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Abstraa

Abstract

The various properties of Stochastic Diffusion Search (SDS) have led to it being mooted
asapossble basisfor amodel of visual attention. Its parale architedure linksin well
with the achitedures propased in theories of human visual search, ndably guided
search (Wolfe and Cave, 1989. Fadors aff eding the performance of SDS such as
model size, seach spacesize, number of agents, search spacesimil arity, nase and
termination condtions were dl i nvestigated. The mean convergencetime of SDS was
foundto be more heavily dependent on the number of agents, seach spacesimil arity,
noise and termination condtions, rather than onthe size of the search space adthe
model. The psychophysicd plausibility of 1D SDS was tested and results were obtained
which were analogous to ariented-li ne-target detedion and mimicked human data. A
2D implementation d the dgorithm was produced and tested ona small number of
experiments ome of which have been previoudly tested on humans such as line target
detedion. Results did nd mimic human data. However, the resporse of the dgorithm
was low when testing the resporse of averticd filter 2D SDSto adisplay of verticd
elements. Thiswas expeded and could be explained by the distribution o adivity
aaossawide aeaof the search spacewhich would result in alower overall resporse.
The onclusions that can be drawn from thisis that much further research shoud be

direded towards SDS as it has many interesting properties that tie in with visual seach.
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Introduction

| ntroduction

An undrstanding of the computational processes of the ealy visual system would be of
gred help to many computer scientistsin thefield of vision. Computers are notoriously
bad at finding objedsin asceneif they are partially obscured or deformed in some way.
Humans, onthe other hand, find the task relatively simple. A computational model of
the human visual system might, therefore, give rise to better computational vision

systems.

Although there ae many algorithms associated with olgead locaion and reagnition,

such as the Hough transform, they are invariably computationall y expensive.

Stochastic Diffusion Search is a parall el-based algorithm that has some interesting
properties which could make it suitable for use & the basis for a computational model of

visual seach.

Chapter 1 outlines the experimental results and theories underlying human visua seach
before introducing the stochastic diffusion seach algorithm. Chapter 2 describes the
fadorsthat may affed the performance of stochastic diffusion seach which are
investigated in detail i n chapter 3. The gplicaion d stochastic diffusion seach to
human visua search tasksisoutlined in chapter 4. Finaly the cnclusions, limitations

and areas for further reseach are discussd in chapter 5.
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Literature Review

Chapter 1

Literature Review

1-1 Visual Search

I ntroduction

Understanding the visual world is an enormously complex task from a computational
viewpoint. Humans, howvever, appea to find the task effortless If placed in aroom,
previously unknown, anormal adult human would have littl e difficulty in organising
and reagnising the objeds contained within into alogicd structure. Thiswould also be
dore dmost instantaneously. The methods required to deted and recognise objeds such

as edge extradion, colour perception, movement and dstances passby unndiced.

Firstly, I will explain the experimental paradigm. Secondy | will outline the results and
their interpretation which have led to the means of defining feaures and theories

attempting to explain visual seach.
The Experimental Paradigm

In the experiments condwcted by Treisman and Gelade (1980, Wolfe & a. (1989,
Wolfe (1994, 199% and Foster and Westland (1995 subjedswould be asked to
determine the presence or absence of atarget item amongst a number of distrador items
onavisual display unit (seeFigure 1-1). Therefore two condtions exit, target present
and target absent. For example the target could be averticd line anongst a number of

tilted lines (the distracors) of afixed or differing orientation.
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Literature Review

Figure 1-1: A typicd display for

target present condtion.
Typicd performance measures include reagion times (RT) and acaracy of the
resporses; e.g. percent corred or d'. The measure d’ combines hit rates and false darms
to generate bias-freeperformance dassficaions. Results are often analysed in terms of
RT x set size slopes (where set sizeis the total number of itemsin the display) and the
type of seach strategy employed are often deduced from this (Wolfe, 1996. Two sets
of data stem from the trials, ore for target present searches, and ore for target absent

seaches.

If the level of acarracy asafunction o presentationtimeisto be determined then the
visual display isonly presented for ashort time. The seach isterminated by arandam
display (or mask) which is assumed to displace ay after-image in the retina, (Wolfe,
1996. Thus, thevisual seach canna continue oncethis mask has been dsplayed. The
display time, known as the stimulus onset asynchrony (SOA) can be dtered. An
Accuracy X SOA slopeisthen produced for both condtions. This type of experiment
can also be used to explore the mechanisms of the ealy visua system in terms of its

ability to deted and/or locdise atarget with short presentation times.

Interpretation of Results

Treisman and Gelade (1980 and Treisman (1986 propased that a seach-type
dichotomy existed depending on the properties of the target and the distradorsin the

seach task. Based onthe primal sketch theory of Marr (1982 they also hypothesised
abou the mding of imagesin the ealy visua system.
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If the target and dstradors were defined by a single feaure (e.g. averticd line anongst
tilted ores) and the diff erence between the orientation d the distradors and the target
was above adiscrimination threshold then the searcch timewould na be dfeded by
number of distradors, it would simply pop out. Treisman and Gelade (1986 inferred
that the seach mecdhanism was parall €l as all theitems could be sufficiently processed

together to determine the presence of atarget.

However, asearch for a2 among 5 's (Wolfe, 1999 was inferred to involve aserial
medchanism. The reason keing that in target present trials the RT x set size slopes were
approximately 20-30 mg/item. That isthat for every distractor (S ) added to the display
an extra 20-30 ms was required, onaverage, to find the target. In target present
condtions aseria seach would, onaverage, have to traverse half the itemsin the
display before finding the target. That is, it could be the very first item to be looked at,
or it could bethe very last item. Therefore the RT x set size slopes found by Treisman
and Gelade (1980 of 20-30 mg/item refled a 40-60 ms/item serial seach. The
hypothesis from thisis that target absent trials will result in RT x set size slopes of 40-
60mg/item as every item will have to be examined before the seach is terminated.
Treisman and Gelade (1980 concluded from thisthat a2:1 RT x set size operatio
between target absent and target present trials indicaed that serial medhanisms were
involved. They foundthat simple feaure searches, e.g. averticd line anongst oriented
lines, required parallel searches whil st seaches involving items with conjunction d two
fedures, e.g. ared verticd line anongst blue verticd and red haizontal li nes, required
serial seach. The2 among S 's sarch would be another such conjunction search. The
target and dstrador items share anumber of properties, threehorizontal li nes and two
verticd lines. It isonly the relative pasitions of the verticd lines that are transposed,;

thisiswhy thetarget is hard to deted.

However, as Wolfe (1996 states, “Inferring medhanisms from slopesis not that
simple”. There ae anumber of fadors that have led most reseachersin the field to
discard the seriad/parall el dichotomy of Treisman’'s Fedaure Integration Theory, na least
Treisman herself (Treisman, 1993. However, athough the ideaof a serial/parall e
dichatomy has been (mostly) discarded it does not mean that visual seach is either
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Literature Review
entirely serial or entirely parallel. Evidence suggests that thereis aparallel seach
strategy working with a serial strategy (Wolfe & al., 1989 Wolfe, 1994and 1997.

Wolfe (1996 notes that only the original experiments conducted by Treisman and
Gelade (1980 appea to show aserial/paral e dichotomy; “The evidence[from further
studies] shows a @ntinuum of seach results’. Later studies by Treisman (Treisman and
Sato, 1990 showed much shallower RT x set size slopes for conjunction seaches. The
reasons for obtaining such vastly diff erent results are hard to fathom. More recent
experiments have used avisual display unit to carry out the experiments (e.g. Wolfe
al., 1989 whilst Treisman’s original experiments used hand drawn slides presented via
atadistoscope. Treisman’s dides had a white badgroundwhereas the display of
Wolfe's (and ahers) had abladk badkground. Wolfe d al. (1989 noted that their

shall ower slopes could have been due to the diff ering salience of the target and
distrador items between their experiment and that of Treisman and Gelade (1980).
Wolfe @ al. (1989 tested the theory and emulated the original experiments. Indeed, the
resultsindicaed stegoer RT X set size slopes, in some caes enowgh to acourt for the
diff erence between the results obtained by Treisman and Gelade (1980 and later
experiments. However, this does nothing to enhancethe caise for a serial/parall e
dichotomy rather, it suggests that target/distrador salience (or contrast) is ancther basic

fedure of the ealy visual system.

If certain results are due to self-terminating serial searches then why are erors made?
That is, why is atarget sometimes missed when it exists and why are they sometimes
“found when they do nd? The 2:1 sloperatio hypothesis assumes that the seria self-
terminating seach is “exhaustive” in that for target absent trials every item is chedked.
So no povisionis made for false darm errorsin target absent trials. Furthermore,
Zenger and Fahle (1997 noted that missed targets occur more often than false darms.
Both of these paints “complicae” the 2:1 slope ratio hypaothesis (Chunand Wolfe,
1996. Thisisbecaise anumber of false darmswill bring the average seach time
down for target absent trials whil st missed targets will i ncrease the average seach time

in target present trials.
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Esentialy, continuing reseach with a seria/parallel dichatomy in mindis not
suppated by the evidence  Wolfe (1996 argues instead that the cntinuum of seach
slopes foundcan be “described neutraly in terms of seach efficiency” (seefigure 1-2).

Yery Inefficient (== 30 ms/fitem)

Inefficient (~20-30 ms/fitem)
/ Quite efficient ["'5-10 mS-"ItEFﬂ}

Efficient {~0 ms/iterm)

Search Time

Number of Distractors

Figure 1-2: The continuum of search slopes defined in terms of
efficiency, after Wolfe (1996.

The many accepted theories of visual seach, and guided seach in particular, depend on
parall el-guided serial seach process These theories will be discussed after the nation o

feduresin visua seach has been examined.

What is afeature?

The choiceof target and dstrador itemsisnat arandam process Much o the choiceis
based on plysiologicd evidence For example the existence of orientation-seledive
cdlsinthevisual cortex (Hubel and Wiesel, 1968 gave rise to experimental displays of
the type shown in figure 1-1. The objed isto determine the minimum differencein
orientation that the eye can discern “efficiently”. The definition d efficiency in this

context will be discussed later on.

In the ealy days of visual seach experiments afeaure was defined if it had the property
that its RT x set size slopes had amost zero gradient (Wolfe, 1996, i.e. it was found
using the so-cdled parallel seach mechanism. That isatarget would “pop-out” from
the search spacein agiven atime, regardlessof the number of distradors (Treisman and
Gelade, 1980. However, sincethe ideaof a parall €l/seria dichotomy has been amost
laid to rest thisis afar from adequate definition.
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Treisman (1986 argued also that red world oljeds comprise anumber of properties,
particularly of texture, whose boundxries “show a continuity of lines or curves’ which
are in esence part of the same duster. Therefore texture segmentationis an important

part of fedure integration.

