lower-level 

evoked paradigm is based on steady-state visually evoked 

potentials (SSVEPs), in which the attention to a visual stimulus 

with a certain frequency in the visual cortex is measured as a 

modulation of the same frequency in same area.  In a game 

called “theMindBalance” by Lalor et al. (2004, 2005) [22][23], a 

SSVEP is evoked by two different checkerboards. The attention 

focused on one of the checkerboards is used to balance an avatar 

on a cord in a complex 3D environment.  

One advantage of the evoked responses over induced BCI 

paradigms is that it allows easy selection of one out of multiple 

options by focussing attention on a stimulus. For example, a 2D 

racing game by Martinez et al. (2007) [24] uses four different 

directional controls using SSVEP, and in a similar way a shooter 

was controlled in Jackson et al. (2009) [25]. These games could 

be improved by using evoked potentials to measure the mental 

state of the user, and use it as new information source as opposed 

to a button press. By assigning a meaning to the mental action of 

concentrating on a game element, for example devouring a 

bacteria as in the “Bacteria Hunt” game by Mühl et al. (2010) 

[26], the user reports the feeling of becoming part of the game 

mechanics, and promotes a more involving and enjoyable 

interactions. The same applies for games that use imagined 

movement. These games replace the movement of interaction 

with buttons with a (slow) imagined movement, without adding 

the role of precise timing between thinking about the movement 

and the actual movement on the screen as shown in a “Pinball” 

experiment by Tangermann et al. (2009) [15][27] where the user 

can utilize the extracted and classified band power features to 

control the left and the right pedals of a Pinball machine. 

7 CONCLUSIONS  

    We have introduced the methods used to create a BCI and 

presented some of the research conducted to produce Brain 

Controlled Games that replace the traditional input like 

keyboard, mouse and joysticks with an interaction mechanism 

based on brain waves that has the potential to be more involving 

and enjoyable. The different tools, techniques and paradigms 

used to date have been introduced together with the games in 

which they have been applied. These games have attracted a 

small population of gamers. The main challenge of the BCI 

process application to games is the ability to perform all the 

tasks of signal handling, as highlighted in the modules in fig. 1, 

in real-time rather than post experience, or as very slow process 

of voluntary signal production. Methods like Neurofeedback, 

Motor control and Evoked responses have been utilized in 

different BIC controlled games. The paradigm used in the game 

can be used both for interacting with the game, but also to evoke 

responses congruent with the experience, supporting immersive 

and natural interactions with the game world. This would be 

particularly usefully in area in serious games.  Further research is 

needed in order to provide a fully involving game experience, 

and thus replace the traditional interaction methods. 
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