
Automating Game Design In Three Dimensions
Michael Cook and Simon Colton and Jeremy Gow1

Abstract. We describe ANGELINA-5, a new iteration of the AN-
GELINA framework for investigating and building software which
automates the process of videogame design. ANGELINA-5 is the first
automated game design tool that produces 3D games. We outline here
the system’s structure, the challenges inherent in building an auto-
mated game designer in a modern game engine, and we discuss the
future research directions for the project.

1 INTRODUCTION
Procedural content generation [8, 6] is a staple of both games de-
velopment and research, but automating the process of designing an
entire game is territory we are only just beginning to explore. Many
new challenges arise when attempting to design not just one element
of a videogame, but all elements simultaneously, and many problems
that were easily ignored when generating a single piece of content
must be dealt with directly when part of a larger design challenge.

Unlike procedural content generation, automated game design
does not have obvious applications to the modern games industry.
While procedural content generators can act as sources of surprise
and excitement for players, or help designers in producing larger
games more quickly, the goal of automated game design is to pro-
duce a system which does not help anyone, nor need anyone to help
it. Nevertheless, as an avenue of research it asks many interesting
questions about how and why we design games, and can be a catalyst
for novel procedural generation research at the same time. By forc-
ing a system to design everything, we reveal the less obvious design
tasks we might otherwise take for granted, or not consider getting a
piece of software to do itself.

We describe here the development and structure of ANGELINA-
5, the newest iteration of ANGELINA, an automated game designer
which employs computational evolution. Previous versions of AN-
GELINA have examined different aspects of automating game de-
sign, explored different technologies and genres, and investigated the
problem both from the side of games research and the side of Compu-
tational Creativity research. ANGELINA-5 marks a new phase for the
research, making a step forward technologically, but also philosoph-
ically too. By building ANGELINA-5 in Unity, a flexible and mod-
ern development environment, we are laying the foundation for AN-
GELINA to develop as a platform for automated game design, rather
than a system custom-built for designing one specific type of game.

The rest of the paper is organised as follows: in section 2 we briefly
describe ANGELINA-5’s background, and the choice of Unity as a
development platform; in section 3 we describe ANGELINA-5’s in-
ternal structure as an evolutionary system; and in section 4 we de-
scribe future directions for the research project. In section 5 we draw
some brief conclusions.

1 Computational Creativity Group, Goldsmiths, University of London.
ccg.doc.gold.ac.uk

Figure 1. Images from Hit The Bulls-Spy, a game designed by
ANGELINA-5. Top: A view of the entire game map. Bottom: A screenshot of

the final game while running.

2 ANGELINA and Unity

ANGELINA is a cooperative coevolutionary [7] system for automat-
ing the process of videogame design. There have been several dif-
ferent versions of ANGELINA in the past [2, 3, 4], each tackling a
different kind of game design problem often on different platforms
or game engines. The latest version of the system, ANGELINA-5, rep-
resents a large step forward and a considerable shift in the platform
that ANGELINA is built upon.

The research aims of the project are concerned with automating
game design and the procedural creation of content, but also the
addressing of issues in Computational Creativity. Later versions of
ANGELINA investigated questions of thematic control, context and
framing of design decisions, and whether ANGELINA could discover
new game mechanics without additional game design knowledge [5].

ANGELINA-5 is built as an extension to the Unity game devel-
opment environment2. Unity is an extremely popular, versatile and
powerful game engine that ships with a comprehensive development
environment that is also highly extensible. Unity games can be de-
ployed to web browsers, to all major desktop operating systems as

2 http://www.unity3d.com



native applications, to every modern games console and handheld
device, and most smartphone operating systems including iOS, An-
droid and Blackberry.

This versatility means that distribution of ANGELINA-5’s games
is much simpler than before, and the games can be distributed to a
wider variety of people, hopefully increasing the success of future
user studies, as well as improving the dissemination of our results.
Unity also supports both three- and two-dimensional game develop-
ment, meaning that for the first time we can begin to investigate the
automation of fully-3D game design. This allows ANGELINA-5 to
explore a wider variety of game types, and also strengthens the image
of ANGELINA-5 as a game designer in terms of using contemporary
technology. This is important in terms of Computational Creativity,
since the perception of a piece of software as being creative is de-
termined by many factors besides simply what the software outputs
[1].