Basic Featuresin Visual Search

There ae number of generally accepted basic feauresin visual seach aswell asa

number of controversial ones. A non-exhaustive list would include:

. orientation;

. curvature;

. colour;

. motion;

. depth;

. stimulus slience

However, this projed is only concerned with arientation as afeaure and therefore the

other feaures are out of the scope of this reseach.

Although the nation d orientation as a basic feaure is baded up ty physiologicd
evidence (Hubel and Wiesel, 1969, nosuch cdls exist for curvature but it iswidely
adknowledged as abasic feaure. Treisman (1986 gives a due asto why thisisthe
case. She mncludesthat it isthe presence of orientation and the presence of curvature
that is coded. Simply, averticd straight lineis coded asanull value andit isonly
deviations from straightnessand verticanessthat are awded. This hypothesis arises

from results of experiments with displays sich asthosein figure 1-3.

In the left hand box of figure 1-3, the target, a drcle with an interseded line, pops out
no matter how many distradors are alded. However, in theright hand box the search
timefor thetarget increases with the number of distradorsin the display. Similar
results were foundfor oriented lines. If an ariented line was the target, amongst a
number of verticd li nes, the search time was aimost entirely independent of the number
of distradors, whereas the search time for averticd li ne target amongst oriented lines

increased as the number of distradors incressed.
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Figure 1-3: Displays used to show how the presence or absenceof a
feaure, averticd linein this case, aff eds the search time. (After
Treisman, 1986

Furthermore, Foster and Westland (1995 foundevidenceto suggest that at the pre-
attentive stage there ae two broadband aientation filters with peak sengitivities at the
verticd and haizontal. Thesefilterswork before locdisation d thetarget. Ifitis
asumed that the ealy visual system employs alimited set of resources greal aaossthe
whoale of the visual field then an interesting prediction comes to light; the resporse of
the verticd filter would be high whil st the horizontal filter would below. Thisis
becaise the adivity of the horizontal filter would be spread over the whale visua field
whil st the verticd filter adivity would be spread over a spedfic part of the visual field

and therefore its adivity would be concentrated in ore aea

An outline of the Guided Search theory of Visual Search

The ealy Feaure Integration Theory of Treisman and Gelade (1980 and the evidence
refuting the ideaof a seria/parrallel dichotomy led to Wolfe's model of Guided Seach
(Wolfe, Cave and Franzel, 1989 Wolfe, 1994 Wolf and Gancarz, 19979 now in itsthird

incarnation and referred to as GS.

The GS model propacses that predtentive fedure seaches guide aseria seach process
known as the spotlight of attention. Each feaure is asociated with an adivity map.
Ead adivity map is the sum of the response of the preatentive processfor that
particular feaure & different areasin the visual field. The sum of the adivity maps are
taken and the spatlight of attention moves over the aeas garting from those with the
highest adivity urtil the target is found.
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Consider seaching for ablad verticd bar amongst bladk harizontal and white verticd
bars. The adivity maps from the predtentive processes for colour and aientation are
summed, the one with the greaest adivity in the summed map gives the locaion d the
target (figure 1-4).

eo®
®
o0®
|:| -_— I:I Colour (Black) . ..

o
IUE N
:oo.

Orientation (Vertical)

Activity Map

Figure 1-4: The overall adivity map (right) that results from the summed
adivities of the preatentive processes for colour and aientation. The
target in the stimulusis the blad verticd bar and corresponds to the
darkest patch in the adivity map. Thisisthe aeaof highest adivity. After
Wolfe (1997).

However, despite awidespreal accgptance of GSthereis dill one mgor objedion
(Green, 199). Thereisevidenceto suggest that individual feaure maps can nd be
suppressed whether or not they are arrently adive in the seach task. Therefore for
ead visual seach task the same number of feaure maps are being summed. In theory
the overal adivity map shoud always take the same anourt of time to compute.
However, sincedifferent search tasks for individuals take diff erent times to complete
thenation d apoded adivity map based onthe sum from al feaure mapsisalittl e

harder to comprehend.

Green (1991 propased that a network architedure, rather than the bladkboard
architedure of GS, satisfies the evidence better, (seefigure 1-5). The achitedures
comprise feaures maps (FM) and adivity maps. However in the network architedure
the feaure maps can communicae with eat ather and it is this communicaion that can

sometimes hinder the seach process
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Figure 1-5: Two types of Fedure Map architedures (Green,
1997), ‘Network’ onthe left and ‘Bladkboard’ ontheright.

Despite this objedion, the GS model isagood lesis for a computational model of

human visua seach.
1-2 Stochastic Diffusion Search

I ntroduction

Terminology

SS Search Space Size; Qu Percentage of Noise in Model,

SS[x]  Value of x" element in the search space; D Number of Distractors in the model;
Q Model Size; Dg Similarity of Distractors to the model,
QIX] Value of X" element in the model; T Threshold;

NA Number of Agents; BT Base Threshold;

NA[X] Mapping pointed to by the x™ Agent; ST Stability Time;

A Alphabet Size;

Conventional neural networks have difficulty in classfying two or more distinct patterns
to give the same output. These distinct patterns may acdually be deformations -
tranglations or rotations - of one spedfic pattern. Thisis known as the problem of

stimulus equivalence or inexad matching.

A number of methods of solving this problem have been propased, including Hinton
Mapping and Fukushima' s Neocognitron. These, urfortunately suffer from ahigh
degreeof computational requirements (Bishop 1988 and therefore ae interesting rather
than useful.
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Stochastic Diffusion Search (SDS), developed by Bishop (1988, isa parall €l based
seach agorithm that attempts to solve the problem of stimulus equivalence (or inexad
matching) with alower order computational methodthan that of the Neocognitron a

Hinton mapping. It comprises atest phase and adiffusion phese.

Consider the situation d seaching for a sequence of numbers (the model) inside alarger
sequence of numbers (the seach spacg. SDS randamly maps agents into the search
space Anagentisanindividua element (or unit) that holds a mapping, its current
pasitionin the seach space In the test phase eat agent then compares its current
mapping with arandamly seleded mapping further along in the seach space bu within
the boundxry of the length of the model. If thismapping is successul then the agent is
labelled as being adive. Inthe diffusion prese adive agent’s mappings are

probabili sticdly diffused to ather inadive agents. Agents which remain inadive ae
randamly assgned a new mapping. These processes are repeaed urtil all, or most, of

the agents have mnwverged to the same mapping.

Following, isamore detail ed explanation o SDS with atrivial example that is worked

through in arder to clarify the process

The Stochastic Diffusion Algorithm.

Initiali sation Phase.

QJ]=8 2 4
SS[]=428243709
NA[]=6 2 5

Figure 1-6: Initiali sation Phase.

In the initialisation phese eat agent is randamly assgned a mapping into the seach
space(figure 1-6). The dements of the model, seach space ad agents will be referred
to as Q[0], S93], NA[2] etc. Whereas, Q[x] and SIX] refer to an adual vaue of the x™
unit in the model or search spacerespedively, NA[X] isthe aurrent pasitionin the

seach spaceoccupied by the x" agent. Note that NA[1]=2 is adually pointing to the
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first element in the model, in general this does nat happen. After the initialisation phase
ocaurs, atest phase and dffusion phese ae repeaedly cycled through urtil the dgorithm

converges.
Test Phase.

NA[] =6 25

Random Elenent = 2 1 2

Active YYN2? NY N

Figure 1-7: Test Phase.

In the test phase eab agent is assgned arandam element, e, in the range from zero to
the last positionin the mode, in this example between Oand 2. The x™ agent is
considered to be adiveif and orly if the value of the x™ element of the mode! is equal to
that of the search space'e’ positions along from where the x™ agent is pointing. Soin
this case:

NA[O] isinactive becaise { Q[2] = 4} = {SH6+2] does not exist};

NA[1] isactive becaise { Q[1] = 2} = {SH2+1] = 2};

NA[2] isinactive because { Q[2] = 4} = {SY5+2] = 9}.
This comparisonis asampling of the search spacethat determinesif the aurrent
mapping isalikely candidate for the wrred position o the model. Each agent will only
become or remain adiveif and orly if the values of the search space &the aurrent

mapping and its off set match the equivalent valuesin the model.

Diffusion Phase.

Agent: 0 1 2

Try Agent: 2 * 1
Potentially Ck? N * Y
New Mapping: 4 * 2

Figure 1-8: Diffusion Phase.

In the diffusion phaese eat inadive ggent chedks anather randamly seleded agent to
determine if that agent isadive or nat. If it isthen theinadive agent pointsto the

mapping of the adive ayent and becomes adive. If it isnot then it randamly seleds
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ancther mapping (figure 1-8). So in this case:
NA[O] chedks NA[2] which is currently inadive therefore seleds amapping, 2
NA[1] isadive, therefore its mapping remains unaltered;
NA[2] cheds NA[1] whichisadive and pantsto the mapping of NA[1];

Algorithm Termination.

In condtions of no-naise (a perfed match of the model exists in the seach space the
algorithm would terminate & onasal the agents were adive. In general however,
condtions of no-noise do nd exist and the dgorithm may never terminate. Therefore
Bishop (1988 used a mmbination o athreshold and stability criterionto determine
when the dgorithm terminated. Threevalues are set:

. Threshold (T) - when the number of adive ajents equals T then the
algorithm terminates;

. Stable Time (ST) and Base Threshold (BT) - when the number of
adive gyentsis greaer than BT for ST iterations the dgorithm
terminates.

The dgorithm cycles through the test and dffusion pleses until the termination

condtions are readed.

Oncethe dgorithm has terminated the model’ s position in the search spaceistaken as

being the modal value of ead agent’s mapping.

Computer Implementation.

The dgorithm can be eaily implemented ona serial computer. The structure of such a

program is shrown in figure 1-9 (the full code can be foundin the gopendices).

initialise agents;
while (termnation = fal se) do

{
t est mappi ngs;
di ffuse correct mappings;

}
print mappi ng;

Figure 1-9: Program Structure.
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1-3 SDS and Visual Search

The links between SDS and human visual seach may nat, at first, be obvious.

However, there ae anumber of feaures that both share.

