
Explorations in Stochastic Diffusion Search:
soft- and hardware implementations of

biologically inspired Spiking Neuron Stochastic
Diffusion Networks

Kris De Meyer 1

Department of Cybernetics
University of Reading
KDM/JMB/2000-1

September 2000

1Email: krm@cyber.reading.ac.uk

Abstract

Stochastic Diffusion Search, a probabilistic pattern matching algorithm, has
been applied to a variety of problems with great success, and its basic prop-
erties have been studied in detail. Although parallel in nature, most of the
applications are implemented in software on serial machines. This report
aims at giving an overview of possible modifications towards efficient imple-
mentation in parallel hardware and towards implementations as networks of
biologically inspired Spiking Neurons, in both hard- and software.

Contents

1 Introduction 5
1.1 The History of Stochastic Diffusion Search 5
1.2 Where to Go ? . 6
1.3 Overview . 7
1.4 Expected Contributions . 8

2 Stochastic Diffusion Search 9
2.1 Generic Stochastic Diffusion Processes 9

2.1.1 Ant Search Analogy 10
2.2 Basic properties of SDS algorithms 10
2.3 Filling in the Details . 12

2.3.1 The Timing Behaviour 12
2.3.2 Internal States of Agents 13
2.3.3 The Search Space . 13
2.3.4 The Order of Test and Diffusion 14
2.3.5 Initialising . 15
2.3.6 Testing . 15
2.3.7 Diffusing . 15
2.3.8 Terminating . 16
2.3.9 Probability Distributions 16

2.4 Overview of Implemented SDS Algorithms 17
2.4.1 Conventions . 17
2.4.2 Standard Stochastic Diffusion Search 18
2.4.3 From Software Implementations to Hardware 19
2.4.4 Unlabelled SDS . 19
2.4.5 Spiking Neuron SDS 24
2.4.6 Asynchronous SDS . 24
2.4.7 Lattice SDS . 25
2.4.8 One- or Two-Way Communication 35
2.4.9 Conclusions . 36

2.5 Combinatorial Optimisation 36

1

2.5.1 Travelling Salesman . 36
2.5.2 The Algorithm . 37
2.5.3 Results . 38
2.5.4 Conclusion . 38

3 Connectionist Models of SDS 40
3.1 Biological Neurons . 41

3.1.1 Neural Codes . 41
3.1.2 Dendrites . 42

3.2 Details of SNSDN . 43
3.2.1 High Level Description of the Network 43
3.2.2 Randomisation Process 45
3.2.3 Comparison with Standard SDS 45

3.3 Attention . 47
3.4 Further Research . 51

4 Hardware Implementations 52
4.1 The Communicating Neurons Machine 52
4.2 Programmable Digital Hardware 54
4.3 Programmable Analog Hardware 55
4.4 Conclusion . 55

2

List of Figures

2.1 Comparison of Standard and Unlabelled SDS 22
2.2 Comparison of Standard and Unlabelled SDS 23
2.3 Special lattice layouts . 27
2.4 8 by 1 lattice . 31
2.5 8 by 2 lattice . 32
2.6 TSP Optimisation . 39

3.1 Comparison between SDS and SNSDN 46
3.2 Unstable populations in SNSDN 47
3.3 Switching of attention in SNSDN 49
3.4 Spikes and powerspectra during attention 50

3

List of Tables

2.1 Diffusion time for Lattice SDS 34
2.2 Resource allocation for Lattice SDS 35

3.1 Resource allocation for SNSDN 48

4

Chapter 1

Introduction

1.1 The History of Stochastic Diffusion Search

Stochastic Diffusion Search (SDS), a parallel probabilistic pattern matching
algorithm, was first proposed in [1] and [2]. It is capable of rapidly locating
a specified pattern - or its best instantiation - in a noisy Search Space. The
algorithm is based on partial testing for the presence of a target pattern at
locations in the Search Space by a number of independently operating Agents.
Agents exchange information about possible locations of the target pattern
in the Search Space (diffusion).

The technique has been applied with great success to a variety of real-
world problems. In [3], the Hybrid Stochastic Diffusion Network (HSDN), a
combination of Stochastic Diffusion Search with N-tuple Weightless Neural
Networks ([4]), was used to locate eye features in images of human faces,
invariant of transformations within the Search Space, robust to noise distor-
tions and partial occlusions of the object. [5] used the same combination for
more general facial feature location, whereas [6] used it as a method for self-
localisation of an autonomous wheelchair, extending the original algorithm
to provide a faster solution in large Search Spaces (the Focused Stochastic
Diffusion Network - FSDN).

The basic properties of Stochastic Diffusion Search are well understood.
The time complexity of the algorithm - growing at most linearly with the
Search Space size - is discussed in [7]. Convergence to the global-best solution
is demonstrated in [8]. A full mathematical model is developed in [9]. Earlier
attempts at modelling SDS can be found in [1], [3] and [5], but the results
are limited.