3 System Structure
In this section, we describe the architecture of ANGELINA-5 by de-
tailing the steps the system goes through to produce a game, from the
beginning input theme to compiling and exporting a final game.

3.1 Predesign Phase
ANGELINA-5 begins by being given a word or phrase which acts as
a theme for the game it is about to design. This method of defining a
starting point for a game design is derived from game jams, i.e. game
development contests where people congregate to design games in
short timeframes, constrained by commonly-shared themes. Exam-
ples of themes might be fairly straightforward, such as ‘fishing’, or
more abstract, such as ‘alone’. In some cases the themes are inten-
tionally very unusual or restricting in order to stimulate creativity –
the theme for the 2013 Global Game Jam was the sound of a heart
beating. Developers are encouraged to incorporate the theme into
their game in whichever way they can, such as through the ruleset,
the narrative, the visuals or some other way.

When an input theme is given, if it is longer than a single word,
ANGELINA-5 will first attempt to isolate a single word most likely
to be a suitable theme. Single words work better than phrases for our
current methods of media acquisition and framing, because many
of these processes are based on querying web services that expect
singular queries. However, it should be noted that this single-word
approach is not a long-term solution, and better theme parsing is a
point of future work. In order to choose a single word from a phrase,
ANGELINA-5 first removes all words which are not nouns, and then
uses a frequency analysis against a large corpus of English text3, in
order to find the least common word in the input phrase. This ap-
proach was developed by analysing 150 game jam themes by hand
and running similar filters on them. We found that the most promi-
nent theming information tended to be in more specific words, partic-
ularly, nouns. The exception to this rule is where the theme includes
meta-references to the game itself, such as ‘build the level you play’.
Once it has a chosen theme word, it then begins a predesign phase
which prepares it for the act of designing a game.

Once ANGELINA-5 has a theme word it attempts to expand the
theme using word association databases4. We plan to replace this
technique with a more relevant topic association approach in future,
but for most applications word association provides a reasonable set

3 http://www.kilgarriff.co.uk/bnc-readme.html
4 http://wordassociations.net

Figure 2. Two textures from ANGELINA-5’s repository of over 600.

of words relating to the source theme word. These word associations
are combined with the theme word to provide a list of possible words
relating to the game’s overall theme. For example, the theme word
secret would lead to a list of words including secret, spy and mys-
tery. A typical list of associations runs to about thirty words. These
associations are then used to perform a series of media searches, one
for each association, in order to build a database of assets for use
in theming the final game. ANGELINA-5 downloads public domain
fonts from DaFont5, 3D models from TF3DM6 and sound effects
from FreeSound7. These media are archived as they are downloaded,
so that they can be retrieved quickly for future designs which include
the same associations.

ANGELINA-5 also generates a zone plan which defines a number
of themed zones for use within the game design. A zone is a collec-
tion of a floor texture, a wall texture, a 3D model for use as scenery,
and a sound effect. The sound effect and scenery model are both ran-
domly selected from the media downloaded from the associations
list. In order to select the texture, ANGELINA-5 searches through a
list of 622 tagged texture files for ones which are related to one or
more of the association words. A relationship can be established in
one of two ways: first, it can compare the associations with the file-
name or folder name of the textures, which are categorised roughly
according to their type (such as ‘clouds’ or ‘paper’). Secondly, it can
call on a database of word associations mined using crowdsourcing
via Twitter.

ANGELINA-5 regularly posts random untagged texture files to its
Twitter account8 and asks its followers to provide single words which
they associate with the image. These are retrieved and recorded in a
database file, and used as a secondary means to relate associations
to textures in the case that the filename match fails. Figure 2 shows
two examples from the database of textures. If no matches are found
through either method, ANGELINA-5 selects textures randomly for
the zones.

Once ANGELINA-5 has selected two textures and randomly cho-
sen a 3D model to act as scenery (we describe scenery later) and a
sound effect for each zone, the zone map is complete. Before it pro-
ceeds to the main design phase, ANGELINA-5 will generate a title
for the game, and select a piece of music. The game’s title is gen-
erated using a rhyming dictionary and a corpus of popular culture
references, including famous examples of media such as music and
books, as well as idioms and common sayings. It attempts to create
puns using these resources and the list of source word associations,
using a similar approach to the one described in [4].