Fundamentally, they both have an underlying parallel architedure. Very littl eis known
abou the parallel medanismsin human visual seach bu the nation d an attentional

gpatlight in GS has a linkage with the ayentsin SDS.

The agentsin SDS perform some kind d attentional mechanism which is not dissmilar
to the dtentional spatlight. Active agents, ones which may have foundthe target, have
the adility to passontheir adivity to ather agents. The agents are guided to areas by
feadbad from the seach spacewhich is disseminated from the adive ayentsto the
inadive agents. It could be said that the attention of the agentsis drawn to particular

areas of the search space areas which best fit the target at any given moment.

The randam, bu probabili sticdly guided, neture of SDSisalso qute dtradivein terms
of amodel of visua attention. The saccalic eye-movements made during visual search
begin in a seamingly randam manner before homing in onthe target. Although the
saccales are not entirely randam, there is ©me bias towards the cantre of the visua
scene (Wolfe and Gancarz, 1997, the ideaof agents randamly choasing pasitions and

testing for plausibility makes snse.

Lastly, the achitedure of visual seach suggested by Green (1991) isvery dike the
internal architedure of SDS where ggents communicae with ead ather to produce a

map of adivity at every iteration.
In short, although noclaims are made that SDS isamode of human visua attention, its

architedure has sme interesting properties that make it a worthwhil e subjed of

investigation as abasis for amodel of attention.
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Purpaose of Study

Chapter 2

Factorsaffeding SDS

The size of the seach space ad the size of the model seam likely candidates for
aff eding the performance of SDS. In asequential search the time taken to complete the
seach increases linealy with the size of the search space The behaviour of SDS with

resped to the size of the seach space adthe model will be studied in this projed.

The number of agents used dces nat have to be equal to the number of elementsin the
model. The ratio between the number of agents and the size of the search spacewiill
have abeaing onthe time taken for the dgorithm to converge. Predsely how this

affeds eal of convergencewill be investigated.

In the example (page 12), at ead iteration (i.e. completion o one test and ore diffusion
phase) eat agent only compares a mapping with, and orly attempts to dffuse
succesgul mappingsto, ore other agent. Again, thisneed na be the cae, and more
than ore comparison may further prevent the dgorithm from being stuck in alocd

minimum, i.e. erroneously setting the adivation d a particular agent.

The dphabet (A) isthe range of values that ead element in the seach space adthe
mode cantake. The greaer A, the quicker the mnvergenceof SDS. Thisis becaise
the wider the range of values the search space ca take, the lesslikely there aeto be
pairs of elementsthat match part of the model. Consequently the dgorithm islesslikely

to get stuck in alocd minimum.

Following onfrom thisistheideaof distradors. Distradors are sequencesin the seach

spacewhich have adegreeof similarity with the model. If, as has been mooted, SDSis
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apsychoplysicdly plausible dgorithm regarding attention then the foll owing results

shoud hdd:
. at or below a cetain degreeof simil arity, the number of distradorsin the
seach spacewill nat affed the time taken to complete the seach;
. asthe smil arity of the distradors to the model increases sach time will

increase @& more and more distradors are alded to the search space

Related to the nation d distradorsisthe problem of noise. A distrador can be thought
of as naise in the seach space however, what happens when thereisamodel in the
seach spacewhich isitself corrupted? There ae two types of noise that can corrupt the
model, insertion noise and flipped-bits noise. Noise that affeds visual data could be

fli pped-bits noise where, for example, the target in the visual sceneis nat quite the same
colour that was remembered. However, size and shape may nat also be constant, and it
ispossgble that insertion nase plays a part too. However sincethe implementation o
SDS studied in this report works with a anstant model size then the type of noise | will
investigate will be flipped-bits noise. It would be expeded that greaer noisein the

model will result inlonger search time.

The termination conditions are quite abitrary, and more than likely will need fine tuning
depending onthe anourt of noisein the model. Investigation d these parameters will
also be undertaken to determine whether or not a pattern can be establi shed such that the
algorithm can be self terminating.

The &ove experimentswill not only consider Stochastic Search in its own right, bu,

where gplicable will also compare the behaviour of SDS with that of an ogimised
sequential seach.
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Chapter 3

Analysisof SDS

3-1 Brief description of the Programs

Animplementation d SDS was written in C++ (Appendix 1) aswell as an optimised
Sequential Search (Appendix 2). Ead program al ows a number of parametersto be
varied such as sach spacesize, model size, alphabet and number of trials per seach
space The programs output a number of results files, one per seach spacesize, which
show the number of iterations to convergence, time to convergence and error, per
individua trial. These files were then loaded into a spreadshed where the results were
analysed and graphs plotted.

The behaviour of the dgorithm shoud be observed over alarge range of seach space
sizes. Previousreseach (Bishop, 1988 had suggested that the dgorithm worked best
and hed lessperformance-variancefor larger model sizes. Therefore the range of search
spacesizes must be dhasen in conjunctionwith alarge model size. To oldain a
reassonable ideaof the dgorithm’s behaviour under diff erent condtions ead experiment
needsto be run asufficient number of timesin order to determine average behaviour.
Unlessthe behaviour of the dgorithm due to a spedfic parameter was being investigated
the foll owing parameters were common for ead experiment:

. Seach spacesize: 1100to 10000in steps of 100,

. Model size: 100Q

. Number of trials per search spaceor mode size: 100Q

. Alphabet: 10;

. Number of Agents: 100Q

. Termination Condtions: al agents adive.
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3-2 Experiment 1: The dfed of Search SpaceSize
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Figure 3-1: The dfed of seach spacesize onthe
convergencetime of SDS.

Figure 3-1 shows avery clea linea relationship between the mean time to convergence
and the size of the seach space The product-moment correlation coefficient r=0.9969
is, ursurprisingly, a statisticdly significant value. Note dso that the slope of the line
shows that when the seach spacedouldes in size the @mrrespondng convergencetime
doesnat. For example, at SS=5000the mean convergencetimeis 0.1263%pss(semnds
per seach space whilst at SS=10000the mean convergencetimeis 0.1753pssan
increase by afador of dmost 1.4. The dependenceon seach spaceisnat as heavy as
might have been expeded beaing in mind the same number of agents have twicethe

spaceto cover.
3-3 Experiment 2: The dfed of Mode Size

Figure 3-2 shows how the model size dfeds the performanceof SDS. Strong pasitive
linea correlations exist for ead of four lines (r=0.99. Ascan be seen anincreasing
model sizeresultsin agreaer mean convergencetime. Figure 3-3 showsthat for a
given seach spacethisrelationship islinea. Thisisasurprising result since, for a
given seach spacesize, the larger the model size the fewer possble positions avail able
in the seach space For seria searches this would mean lessof the seach spacewould
need to be traversed whereas for SDS a greder propation d the agents are likely to be

adivefor agiven iteration. However it shoud be noted that for this experiment the
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Figure 3-2: The dfed of modd sizefor different seach
spacesizes on mean convergencetime.
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Figure 3-3: The dfed of model size on mean convergence
time for a anstant seach spacesize of 5000.

number of agents used was equal to the model size and therefore was nat constant
throughou. It is posgble that the results obtained refled more onthe dfea of the

number of agents used rather than the model size.

Another experiment was condtcted using a constant number of agents, 1000,a seach
gpacesize of 10000and mode sizes of from 500to 2000in steps of 250. The results
can beseenin figure 3-4. Asexpeded the mean convergencetime does deaease for

larger search spaces. However, it exporentially decays from 0.28pssfor amodel size
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of 500 davnto 0.1&gs for aseach spacesize of 1250whereit appeasto level off. It
islikely that for search spaces much larger than 2000the mean convergencetime would
deaease still further as during the initi ali sation phase many more agents would be

adive.

0.1 +
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0 : . : . : . : . : {
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Figure 3-4: The dfed of model size on mean convergence
time for constant number of agents, 1000,and constant
seach spacesize, 10000.

3-4 Experiment 3: The dfed of varying the number of Agents
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Figure 3-5: The dfed of the number of agents on mean
convergencetime for amodel of size 1000and aseach
spaceof size 5000.

This experiment was run with amodel size of 1000,a seach spaceof size 5000whil st

varying the number of agents from 100 upto 1500. Figure 3-5 indicaes that the mean
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convergencetime increases with the number of agents. This agrees with the results of
theinitial experiment in the previous sub-sedion which suggested that it was the
varying number of agents causing the rise in mean convergencetime rather than the
model sizeitself. Thisresult appeasinitially surprising, for one would exped that
fewer agents covering lessof the search spacewould take longer to locate the model.
However, whil st thisistruein terms of time onaserial implementation d the dgorithm
atrue parallel implementation would be quicker as more agents are used. In the seria
implementation eat agent is updated piecaned whereas in aparal el implementation
eadt agent would be computing its own adivity at the sametime. It isfor thisreason
that the number of iterations, one g/cle of thetest and dffusion phases, is amore useful
measure of the parall el performance of the dgorithm. It must also be noted that in
conditions of noise, when thereis no perfed match of the model in the seach space

fewer agents would be more likely to make an error in location.
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Figure 3-6: The dfed of the number of agents on mean
iterations to convergence.

Figure 3-6 shows how the number of iterations deaeases as the number of agents
increases. Performancedoes nat appea to improve noticealy oncethe number of
agents has exceaded the model length. Thisis contrary to what one might exped.
However, athough the more aggents there ae the greaer the dnancethey will be adivein
any oneiteration, there ae dso more gyents who will beinadive and seeking out adive
agents with which to copy mappings. Therefore the hypaotheticd performancegain by
using more ayentsis off set by the fad that afew extraiterations will be needed for all
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the ayentsto become adive.

3-5 Experiment 4: The dfea of varying the Alphabet.
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Figure 3-7: The dfed of varying the dphabet on mean
convergencetime. The uppermost line correspondsto A=2.
The other lines from topto batom correspondto A values
of 10, 16, 64and 256respedively.

Asthe ultimate am of this projed isto buld atwo-dimensiona algorithm that performs
some of the search tasks humans doit isimportant to test the performance of SDS with
different alphabets. In the visua world the dphabet (A) corresponds to the number of
gray scdes of animage. It isfor thisreasonthat this experiment will test the
performanceof SDSwith A values of 2, 16, 64and 256which correspondwith bah
bladk and white images and typicd grayscde levels foundin computer images. These
results are dso compared with the value of A=10which has been used in the other
experiments. Figure 3-7 shows how when A=2 the mean convergencetimeisfar greaer
and more variable than that for values of A greder than 10. Thisis because there ae
more partial matches of the model in a binary search space espedally when the SDS
only samples the search spaceonce per agent. Shoud the program be modified such
that SDS samples a number of paints at ead test phase to determine the state of an
agent’s adivity then the dgorithm might perform better. As many human visua seach
tasks require users looking at monochrome displays it is likely that serious thought will
have to be given on hav atwo-dimensional SDS algorithm would search a binary search

gpacefor maximum performance and minimum variability. The other A values tested,
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10, 16, 64and 256 were nat significantly different from ead ather. An F-test between
the A values of 10and 256resulted in a probability of lessthan 5% that they were

diff erent.

One anomaly in the results, which can be seen in figure 3-7, accurred when SS=9800
and A=16 a 64. The seach time dmost doulded ower the previous value before
returning to avalue more cnsistent with the linea results obtained thus far. No
explanation for this gringsto mind, espedally when arerun d the experiment for
SS=9800and A=16 fail ed to replicate the initial results. It seemsthat 1000trialsis not

always enough to iron ou statisticd blipsin the randam number generator!

3-6 Experiment 5: The dfed of Distractors
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Figure 3-8: The dfed of similarity and number of
distradors on mean convergencetime for a search spaceof
size 5000and amodel size 100.

A new modue was written in the SDS program (seeAppendix 2) which creaes ach
spacesin a caefully defined way. The search spaceis generated by adding a number of
partial matches, distradors, of the model to the seach space @ well as one perfed
match of the model. The distrador similarity, Ds, is measured in terms of the
propation d the model it matches. So for Ds=0.4 exadly 40% of the model isfoundin
the distrador. The similarity of the distradors can be varied eat time the program is
run. Mean convergencetimes are omputed for 2, 4, 8, 16and 32 dstradors. Figure 3-

8 shows how the mean convergencetimeis affeaed by the number and simil arity of
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distradors. For Dsvalues of 0.1to 0.4littl e difference can be found. However, as Ds

increases the mean convergencetime increases. Yet, for Dslessthan 0.7increasing the
number of distradors does nat increase the mean convergencetime. For Ds's of 0.7 and
0.8the mean convergencetime increases as the number of distradorsincreases. Thisis

evidence of the so-cdled psychoplysicd plausibility of SDS.

Consider the analogy of searching for atarget oriented line anongst a number of other
oriented lines of difference Ad from the target. Inthiscase Dsisequivalent to the value
AB, howvever larger Dsis equivalent to smaller AG and viceversa.. The shape of the
curves how in figure 3-8 mimic similar curves found ty other researchers, naably

Treisman (1986,figure b, p113, for the analogous line target problem.

0.8 +

me (s)

= 0.6

0 0.4

Mean

0.2 +

o
0 0.2 0.4 0.6 0.8
Similarity (Ds)

Figure 3-9: The dfed of distrador similarity on mean
convergencetime for 32 dstradors, a search spaceof size
5000and amodel of size 100.

Figure 3-9 shows how for a (large) constant number of distradors, 32,the mean
convergencetime increases in an exporential-like fashion as the simil arity increases.

Whether this curve mimics human datais difficult to determine from pubished graphs.

3-7 Experiment 6: The dfed of Noise

The dfea of noise in the model was determined by corrupting the model being added to
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the seach space The anourt of naise, Qn, could be anumber between zero and ore
indicating the propation d elementsto be @rrupted, achieved in the program by adding
oneto those dements. The termination condtions also had to be dtered asit would be
unlikely that all agents would become adive. Therefore, the threeparamters, threshold,
base threshold and stable time, were set as foll ows:

. threshold - set to equal the number of elements not corrupted by noise;

. base-threshold - set to be 50% of the Threshdd;

. stable time - set at three
These values are antirely arbitrary and, had SDS been urable to find the corrupted
models with any degreeof acaracy then they would have been atered. The next
experiment takes a more detail ed look at termination condtions. This experiment is

concerned with relative performancefor different noise levels, na overall performance
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Figure 3-10: The dfed of noise (Qn) onmean
convergencetime. Qn variesfrom 0, lowest lineto 0.4top
linein stepsof 0.1.

Figure 3-10 shows how for Qn<0.2thereislittl e overall differencein mean convergence
time. However, as Qn moves from 0.2to 0.3and through to 0.4the increase in mean
convergencetime becomes larger.  The performancefor Qn=0.4 appeasto be “bad”,
cetainly in comparisonwith that of SDSfor Qn<3. Figure 3-11 showsits performance
relative to an ogimised sequential seach algorithm (OptSeq, seeAppendix 4). OptSeq
seaches through the seach space ad as onasit reades amatch equal to that of the
propation d uncorrupted el ementsit terminates. At SS=3800SDS outperforms
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OptSeg. The mean convergencetime of OptSeq approximately doules ead time the
seach spacedouldes whereas for SDS the mean convergencetime increases by afador
of around 1.5. The OptSeq agorithm could beimproved still further which would move
the aosover paint still further along the X axis. However, due to the nature of serial
seach andthe level of naise in this experiment SDS will always eventuall y outperform
sequential search because the mean convergencetime will doude every time the seach

spacedoulesin size.
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Figure 3-11: A comparison between optimised sequential
seach and SDS for Qn=0.4. The point at which SDS out
performs the sequential seach occurs at SS=3800.

3-8 Experiment 7: The Termination Conditions

The investigation d the termination condtions requires a awmpletely diff erent strategy.
Asoutlined in chapter 2 there ae threedifferent termination parameters that can be
varied, threshald (T), base threshold (BT) and stable time (ST).

Initialy clean datawill be used and the results from this might indicate how termination
conditions are best applied to ndsy data such that the mean convergencetime can be
lowered still further.

In order to be aleto get someideaof agorithm behaviour with dff erent termination

condtions a seach spacethat can contain amodel of sufficient sizeisrequired.
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However, there ae time @nstraints © amodel of 1000and a seach spaceof 10000is

not passhle. Therefore, a search spaceof 5000and a model of 500was chasen.

After some onsideration the strategy for determining the dfea for the termination

condtions was dedded as:

Set T=500,BT=500and ST=1;

Determine the lowest T for which error=0;
For thisT add 1to ST and set BT to Y4T;

If error=0 deaeases BT elseincrease BT or;

If error persistsincreases ST.

Theresults of this drategy can be seenin Table 3-1.

T ST BT__ [lterations] Time(s) [ Error
500 24.51 0.0858| 0.000
450 22.08 0.0805| 0.000
400 20.82 0.0754| 0.000
350 20.89 0.0758| 0.000
300 20.74 0.0754| 0.000
250 20.37 0.0735] 0.000
200 20.05 0.0714] 0.000
150 19.76 0.0711] 0.000
100 18.78 0.0689| 0.000

85 18.09 0.0666| 0.000
80 18.04 0.0653| 0.001
75 18.70 0.0678| 0.005
50 2.32 0.0077] 0.986
85 2 40 9.62 0.0358| 0.584
2 60 17.27 0.6440| 0.051
2 70 18.71 0.0681| 0.001
3 60 17.89 0.0665| 0.024
6 60 18.09 0.0666] 0.001

Table 3-1:How altering the termination condtions aff eds
the mean convergencetime.

By simply reducing T, from 500to 85,the mean convergencetime has been reduced
from 0.085&ecsto 0.0666ecs, a 23% performanceincrease. Increasing ST and BT did

not necessarily deaease mean convergencetime but introduced error. The aror isthe

propation d seachesthat resulted in an incorred locaion d the model. Unfortunately,

when naseis present, BT and ST are arequirement for convergencewith minimal or no

error. Ascan be seen the lowest mean convergencetime with an error < 5% is when
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T=85,ST=3 and BT=60. Increasing ST to 6 whil st reducing the eror, whichis dill
abowve zero, results in amean convergencetime equal to that when orly the threshold
was used. It seansthat for clean data & least, only the threshald isimportant in terms of

seach time with noerror.

Sincethe performance of SDS when Qn=0.4 ceteriorated significantly from its
performancewith no nase, the datain table 3-1 shoud be useful in increasing its
performance A seach spaceof 5000and amodel of 1000were used so the results
could be compared with those obtained in experiment 6. The results can be seen in table
3-2.

T ST BT Iterations T|me‘s2 Error
600 3 300 76.38 0.5535 0
400 4 200 64.99 0.4837 0
300 4 200 63.39 0.4760 0
200 3 150 61.18 0.4589 0
200 2 150 61.21 0.4573 0

Table 3-2; How the mean convergencetimeis affeded by

atering the termination condtions when ndse is present.
Thetop line of datain table 3-2 shows the results from experiment in 7 for Qn=0.4. The
other lines show how lowering T, ST and BT down to 200, 2and 150respedively has
reduced the mean convergencetime by aimost 20%. The performance @uld probably
be improved still further, bu there gopeasto be nologicd sequence &to how SDS will
perform with dfferent termination condtions. It ismore a cae of trial and error.
Although orce aset of parameters has been foundthat improves performancethey can
be systematicaly reduced or in the cae of ST increased to reduce the mean convergence

time still further.

3-9 Concluding Remarks

The dgorithm depends on the size of the search space bu less ® than might be
expeded. Thetime penalty for looking at larger seach spacesisfar lessthan with ather
seach algorithms where adouHing in the seach spacewould result in a doubing of the
seach time.

Upto apaint, larger models are eaier to find than small er ones for a constant number of
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agents. However, if the number of agentsis equal to the model size, the larger the
model the longer SDStakesto findit.

The number of agents has a strong effed on search time. In the serial implementation
thereisapositive linea relationship between the number of agents and the mean seach
time. The more ayents the greaer the seach time. However, in terms of the number of
iterations, which is more important in evaluating the parall e nature of the dgorithm, the
seach time adually deaeases exporentially as more agents are added, urtil the number

of agentsis approximately equal to the size of the model.

A larger alphabet all ows the dgorithm to work more dfedively. Thisisanalogousto
human vision where we seebetter in the day, na only becaise thereis more light, but
becaise we can seemore wlours and thereforeit easier to dstinguish items as distinct

from ead ather.

The more similar a seach spaceisto the model the harder it isfor SDS to find the
model. Theresults go alittl e way to showing one of the psychoplysicd charaderistics
of SDS, that is that when there ae number of distradors which are similar enough to the

moded the seach time increases as their number increases.