5 http://www.dafont.com/
6 http://tf3dm.com/
7 http://freesound.org/
8 http://www.twitter.com/angelinasgames



To select a piece of music, ANGELINA-5 attempts to choose a
suitable mood for the game. It first takes the main theme word, and
passes it to Metaphor Magnet9[9] to obtain feelings people express in
relation to the theme word. Metaphor Magnet is a tool for exploring a
space of metaphors, mined from Google N-Grams. It has an array of
features that are built on top of this concept, including the ability to
show feelings people commonly express about a topic, such as poetic
or metaphorical qualities of something, with the knowledge that these
feelings are backed up by concrete examples in the N-Gram corpus.

As an illustration, if we submit the word winter to Metaphor Mag-
net, we are presented with a number of possible metaphors for win-
ter, such as a ‘frightening night’ or a ‘refreshing spring’. By selecting
one of these, ANGELINA-5 can use feelings that Metaphor Magnet
has corpus evidence for - e.g., winter in the context of a frightening
night is commonly described as ‘frightening’. This feeling is cho-
sen as the base mood for the music chosen by ANGELINA-5. It now
has to relate this emotion to a piece of music. The music database
ANGELINA-5 currently uses is Incompetech10, which categorises its
music pieces according to twenty different moods. In order to relate
the mood discovered through Metaphor Magnet with an appropri-
ate tagged mood in Incompetech, we use DisCo11 to rate the seman-
tic similarity between each of the 20 known emotions and the one
discovered emotion. The most similar emotion is used as the search
mood for music, and a piece of music is randomly selected from the
resulting pieces.

3.2 Design Phase
As with ANGELINA-3 described in [4], ANGELINA-5 is composed
of several evolutionary systems that work in tandem with one another
to cooperatively evolve a game design. Each evolutionary system has
two aspects to its fitness function – internal, objective rules that are
considered to be unchanging regardless of the overall game design,
and external, subjective rules that take into account what properties
the current most fit game design has and adjusts its fitness evaluation
accordingly. In order to evaluate these subjective rules for a given
member of a population, ANGELINA-5 takes the most fit example
from every other evolutionary process, combines them together to
form a game, and then simulates playing that game in real-time. For
more details on coooperative coevolution, see [7]. For more details
on our specific use of CCE in ANGELINA, see [2].

In ANGELINA-5, there are currently four separate evolutionary
processes, or species. We briefly describe them below:

• Level Design – which forms a basic layout of solid space in the
game world. The top image in Figure 1 shows a birds-eye view
of a level designed by ANGELINA-5. Level designs are currently
built out of smaller tiles which are selected from a library of hand-
designed tiles and arranged into a variable-size array. In Figure 1,
the size of the map is five tiles wide by five tiles high. A tile is a
ten by ten array of integers denoting solid ground, empty space or
scenery. Scenery regions are impassable to the player, and when
the game is exported they are replaced with large, static 3D models
for theming purposes.

• Zoning – which describes the visual and aural qualities of differ-
ent regions of the game world. Zones are defined in the predesign
phase, and during evolution a zone map is evolved: an array of in-
tegers relating each tile in the Level Design to one of the premade
zones.

9 http://ngrams.ucd.ie/metaphor-magnet-acl/
10 http://www.incompetech.org
11 http://www.linguatools.de/disco/disco en.html

• Placement – which describes the start position of the player, and
the position of the level exit. The primary objective in all of
ANGELINA-5’s games is currently to reach the exit. In addition, a
Placement defines the number and starting position of the game’s
entities. Entities are objects which are placed in the game world
and given code to execute to play a role in the game’s systems and
rules. A Placement contains a list of starting positions for each
type of entity – currently all games by ANGELINA-5 include ex-
actly two entity types.