Unsurprisingly the greaer the anourt of noise in the model the longer SDS took to
converge. However, for Qn<0.2there was no significant diff erence between the mean
convergencetimes. Furthermore, for seach spaces larger than 3800SDS outperformed
an optimised sequential seach. It is often the cae that reseachers will use the worst
case dgorithm to compare their best algorithms with. In this case dthough OptSeqis
not afully optimised sequential search agorithm no matter how optimised the dgorithm
is, it isafad that as the search spacedoules the search time will doude dso.
Therefore, at some point SDS will outperform a sequential search because for this
implementation d SDS the search time only increases by afador of 1.4 every time the

seach spacedoubes.

Few conclusions can be drawn from the dfed of the termination condtions as limiti ng

time prevented alarge investigation. A mathematicd model, which has yet to be
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completed andis out of the scope of this projed, would be necessary before any
conclusions can be drawn. However, with suitable reductionsin threshold, performance
of SDS can be improved by upto, if not more than, 26% for clean data. Whereas for
noisy data performance @uld be improved by up to 20% with suitable dhoices of base
threshold and stability time.

Much more data neads to be mlleded to determine whether or not a self-terminating
algorithm could be built where noinformation on nase is avail able to the dgorithm.
The data wlleded here does nat al ow for that kind d algorithm to be written.
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Chapter 4

Application of SDSto Visual Search

4-1 Introduction

In order to apply SDS to human visua seach tasks atwo-dimensional implementation
isrequired. Initially, thetasksit will berequired to perform will i nvolve the detedion d
oriented line targets. Generally such tasks are performed with single wlour targets and
distradors onaplain badkground. The implementation o 2D SDS will be written with

thisin mind.
4-2 Two-Dimensional SDS

The structure of the 2D SDS algorithm isidenticd to that of the 1D algorithm.
However, the properties of the search space the agents and the test phases are dl
different. The seach spaceistwo dmensiona; the agents have to store w-ordinates
rather than single figure positions. The test phase will also have to take the two
dimensional nature of the dgorithm into aceurt. Only the diffusion phase remains the
same in that ead agent only tests against other adive aents which then dffuse their
mappings. The fad that the mappings will beintwo dmensions soud na alter the
internal workings of the diffusion plese.

The search spacewill comprise 0's for the badkgroundand clusters of 1'sfor the targets
and dstradors (figure 4-2). The distradors are cnstructed using trigonametric
formulag (x sin 6, y cos 0), from their point of reference They are mnstructed in such a
way that no two adjacent el ements on the same row are both zero. Aslong asthe
distradors orientationis <45° thiswill not cause aty breskage in the line unlike the

situation shown in figure 4-1, where the 1's are nat diagonally or verticdly adjacent.
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Figure 4-1: The dfed of distractor
orientation >45°,

Bishop (1988, however, naesthat in ore dimensional SDS targets such asthis,
00000000001111111111000000000,

where‘1111111117 at position 10,isthe target are not easily located acarately. The

randam nature of SDS means that the target could be located at any pasition between

abou 6 and 14. Thisisbecaiseif one or two adive ayents diff use their mappings'too

quickly’ nat enough of the search spacewill be sampled to determine that they are

adually pointing to the wrong locaion.

00000000000000000000000000000000
00000000100000000100010000000000
00000000010000000010001000000000
00010000010000100010001000100000
00001000001000100001000100010000
00001000100000100100000010010000
00000100010000100010000001001000
00000000010000000010000001000000
00000000001000000001000000100000
00000000000000000000000000000000

Figure 4-2: An example of asmall seach used
by 2D SDS. Thetarget, four 1'sin averticd
‘line’ in the cantre of the search space ae
surrounced by a number of ‘distradors'.

This could be aproblem for 2D SDS when averticd lineisthetarget. One posshle
solutionisfor the dgorithm to search for the target, and the border of 0's aroundit
(figure 4-3). The dgorithm would look for the locéion d the upper left zero of the
model and determineits position from that. However, thisdid na entirely solve the
problem of incorred locaion. Asfewer than helf the dementsin the target are 1's the
algorithm was 4gill nat locaing properly due to the number of adive agents causing
quick diffusion. Thelocation errors were not just verticd translations of the adual

moded locaion, bu errorsin the horizontal as well.
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Figure 4-3: Thetarget and bader.

The methoddogy by which an agent was labell ed adive or inadive during the test phase
had to be dtered radicdly. Currently, during the test phase, eat agent only samples

ancther position within the range of the target do determine its adivity.

Another method, still using the border of zeros would chedk to seeif its current locaion
isapossbletop left of the model by
. making sure its current position and that of bath the positions to the right
are bath zero,
. making sure that the mrrespondng three ¢éements Q+1 (the model length
+ 1) pasitions down from the aurrent paosition contain zeros and
. that arandam pasition between thase two contains a zero-one-zero
pattern.
Any agent that satisfies all of these aiteriawould be adive otherwise it would be
inadive.

00000000000000000000000000000000
00000000100000000100010000000000
00*0000001000#000010001000000000
00010000010000100010001000100000
00001000001000100001000100010000
00001000100000100100000010010000
00000100010000100010000001001000
00000000010000000010000001000000
00000000001000000001000000100000
00000000000000000000000000000000

Figure 4-4: A seach spaceshowing the aurrent

pasition d two agents, indicated by the* and #.
To clarify this method consider the position d agent * in figure 4-4, the search space
value & thispoint iszero. This agent satisfies the first two condtions of adivity, that
the values of the next two rightwards positions are both zero and the crrespondng

pasitions Q+1 rows down are dso zero. Its gate of adivity depends on the randam
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choiceof elementsin between the previous two pasitions. If the ayent choosesto
sample the row immediately below its current position it will encourter a010 andthe
agent will become adive. However, shoud it choose any other of the posgble paositions
it will not finda010 andwill beinadive. Ascan be seen, the ayent # will always be
adive asthefirst two criteria of adivity are both satisfied, and al the rows of three

elementsin between are of the 010 structure.

Asaresult of changing the adivity criteriathe dgorithm worked, abeit painfully

slowly. Theresultsof aninitial runcan be seenin figure 4-5.
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] —— |terations -o Error -
5000 + 1os
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= 1 104
® 2000 | 1
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Figure 4-5: The mean convergencetime (iterations) and
error for 2D SDS as the number of distradors increases.
Thetarget isaverticd line, the distradors are oriented at
45°. The search spaceis 1000 ty 100 urits and the target
and dstradors were of length 50 unts. 200agents were
used.

These results s1ow how the mean iterations to convergencefell asthe number of
distradorsincreased. An upper limit of 10000iterations was %t on the dgorithm and
the location errors made ae due to the dgorithm reading this limit. The reasonthat the
mean iterations deaeases as the number of distradors increases is because the number

of passbly adive aeasis, surprisingly, lower. When fewer distradors (that are &
different from the target as these ae) exist in the seach spacethere ae more aeas of
white spacewhich, as far asthe adivity criteria ae cmncerned to begin with, are possble
candidates for an adive agent. When the agents are more likely to pant to amapping

that contains a 1, which is the cae when the number of distradors increases, their
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Applicaion d SDSto Visua Seach
overal adivity level islower and therefore incorred mappings are lesslikely to be

diffused. Thisisadually suppated by reseach of human performance

Bonreh and Sagi (1999 foundthat for large displays with oy afew items on dsplay,
the proximity of the items to ead ather was important for aiding target detedion. If the
items are spreal ou eat ore hasto be examined individually in a pseudo-serid
manner. However when there ae more items in the display the target is more likely to
pop out. The method by which the search spacein SDS is creaed means that for small

numbers of distradors the items are widely spreal out in the seach space

The arrent implementation d 2D SDSisaverticd filter. That is, it seaches for
verticd lines of agiven length. The test phase would have to be dtered to cope with
different oriented targets. With more time this could be adieved. However, the only
experiments that can be completed in the time avail able will use the verticd filter

algorithm.

4-3 Applications of 2D SDSto human visual search tasks

The following two hypotheses concerning 2D SDS need to be tested:

1. The resporse of the SDS verticd filter to adisplay of verticd lines will
below. That isthe overall level of adivity will be spread ou onthe
whale of the search spacebecaise there will be many different aress
where the ggents can be adive. Thiswould beindicaed by relatively fast
convergencetimes with adive ggents read ou amongst the whole
seach space Thiswould relate to Foster and Westland s (1995 reseach
indicaing the presence of two broadband filters, harizontal and verticd,
in ealy visua processng.

2. For ‘similar enowgh’ distradors as the number of distradors increases the
seach timewill i ncrease. the dgorithm will be tested for verticd line
target detedionwith dstradorsat anumber of different orientations.
The orientations will range from 5° to 25° in steps of 5°.

For these experiments the search spacewill be set at 1000x1000,the model length 50
and the number of agents 1000. 10Grias of ead experiment will be cnducted.
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Applicaion d SDSto Visua Seach
Idedly, the output of the 2D algorithm shoud be in the form of an adivity map rather
than the locaion d the target. This map would beinitially zero at every point, then, at
ead iteration ore would be alded to the paositions pointed to by adive agents. This
would give someidea & to the spread of adivity in the search spaceover the length of
the seach. Unfortunately, analysing alarge aray (>256in width) in most spreadsheds
isnot passble. Therefore inferences have to be made from the mean iterations to

convergence.

4-4 Experiment 1: The response of 2D SDSto large numbers of the same item
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Figure 4-6: The mean number of iterations to convergence
for averticd filter SDS as the number of verticd items
increases.

Figure 4-6 shows how the mean iterations deaeases as the number of verticd items
increases. Thisto be expeded asthere aefar more adive aeasin adisplay with 33
items than there ae with 1item. Itislikely, therefore, that all the agent’s adivity is
spreal over the whole search space Thiswould be considered as alow resporse to the
seach space adwould indicatethat if atarget existsitisnot averticd line. If a
horizonta filter 2D SDS were gplied to the same seach spacesits response would be
low, bu in adifferent way. It would only stop seaching onceit had readed the
maximum iteration limit set in the dgorithm as there ae no areas that could feasiblely
stay adive for more than ore or two iterationsin arow. However, if ahorizonta line
was present, its respornse would be high, with alot of adivity in ore particular area

indicating the presence of atarget.

Page 37



Applicaion d SDSto Visua Seach
4-5 Experiment 2: Theorientation discriminatory ability of 2D SDS

The results from this experiment are disappanting in that they do nd mimic human
data. Only ore distractor orientation was tested, 5°, becaise it was felt that with the
results obtained it was not worth trying more experiments with dff erent distracor
orientations. Figure 4-7 shows how the seach time stayed approximately the same &

the number of distradorsincreased.
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Figure 4-7: The dfed of number of distradors on mean
iterations to convergencefor distrador orientation o 5°.