• Ruleset – which describes the set of behaviours possessed by each
entity. In Unity, ‘behaviour’ is an overloaded term used to describe
any piece of code which implements a particular interface. In the
current version of ANGELINA-5, we have supplied a stock of be-
haviours which can be attached to the entities in ANGELINA-5’s
games to form a basic ruleset. These behaviours include providing
motion for the entity (such as random walks, or wall following)
and adding mechanical rules (such as killing a player, or provid-
ing score when collected). Expanding this set with automatically
generated code is a point of future work, see [5] for details.

Each of these four processes evolve their populations in isolation,
according to various fitness criteria, normally expressed as parame-
ters which can be easily varied, so as to give ANGELINA-5 the ability
to alter its own fitness functions in the future. Currently, all parame-
ters are set through experimentation to find values which produce an
interesting variety of outputs. The fitness criteria are as follows:

• Level Designs are selected to maximise the size of the largest con-
tiguous island, whilst simultaneously avoiding overfitting by lim-
iting fitness to a maximum island size. This encourages level de-
signs in which the tiles join up to form a single level space, but
avoids the situation where the entire level is one open expanse by
penalising levels which are too full of solid tiles. A level design
is further penalised if the player or exit start position is in open
space.

• Zone Maps are selected to maximise connectedness in zones of
the same type. This means that a zone map which has two Zone 1
zones separated by a Zone 2 scores lower than a zone map which
has a single contiguous Zone 1 zone and another single Zone 2
zone. This is done to provide consistency in when and how often
a zone is encountered by the player.

• Placements are selected to maximise spread of entity placements
across the map, but are penalised for any placements, including
player or exit placements, which are not on solid ground. Place-
ments are also selected to maximise the distance of the path from
the start position to the exit position, with a penalty if no such path
exists.

• Rulesets are selected to maximise the number of rules fired in a
simulation of a game. ANGELINA-5 records which rules fire dur-
ing an execution of the game, using a simple player controller
which attempts to follow a direct path to the exit. Rulesets are
penalised if there is no way for the player to gain score or die, but
does not guarantee both score gain and death are in the game.

It should be noted that many of these fitness criteria are in place
only to complete ANGELINA-5 as a game design system. We intend
to replace all of these over the course of ANGELINA-5’s develop-
ment by giving the system the ability to create its own fitness criteria.
These might therefore be considered baseline criteria for producing
a complete game design.

A typical evolutionary setup for ANGELINA-5 consists of a popu-
lation size of 40 for each of the four evolutionary species, and a run of



50 generations for the system as a whole, meaning that each species
undergoes 50 generations of evolution itself. We utilise one-point
crossover and single-element mutation for all four species, since rep-
resentation is almost entirely array-based. Selection is elitist, and
we carry forward the parents of the previous generation, something
which we found useful in previous versions of ANGELINA due to the
volatile nature of cooperative coevolutionary systems.

3.3 Postdesign Phase
When ANGELINA-5 has completed the set number of generations
and completed a game design, the game export process begins. Unity
games are meant to be developed inside a single project which con-
tains all the art and audio assets for the game, the data, the levels,
the code and logic. Unity has export features that compile these var-
ious components together into a single package for a chosen plat-
form (such as iOS). However, in the case of ANGELINA-5, it is AN-
GELINA that is the Unity project, not any single game that it devel-
ops. This means that the asset folders contain databases of models
used in the past, music that has been downloaded, metadata and in-
formation about ANGELINA-5 as a system, and so on. Exporting the
games as-is is therefore not possible, as Unity cannot be told to avoid
exporting certain resources, and would attempt to export gigabytes of
data for each small game developed.

For this reason, and because of a desire to archive games designed
by the system, we have ANGELINA-5 export all the relevant informa-
tion about a game design into a separate folder. This includes a text
file describing the level design and the locations of various resources,
as well as the asset files such as 3D models and texture files. This
folder can then be read by a standalone Unity project that only im-
ports the necessary resources, and can then export executable game
binaries. This means that the games can be archived successfully,
since the assets are contained within a single named folder, and also
that only relevant game assets are exported by Unity, keeping the size
of the finished games to a minimum.

4 FUTURE WORK
The version of ANGELINA set out in this paper represents a foun-
dation on which many individual strands of research will be built,
each extending the system in a new way and exploring new issues in
automated game design. As such, many elements of the system as it
stands today are subject to change. In this section, we briefly describe
some of our aims.

• Code Generation for Entity Behaviour In [5] we used metapro-
gramming techniques to invent new game mechanics for a 2D plat-
form game by inspecting a game’s codebase, generating new code,
and automatically playing the game. We intend to explore this ap-
proach further, this time in the more challenging but equally more
promising Unity platform. Behaviours for entities in ANGELINA-
5’s games, which currently provide the basis for the game’s rule-
set, will be automatically generated by ANGELINA-5. This will
probably take place outside of a normal game design evolution,
producing game mechanics which ANGELINA-5 records for use
in future games.

• Modular Fitness Functions The current fitness criteria are sim-
plistic and designed to provide a skeleton implementation for
ANGELINA-5 to build upon. In future, we want to explore the
system’s capacity to produce its own fitness functions, express-
ing preferences for content of a particular type, both for gameplay

aims as well as aesthetic ones. This approach will first explore
basic parameterisation, with an emphasis on the system’s ability
to find interesting niches within the evolutionary space, and then
look towards full generation of code for fitness functions.

• Richer Game Design To date, all versions of ANGELINA have
created games with single levels. ANGELINA-5 will develop
multi-level games which introduce progressions that introduce the
player to game mechanics gradually, increase in difficulty, and in-
volve simple narrative arcs. In addition, we also want to improve
ANGELINA-5’s ability to understand input phrases and themes,
and read them in more creative ways. Simple improvements like
the use of parts-of-speech taggers and word sense disambigua-
tion would greatly improve the accuracy of ANGELINA-5’s theme
analysis, but we also want to investigate the system’s ability to re-
late a theme directly to its gameplay and rules, not just its visual
and audio content.

5 SUMMARY
We have introduced ANGELINA-5, the latest iteration of ANGELINA,
an automated game designer. We have motivated the work in the con-
text of the modern games industry as well as computational creativity
research, and given an outline of the current capability of the system,
as well as a general overview of its internal structure. We discussed
ANGELINA-5’s place in the context of other work in automated game
design and procedural content generation, and looked ahead to how
we intend to develop the system in the future.

ACKNOWLEDGEMENTS
The authors wish to thank Tony Veale for helpful discussions and in-
sight, and the reviews for this paper which offered constructive feed-
back on the project. This work has been funded by EPSRC grants
EP/L00206X and EP/J004049.

REFERENCES
[1] Simon Colton, ‘Creativity versus the perception of creativity in compu-

tational systems’, in AAAI Spring Symposium: Creative Intelligent Sys-
tems, (2008).

[2] Michael Cook and Simon Colton, ‘Multi-faceted evolution of simple ar-
cade games’, in Proceedings of the IEEE Conference on Computational
Intelligence and Games, (2011).

[3] Michael Cook and Simon Colton, ‘Initial results from co-operative co-
evolution for automated platformer design’, in Proceedings of the Appli-
cations of Evolutionary Computation, (2012).

[4] Michael Cook, Simon Colton, and Alison Pease, ‘Aesthetic considera-
tions for automated platformer design’, in Proceedings of the Artificial
Intelligence and Interactive Digital Entertainment Conference, (2012).

[5] Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow, ‘Mechanic
miner: Reflection-driven game mechanic discovery and level design’, in
Proceedings of 16th European Conference on the Applications of Evolu-
tionary Computation, (2013).

[6] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru
Iosup, ‘Procedural content generation for games: A survey’, ACM Trans.
Multimedia Comput. Commun. Appl., 9(1), 1:1–1:22, (February 2013).

[7] Mitchell A. Potter and Kenneth A. De Jong, ‘Cooperative coevolution:
An architecture for evolving coadapted subcomponents’, Evolutionary
Computing, 8(1), (2000).

[8] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne, ‘Search-based procedural content generation: A tax-
onomy and survey’, IEEE Trans. Comput. Intellig. and AI in Games,
(2011).

[9] Tony Veale, ‘From conceptual “mash-ups” to “bad-ass” blends: A ro-
bust computational model of conceptual blending’, in Proceedings of the
Third International Conference on Computational Creativity, (2012).