The reasons for obtaining these results are unclea but it could be due to
implementation, ower smplificaion d the experiments, resolution d the search spaceor
even that 2D SDSisnot agood kasisfor amodel of visual seach. Whatever the reason,
the results are alittl e disappanting. A significant drop a asignificant increase in

seach time might have been expeded.
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Chapter 5

Discusson

Theinvestigation d SDSin bah its one and two-dimensional varieties has led to some

interesting results.

In apure parall e implementation the mean convergencetime (iterations) of SDSis
inversely propattional to the number of agents and is lessdependent on the size of the
model or seach space However, inits srial implementation the mean convergence
time (semnds) is propational to the number of agents but again has alesser dependence
onthe size of the seach space ad model. The performance of SDS improves as the
alphabet isincreased. However, in the presence of noisy data, the dgorithm beginsto
perform lessand lessefficiently, though with suitable tweging of the termination
conditions, performance ca be improved by as much as 26% in some caes. Asthe

seach spaceincreases in simil arity to the model the performance deaeases.

The limited set of results from the 2D model imply that the a the number of distradors
in the seach spaceincreases the overall performance of SDSisunchanged. This

occurred when the orientation o the distradors was only 5°.

Asthe number of verticd itemsin the display increased it was not surprising that the

verticd filter SDS converged more quickly.
Psychophysical plausibility

Some of these results, namely those obtained from the 1D distrador experiments,
suppat the view that SDS has properties that are simil ar to those foundin human

psychoptysicd experiments. As dated before the 1D concept of distradorsis analogous
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to the aoncept of oriented line target detedion and the arvesin figure 3-8 mimic the
human deata for such tasks. However there ae some other results that suppat the

psychoptysicd plausibility of SDS.

For a constant number of agents in a given search spacesize larger models are more
easlly found. This makes psychophysicd sense. If SDSis smilar to the dgorithm used
by the ealy visual system then it islikely that for ead visua seach performed the same
number of agents are going to be used. Experiments carried ou by Treisman and
Gormican (1989 indicae that sizeisafeaure andthat larger items are more eaily

found.

Discrimination d objeds by humansin afull colour world is much easier thanin a
blad and white world. Efficient texture segmentation is thought to help with oljea
locaion and reaognition. Therefore, more mwmplex textures can be generated the more
coloursthat are available. SDS works better as the range of values ead element in the

seach space ca take increases.

In 2D SDS the results are lesspromising. However, initial results from the dgorithm
appea to correspondto predictions that can be drawn from Foster and Westland' s
(1995 theory if assumptions abou the resources of the ealy visual system are made;
that the overal adivity of averticd filter when applied to adisplay containing vertica

lineswill be saturated aadossthe whaole visual field.

Unfortunately the distrador experiment did na suppat the view that SDSis
psychoptysicdly plausible. The performanceof 2D SDS was almost unchanged as the
number of distradorsincreased. At thisdistrador orientation the performance shoud

deaease & the number of distradors increases.

Further Investigation

There ae still alarge number of areas that nead to be investigated further. One of the
most important aspeds of SDS are the termination conditions, as these have been shown

to alter the performance of the dgorithm by upto 26%. A large anourt of data needsto
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be olleded and analysed to determine whether or not a pattern exists for cdculating the
best termination condtions for a given seach spacesize, model size, number of agents
and amourt of naise. A self-terminating algorithm would be ided and this could
paossbly be adieved with the help of an adivity map. Thus, feedbad from the seach
gpace ould indicate to the dgorithm the propartion o adive agents the ae with the
greaest level of adivity. Thisinformation could be used by the dgorithm to determine
its own termination criteria. For example, if the adivity in ore aeaof the seach space
was sgnificantly higher than in the rest of the search spacethe dgorithm would
terminate even if the propartion d adive agents was nat particularly high. In particular
termination d the 2D SDS agorithm requires investigation. No experiments were

condwted inthisarea The dgorithm terminated when al the ajents were adive.

Thisimplementation d 2D SDSis not based onany theoreticd results. Thereisno
implicaionthat thisimplementationisin any way corred in a psychoplysicd sense.
Perhaps groups of agents could be sent out in blocks to test the search spacerather than
single ayents. In particular if the dgorithm isto seach for lines of any other orientation
the test phase hasto be rewritten.

The aedion d the seach spaceis aso aproblem. Theresolution onthe search spaceis
very poar, asonly vertica and 4% lines are represented at all faithfully. Red human
visual seach tasks are not condwcted with jagged edged lines. However, if aliasing was
used to smoath ou oriented li nes then the whole nature of the test phase would have to
be dtered. The dgorithm would need to be dtered to cope with the extravariationin
the range of values the seach space ould take. Would the dgorithm look at intensity
changes between pixels or would it still try to match values? Thiskind d situation will

need to be investigated.

In order to oltain more information abou the possble relationship between the airrent
theories of human visual seach and SDS the dgorithm must output an adivity map such
asthose foundin the GS model. Although the aedion d adivity map isrelatively
simpleits analysis might not be. Furthermore adivity maps produced at ead iteration
would give alot of insight into the charaderistics of algorithm termination. These maps

would show how, at first the dgorithm randamly sends out agentsin to the searcch space
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before their progressbecomes lessrandam and they all converge to the same aea

Foster and Westland (1995 aso produced amode of oriented-li ne-target detedion with
thetwo haizontal and verticd filters. The results they foundconcerning the presence of
ahorizontal and verticd filter in the very ealy visua system need to be examined in the
context of 2D SDS. The gplicaion d 2D SDS to these experimentsisimportant in

discovering more &ou the charaderistics of the dgorithm.

Conclusions

In short SDSis an extremely interesting algorithm that has some psychoplysicd like
properties. It has a pseudo-attentional medanism by which the agents are guided to
“interesting” areas of the search space This corresponds well with the dtentional
spatlight present in the GS model.

However, the properties the dgorithm exhibited in the one-dimensional form are not
exhibited in its two-dimensiona incarnation. This could be due to the aedion d the
seach space the implementation d the test phase or even the posshility that SDSis not

amodel for human visual attention.
No conclusions can be drawn either way asto its suitability asamodel for attention.

However, this research has raised some interesting questions that shoud certainly be

answered.
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Appendix 1

Simple Stochastic Diffusion Search

Purpose Built Header File - stoch.h
/* Mapping Cell Cass for Stochastic Search Network */

class MC {
public:
M() ;
void setMap(int); // sets mapping of MC (mapping cell)
void setFire(int); // firing status, 0 off, 1 on
int Mapping(); // returns the mapping
int Firing(); // returns the firing status

private:
int map, cFire;

s

MC:. : MC() {cFire=0;}

void MC :setMap(int m {map = m}
void MC: :setFire(int c) {cFire=c;};
int MC:Mapping() {return nap;}
int MC.:Firing() {return cFire;}

Main Program - sds.cpp

/* Sinple Stochastic Search Network */
/* Qutputs results to "results.dat" */
/* Robert Summers */

/* Version 3a, 20th June 1998 */

#i ncl ude<mat h. h>

#i ncl ude<stdl i b. h>
#i ncl ude<st di 0. h>

#i ncl ude<i ostream h>
#i ncl ude<f st ream h>
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#i ncl ude<ti ne. h>
#i ncl ude<string. h>
#i ncl ude" st och. h"

int Q numAgents, SS, origSS, posO Model, numvax, corrupt,
nunt St ri ngs;

int threshold, baseThreshold, stable, stabilityTimne;
clock t start, stop;

int iteration, nunstr, hits, index, e, isSane, p;

int i,j,dumy, dunmny?2;

fstream g;

i nt nmaxSS, step, experinent;

char expNuni 16];

char f1[]="results.dat";

MC * DMC,

int *nodel, *cnodel, *searchSpace; *el enent; *frequency;

voi d readl nDat a();
void conditions();
void rndStr();
void init();

void test();

void diffuse();
int ternmnate();
voi d Xrandom();

i nt node();

int main()

{

readl nDat a() ;

for (experinent=0;experinment<=(nmaxSS-origSS)/step; experinment ++)
{
SS=or i gSS+experi nment *st ep;
i toa(experinent, expNum 10);
strcat (expNum f1);
g. open(expNum ios::out);
g << "SS=" << SS << endl;
g << "NumOF Strings=" << nuntX Strings << endl;
g << "@F" << Q<< endl;
condi tions();
for (nunstr=0; nunstr<nuntX Strings; nunstr ++)

{

g << nunmstr << "\t";
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rndstr();
random ze();
start=cl ock();
init();
iteration=1;
test();
while ((terminate()==0) && (iteration < (2*SS)))

{

di f fuse();

iteration++;

test();

}
st op=cl ock();
g << iteration << "\t" << ((float)

((stop-start)/CLK_TCK)) << "\t";
dumry=node() ;
g << dummy << "\t" << posOf Model << "\t" <<
dummy- posOf Model ;

cout << ".";
g << endl;
}
g.cl ose();
}
return O;
}
i nt node()
{

int |argest=0, nodeVal ue=0;
for (int rating=0; rating < SS; rating++) frequency[rating]=0;
for (i=0;i<numAgents;i ++)
frequency[ DMCi]. Mappi ng()] =frequency[ DMJi]. Mappi ng()] +1;
for (rating=0; rating < SS; rating++)
{
if (frequency[rating] > |argest)
{
| argest = frequency[rating];
nodeVal ue = rating

}
}

return nodeVal ue

}
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int term nate()

{
int termn nate=0;
i f (hits>baseThreshold-1) {stabilityTinme=stabilityTinme+l;}
el se {stabilityTi ne=0;}
if ((hits>threshold-1) || (stabilityTi me==stable)) terni nate=1,;
return termnate;

}

void diffuse()

{
Xrandon() ;
for (i=0;i<numAgents;i ++)
{
if (DMJi].Firing()==0)
{
p=el ement[i];
if (DM p].Firing()==1)
{
DM i ] . set Map(DMJ p] . Mappi ng() ) ;
DM i].setFire(1);
}
el se {DMi].setMap(rand() % SS); }
}
}
}
void test()
{
hi t s=0;
Xrandon() ;
for (i=0;i<numAgents;i ++)
{

i ndex=DM[ i ] . Mappi ng() ;
e=el ement[i];
i f ((index+e)<SS)
{
i f (nodel [ e] ==searchSpace[i ndex+e])
{
DMJi].setFire(1);
hi t s=hits+1;
}
else {DMJi].setFire(0);}
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}
el se {DMJi].setFire(0);}

voi d Xrandom()
{
i nt range;
if (numAgents < Q range=numigents;
el se range=Q
for (i=0;i<numAgents;i++)elenent[i]=rand() % range;

}
void init()

{

for (i=0;i<numAgents;i ++)
{
DM i].setMap(rand() % SS);
}

}

void rndStr()
{
if (SS-Q@=0) posO Model =0; el se posO Model =rand() % SS- Q) ;
for (i=0;i<SS;i++) searchSpace[i]=rand() %umvax;
for (i=posC Model ;i <posCOf Model +Q i ++)
sear chSpace[i] =cnodel [i - posOf Model ] ;
}
voi d conditions()
{
cout << "\nhodel size " << Q << endl;
cout << "Search Space Size " << SS << endl;
DMC = (MC *) mal |l oc(numAgents * sizeof (MJ));
element = (int *) malloc(numAgents * sizeof (int));
searchSpace = (int *) malloc(SS * sizeof(int));
frequency = (int *) malloc(SS * sizeof(int));
g << "NumAgent s=" << numAgents << endl;
g << "SSNo.\tI\tTinme\tMappi ng\t Actual\tError" << endl;

}

voi d readl nDat a()
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{
cout << "Enter the start size of the search space:";
cin >> origSs;
cout << "Enter the end size of the search space:";
cin >> maxSs;
cout << "Enter the increnent:";
cin >> step;
cout << "Enter the size of the nodel:";
cin > Q
cout << "Enter the nunber of trials per experinent:";
cin >> nunmOf Strings;
cout << "Enter the al phabet of the search space:";
cin >> nunmvax;
cout << "Enter the nunber of corrupted data units:";
cin >> corrupt;

nodel = (int *) malloc(Q * sizeof(int));
cnodel = (int *) malloc(Q * sizeof(int));
srand(1);
for (i=0;i<Qi++)

{

nodel [ i ] =rand() %univax;
cnodel [i]=nodel [i];

}

if (corrupt>0) {
for (i=0;i<Qi=i+(int) (Qcorrupt))
{cnodel [i]=cnodel [i]+1;}
}
cout << "\nEnter the nunmber of Agents required:"
ci n >> numAgents;
cout << "\ neEnter Threshold for termnation:";
cin >> threshol d;
cout << "\nEnter Stable time, (no. of iterations before program
termnates ";
cout << "\nwhen no. of correct nmatches is above a base
threshol d: ";
cin >> stable;
cout << "\nEnter Base Threshold for termnation after " <<

stabl e << iterations:";
cin >> baseThreshol d;
cout << endl

}
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Appendix 2

SDSwith Distractors

Purpose built header file - stoch.h
See gpendix 1.

Main Program - sdsdis.cpp

/* Stochastic Search Network with Distractors*/
/* Robert Sumers */
/* Version 3a, 3rd June 1998 */

"
.
i
i
.
.
i

ncl ude<mat h. h>
ncl ude<stdl i b. h>
ncl ude<st di o. h>

ncl ude<i ostream h>

ncl ude<f stream h>

ncl ude<ti ne. h>

ncl ude" st och. h"

int =100, numAgent s=100, SS=5000, posCf Mbdel, numvax, nunDi stract,
simlarity, numO Strings=1000

int threshold, baseThreshold, stable, stabilityTine;

clock t start, stop;

int iteration, nunstr, hits, index, e, isSane, p;

int i,j,k,dunmy;

float dummy?2;

fstream g;

MC * DMC,
int *nodel, *cnodel, *searchSpace; *el enent; *frequency; // nodel

corrupt nodel, etc

voi d readl nDat a();
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voi d conditions();
void rndStr();
void init();
void test();
void diffuse();
int termnate();
voi d Xrandom();
i nt node();

int main()
{
random ze();
readl nDat a() ;
condi tions();
for (nunstr=0; nunstr<nunX Strings; nunmstr ++)
{
g << nunmstr << ";";
rndStr();
start=cl ock();
init();
iteration=1;
test();
while ((terminate()==0) && (iteration < (2*SS)))
{
di ffuse();
iteration++;
test();
}
st op=cl ock();
g<<iteration<<";"<<((float)((stop-start)/CLK TCK)) << ";"

dunmmy=node() ;
g << dummy << ";" << posOFMbdel << ";" <<

dunmy- posOf Model ;
cout << ".";

g << endl;

}

g.close();
return O;

}

i nt node()

{

int |argest=0, nodeVal ue=0;
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for (int rating=0; rating < SS; rating++) frequency[rating]=0;
for (i=0;i<numAgents;i ++)

frequency[ DMJi]. Mappi ng()] =frequency[ DM i ] . Mappi ng()] +1;
for (rating=0; rating < SS; rating++)
{
if (frequency[rating] > |argest)
{
| argest = frequency[rating];
nodeVal ue = rating;
}
}

return nodeVal ue;

}

int term nate()
{
int terni nate=0;
i f (hits>baseThreshol d-1) {stabilityTime=stabilityTime+l;}
el se {stabilityTi ne=0;}
if ((hits>threshold-1) || (stabilityTi me==stable)) terni nate=1;
return termnate;

}

voi d diffuse()

{
Xrandon() ;
for (i=0;i<numAgents;i ++)
{
if (DMJi].Firing()==0)
{
p=el ement[i];
if (DM p].Firing()==1)
{
DM i ] . set Map(DMJ p] . Mappi ng()) ;
DMJi].setFire(1);
}
else {DM]i].setMap(rand() % SS);}
}
}
}
void test()
{
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hi t s=0;
Xrandon() ;
for (i=0;i<numAgents;i ++)
{
i ndex=DM i ]. Mappi ng();
e=element[i];
i f ((index+e)<SS)

{
i f (nodel [ e] ==sear chSpace[i ndex+e])
{
DMJi].setFire(1);
hi t s=hits+1;
}
else {DMJi].setFire(0);}
}

el se {DMJi].setFire(0);}

voi d Xrandon()
{
i nt range;
if (numAgents < Q range=numAgents;
el se range=Q

SDS with Distradors

for (i=0;i<numAgents;i++)elenent[i]=rand() % range;

}
void init()

{

for (i=0;i<numAgents;i ++)
{
DM i].setMap(rand() % SS);
}

}

void rndStr()
{
dummy2=(SS- Q / nunDi st ract;
for (i=0;i<SS;i++) searchSpace[i]=0;
posCOf Model =rand() % SS- Q) ;
for (i=0;i<nunDi stract;i++)

{
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j =dumy2*i ;
for (k=0;k<simlarity; k++) searchSpace[ k+j]=cnodel [ K];
}
for (i=0;i<Qi++) searchSpace[i +posO Model ] =nodel [i];
}

voi d conditions()

{

cout << "Model size " << Q << endl;

cout << "Search Space Size " << SS << endl;

t hr eshol d=numAgent s;

st abl e=2;

baseThr eshol d=nunigent s;

cout << endl;

DMC = (MC *) mal |l oc(numAgents * sizeof (MJ));
element = (int *) malloc(numAgents * sizeof(int));
g << "NumAgent s=" << numAgents << endl;

g << "SSNo. ;| ; Ti me; Mappi ng; Actual ; Error;" << endl;
}

voi d readl nDat a()

(0-1):"

{

g.open("results.dat", ios::out);

cout << "\nSize of the search space:";

cout << SS;

cout << "\nSize of the nodel:";

cout << Q

cout <<"\nEnter nunber of distractors in the Search Space:";
cin >> nunDistract;

cout << "Enter the simliarity of the distractors to the nodel
cin >> dumy?2;

simlarity=(int) (dumy2*Q;

nunt St ri ngs=1000;

numvax=10;

g << "SS=" << SS << endl;

g << "Simlarity=" << dumy2 << endl;

g << "nunDi s=" << nunDi stract << endl;

nodel = (int *) malloc(Q * sizeof(int));

cnodel = (int *) malloc(simlarity * sizeof(int));
searchSpace = (int *) malloc(SS * sizeof(int));
frequency = (int *) malloc(SS * sizeof(int));

for (i=0;i<Qi++)
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{model [i]=rand() %umnvax; }
for (i=0;i<simlarity;i++)
{cnodel [i]=nodel [i];}
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Appendix 3

2D SDS

Purpose Built Header File - 2Dstoch.h

/1 2 Dinmensional Mpping Cell/Agent Header for 2dsds
class MC {
public:

M2() ;

void setMap(int, int);

void setFire(int);

i nt Mappi ngX();

i nt Mappi ngY();

int Firing();

private:
int mapX, mapY, cFire;

s

MC:: MC() {cFire=0;}

void MC :setMap(int x, int y) {mapX=x; mapY=y;}
void MC: :setFire(int ¢c) {cFire=c;}

int MC:MappingX() {return mapX}

int MC:MappingY() {return mapY;}

int MC.:Firing() {return cFire;}

cl ass Model {
public:
Model () ;
voi d setlLength(int);
i nt getLength();
void setPos(int, int);
i nt nodel X();
i nt nodel Y();
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private:
int length, X Y,
3

Model : : Model () {I| engt h=0;}

voi d Model ::setlLength(int 1) {length=l;}
int Model::getLength() {return |length;}
voi d Model ::setPos(int x, int y) {X=x;Y=y;};
i nt Model ::nodel X() {return X}

i nt Model ::nodel Y() {return Y;}

class Distractor {
public:
Di stractor();
voi d setlLength(int);
void setOrientation(int);
int getlLength();
int getOrient();
voi d set NunmDi s(int);
int getNunDis();

private:
int length, orient, nunDi s;

s

Distractor::Distractor() {length=0; orient=0;}
void Distractor::setLength(int I') {length=l;}
void Distractor::setOientation(int o) {orient=o0;}
int Distractor::getlLength() {return length;}

int Distractor::getOient() {return orient;}

void Distractor::setNunDi s(int n) {nunDis=n;}

int Distractor::getNunmDis() {return nunDis;}

Main Program - 2Dsds.cpp

/* 2D SDS */
/* Robert Sumrers */
/* Version 0.1, 29th July 1998 */

#i ncl ude<stdl i b. h>

#i ncl ude<nmat h. h>
#i ncl ude<st di 0. h>
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#i ncl ude<i ostream h>
#i ncl ude<f st ream h>
#i ncl ude<string. h>
#i ncl ude" 2dst och. h"

voi d createSpace(Mdel, Distractor);
void init();

int test();

void diffuse();

voi d node();

const float pi=3.14159265359;
const int sizeX=1000;
const int sizeY=1000;

i nt huge ss[sizeX][sizeY];
i nt huge frequency[sizeX]|[sizeY];

Model Q

Di stractor D

MC * DMC;

i nt numAgent s, nodel PosX, nodel PosY,;

fstream g;
char expNuni 14];
int numfrials, experinment;

voi d main()
{
random ze();
int hits, iteration,trial, nunDis;
i nt dumy;
cout << "Search Space Size:'

cout << "Enter Distractor Orientation (degrees):";
cin >> dummy;

D.setOientation(dunmmy);

cout << "Enter nodel length:";

cin >> dummy;

Q set Lengt h(dumy) ;

cout << "Distractors 0, 2, 4,8, 16, 32\n";
cout << "Enter nunber of trials per experinent:";

2D SDS

<< sjzeX << "," << sizeY <<endl;
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cin >> numlri al s;

for (experinment=0; experinment<6;experinent ++)
{
i f (experinment==0) {nunDis=0;} else {nunDis=(int)
pow 2, experinment);}

D. set NunDi s( nunDi s) ;

numAgent s=1000; // =(Q getLength()+2);

D. set Lengt h( Q get Length());

g.close();

if (experinment==0) {g.open("Oresults.dat",ios::out);}
if (experiment==1) {g.open("lresults.dat",ios::out);}
if (experiment==2) {g.open("2results.dat",ios::out);}
if (experinment==3) {g.open("3results.dat",ios::out);}
if (experinment==4) {g.open("4results.dat",ios::out);}
i f (experiment==5) {g.open("5results.dat",ios::out);}

cout << "Nunber of Distractors:" << D.getNunDis() << endl;
cout << "Nunber of Agents:" << numAgents << endl;

<< "Orient:\t" << D.getOient() << endl;

<< "Length:\t" << QgetlLength() << endl;

<< "Nunber of Distractors:\t" << D.getNunDi s() << endl;
<< "SS Sjizel\t" << sizeX << "\t" << sizeY << endl;

Q Q@ « «

g << "lterations\tXerror\tYerror\tError" << endl;

for (trial=0;trial<nunirials;trial++)
{
Q set Pos(rand() % si zeX- 2) +1,
rand() % si zeY-Q get Lengt h() - 1) +1) ;
DMC = (MC *) mal |l oc(numAgents * sizeof (MJ));
creat eSpace(Q D);
init();
iteration=1;
hits=test();
while ((hits < numAgents-1) && (iteration < 10000))
{
di f fuse();
iteration++;
hits=test();
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}
cout << "."
node() ;
g << iteration << "\t" << nodel PosX-Q nodel X() <<
"\t" << nodel PosY-Q nodel Y() << "\t" <<
abs( nodel PosX- Q nodel X()) +
abs(nodel PosY-Q nodel Y()) << endl;
}
cout << endl
g.cl ose();

}
Y/ /end main();

voi d node()

{

i nt |argest=0;

int i,j;
for (j=0;j<sizeY;j++)
{
for (i=0;i<sizeX;i++)
{
frequency[i][]j]=0;
}
}
for (i=0; i<numAgents; i++)
{
frequency[ DM i]. MappingX()][DMJi]. Mappi ngY()] ++;
}
for (j=0;j<sizeY;j++)
{
for (i=0;i<sizeX;i++)
{
if (frequency[i][]j]>largest)
{
| argest =frequency[i][j];
nodel PosX=i +1;
nodel PosY=j +1
}
}
}

void diffuse()
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{
int p;
for (int i=0;i<numAgents;i ++)
{
if (DMJi].Firing()==0)
{
p=r and() %munmAgent s;
if (DM p].Firing()==1)
{
DM i ] . set Map( DMC] p] . Mappi ngX(),
DMO[ p] . Mappi ngY() ) ;
DMJi].setFire(1);
}
el se {DMi].setMap(rand()%sizeX-3),
rand() % si zeY-Q get Length()-2));}
}
}
}
int test()
{
i nt h=0;

i nt indexX, indexY, elenentY, possibleActive;
int tenp[3]={0,1,0};
for (int i=0;i<numAgents;i ++)
{
possi bl eActi ve=0;
i ndexX=DM[i]. Mappi ngX();
i ndexY=DMC[ i ] . Mappi ngY();
el ement Y=1+r and() %0 get Lengt h() ;
i f (ss[indexX+1][indexY]==0) {possibleActive++;}
i f (ss[indexX+1l][indexY+Q getLength()+1] ==0)
{possi bl eActi ve++;}
for (int j=0;j<3;j++)
{
if (ss[indexX+j][indexY+el enentY]==tenp[j])
{possi bl eActive++;}

i f (possibl eActive==5)
{
DM i].setFire(1);
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h++;
}
el se {DMJi].setFire(0);}
}
return h;
}
void init()
{
for (int i=0;i<numAgents;i ++)
{
DM i].setMap(rand() % si zeX-3), rand() % si zeY-Q getLength()-2));
}
}

voi d createSpace(Mdel mm Distractor dd)
{
int i,j,Kk;
int length, nunbDis, posX, posY,
float orient;
int XnunDis, YnunDis;
| engt h=nm get Lengt h() ;
orient=(pi/180) * dd.getOrient();
nunDi s=dd. get NunDi s() ;
posX=mm nodel X();
posY=mm nodel Y();
for (j=0;j<sizeY;j++)

{

for (i=0;i<sizeX;i++)
{
ss[i][j]=0;
}

}

XnunmDi s=(int) ((sizeX * nunDis)/ (sizeX+sizeY));
i f (nunDi s>0) YnunDi s=nunDi s/ XnunDi s;
int dunX, dun;
for (j=0;j<YnunDis;j++)
{
for (i=0;i<XnunDis;i++)
{
dumy=(int) (j*(sizeY)/YnunDis);
dumX=(int) (i*(sizeX-(length*sin(orient)))/XnunDis);
for (k=0; k<l engt h; k++)
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{
ss[dumX+(int) (k*sin(orient))][dun¥Y+(int)
(k*cos(orient))]=1;

}

ss[ posX- 1] [ posY-1] =0;

ss[ posX] [ posY- 1] =0;

ss[ posX+1] [ posY- 1] =0;

for (k=0; k<l engt h; k++)
{
ss[ posX- 1] [ posY+k] =0;
ss[ posX] [ posY+k] =1;
ss[ posX+1] [ posY+k] =0;
}

ss[ posX- 1] [ posY+k+1] =0;

ss[ posX] [ posY+k+1] =0;

ss[ posX+1] [ posY+k+1] =0;

}
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Appendix 4

Optimised Sequential Search

/* Optimsed Sequential Search Al gorithmoutputs to "results.seq" */
/* Robert Sunmers */
/* Version 2, 3rd June 1998 */

ncl ude<stdli b. h>
ncl ude<st di 0. h>

"
.
.
i
i
.
.

ncl ude<i ostream h>

ncl ude<f st ream h>
ncl ude<mat h. h>
ncl ude<ti ne. h>

ncl ude<string. h>

int Q SS, posOMdel, nunmMvax, corrupt;

i nt origSS, maxSs, st ep, experi nent;

int *nodel, *cnodel;

i nt *searchSpace;

int iteration,i,j,hits,nunstr, nuntf Strings, maxHi ts, naxPos, dummy2;
clock t start, stop;

char expNuni 16] ;

char f1l[]="results.seq";

fstream g;

voi d readl nDat a();
void rndStr();
void test();

int termnate();

int main()
{
cout << "optim sed sequential search, requires 100% match
bet ween target and nodel\n\n\n";
readl nDat a() ;
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for (experiment=0;experinent<=(maxSS-ori gSS)/ step; experi nent ++)
{
SS=or i gSS+experi nment *st ep;
i toa(experinent, expNum 10);
strcat (expNum f1l);
g. open(expNum ios::out);
cout << "\n\nSS=" << SS << endl;
g << "SS=" << SS << endl;
g << "Nun¥ Strings=" << numO¥ Strings << endl;
g << "@F" << Q<< endl;
searchSpace = (int *) malloc(SS * sizeof(int));
g << "SSNo.\tlterations\tTine\tMappi ng\tActual\tError" <<
endl ; \
for (nunstr=0; nunstr<nunX Strings; nunmstr ++)
{
max Pos=0;
maxHi t s=0;
rndStr();
start=cl ock();
hi t s=0;
iteration=0;
while ((terminate()==0) && (iteration<(SS-Q))
{
test();
iteration++;
}
st op=cl ock();
g << nunstr << "\t" << iteration << "\t" <<
(stop-start)/CLK TCK << "\t" << maxPos << "\t";
g << posOFMobdel << "\t" << maxPos-posO Model << endl
cout << ".";
}

g.close();

}

return O;

}

void test()
{
hi t s=0;
if (i+iteration<SS)
{
i =0;
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while ((i<Q && (hits==i))
{
if (nodel[i]-searchSpace[i+iteration]==0) hits++;
i ++;

}

int term nate()
{
i nt term nat e=0;
if ((iteration>0) && (hits>maxH ts))
{
maxH ts=hits;
maxPos=i terati on-1;
}
if (maxH ts==Q {term nate=1;}
return terni nate;

}

voi d readl nDat a()
{
cout << "Enter the start size of the search space:";
cin >> origSS;
cout << "Enter the end size of the search space:";
cin >> nmaxSs;
cout << "Enter the increnent value:";
cin >> step;
cout << "Enter the size of the nodel:";
cin > Q
cout << "Enter the nunber of strings:";
cin >> nunOF Strings;
cout << "Enter the al phabet:";
cin >> nuniVax;
cout << "Enter the nunber of corrupted data units:";
cin >> corrupt;

nodel = (int *) malloc(Q * sizeof(int));
cnodel = (int *) malloc(Q * sizeof(int));
srand(1);
for (i=0;i<Qi++)

{

nodel [i] =rand() %univax;

cnodel [i]=nodel [i];
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}
for (i=0;i<corrupt;i++)
{
dunmmy2=(int) (i*Q corrupt);
cnodel [ dummy 2] =( cnodel [ dunmmy 2] +r and( ) % nunivax- 2) +1) %univax;
}

void rndStr()
{
posOf Model =rand() % SS- Q) ;
for (i=0;i<posCMbdel;i++) searchSpace[i]=rand() %univax;
for (i=posOMdel;i<posOMdel +Q i ++)
sear chSpace[i] =cnodel [i - posO Model |
for (i=posOMdel +Q i<SS;i ++)searchSpace[i]=rand() %univax;
i =0;
}
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