5

Apart from being a fast and reliable pattern matching algorithm, SDS
seems to present itself as a possible solution to many persisting problems in
neurophilosophy. In [10], the HSDN is reviewed in terms of an alternative
connectionism, based on communication between neurons, as opposed to the
classical approach of viewing neurons as simple computational devices.
[11] introduces NESTOR (NEural STochastic diffusion search netwORk), a
connectionist implementation of SDS based on recent findings in neurobiolog-
ical research. [12] expands upon biological evidence for communication as a
new metaphor for neuronal operation. In [13], the same network, but with a
slightly different name (NESTER), is discussed in greater detail. Simulation
results show behaviour qualitatively similar to SDS. Self-synchronisation of
a large population of neurons in this network (now referred to as Spiking
Neuron Stochastic Diffusion Network - SNSDN) is proposed as a mechanism
of attention in [14].

Although parallel in nature, and thus easily implemented on parallel ma-
chines or directly in hardware, most of the above applications and connec-
tionist models have only been implemented in software on serial machines.
Only one attempt ([15]) has been made so far to implement a connectionist
model (SNSDN) in parallel, on a multi-processor Silicon Graphics machine.

1.2 Where to Go ?

Given the present state of research in SDS, several possible routes await
exploration:

• Application to new domains: research applying SDS to 3D object
recognition and speech recognition is ongoing. Other areas might in-
clude Protein Matching and Data Mining. Although no pattern match-
ing problem, SDS could be modified to perform Combinatorial Optimi-
sation, based on partial evaluation and diffusion of promising solutions.

• SDS and the brain: the first results using SDS-like connectionist
models seem to give rise to emergent properties which could be seen as
answers to neurophilosophical problems like attention and the binding
problem. However, more work is needed: the present model needs to
be extended, refined and simulated with greater biological inspiration.
Emerging properties in simulations, bearing resemblance to higher or-
der cognitive functions, will enable us to judge if SDS-like processes are
a mechanism used by the brain.

6

• Parallel implementations: the basic SDS algorithm lends itself per-
fectly to parallel implementations, and in that case, will take full advan-
tage of its sub-linear time complexity. SDS for 3D object recognition,
using such computationally heavy techniques as ray tracing or other
methods of rendering, might benefit enormously from implementation
on a multi-processor machine or on a network of single-processor CAD-
stations. Another reason for the investigation of parallel platforms is
to study the dynamic behaviour of the connectionist models. Real,
continuous-time, asynchronous neurons can only be approximated on a
digital serial machine. Possible improvements include multi-processor
machines, implementation in Field Programmable Gate Arrays or even
in analog hardware.

1.3 Overview

Chapter 2 will start with a detailed description of the basic properties of
SDS. Efficient parallel implementations or biologically plausible neural net-
work models need modifications of the Standard SDS algorithm; a roadmap
of these modifications will be drawn and used to categorise different SDS
architectures. This categorisation will serve as a reference of what has been
investigated so far, and will therefore be slightly more complete than neces-
sary for our purpose. Partial theoretical predictions and/or simulation results
will be presented and compared with Standard SDS.

Chapter 3 will embark upon the connectionist models of SDS. Recent find-
ings in neurobiology will be explored: an overview of possible mechanisms
of information encoding in the brain (e.g. temporal encoding in Inter-Spike
Intervals) and local computation in dendritic arbours will provide an indica-
tion of the plausibility of the Spiking Neuron Stochastic Diffusion Network.
A full description of the model with simulation results will be given. Ideas
for refinements and modifications of the model will be given at the end of
the chapter.

Chapter 4 will present ideas about parallel hardware on which SNSDN
could be implemented. One platform (CONEMA - COmmunicating NEurons
MAchine), a multi-processor machine, based on Echelon’s Neuron processor
which is optimised for network communication, will be built in the next
half year as part of another project; specifications will be given. Another
possibility using Field Programmable Gate Arrays (FPGA) will be explored:
neurons could be implemented in an array of self-timed logical blocks by

7

programming the interconnections on the FPGA. A last possibility, analog
(programmable) hardware, will be briefly touched.

1.4 Expected Contributions

A short paper on Lattice SDS (see Section 2.4.7 on page 25) and the design
of CONEMA (see Section 4.1 on page 52) is under preparation, for submis-
sion to ‘Electronic Letters’. Work on Unlabelled (see Section 2.4.4 on page
19), Asynchronous (see Section 2.4.6 on page 24) and Lattice SDS can be
combined in a full paper for the ‘Journal of Parallel Algorithms and Appli-
cations’.

Part of the work on SNSDN has already been published: [14] highlights
one of the emerging properties of SNSDN: self-synchronisation as a method of
attention (see Section 3.3 on page 47). A short paper about qualitative sim-
ilarity between SDS and SNSDN has been submitted to ‘Neural Networks’,
and a full paper is in preparation, targeting the special issue of ‘Neural Net-
works’ on Spiking Neurons. In the next two years, more publications will be
presented to neural network conferences and journals.

A website on Stochastic Diffusion Search is under preparation. Part of this
report, more specifically the overview of SDS and SNSDN, will be used on
the website. The site can be accessed through the CIRG research page, or
directly at www.cyber.rdg.ac.uk/~krm/sdp.htm.

8

Chapter 2

Stochastic Diffusion Search

Since its advent in 1989, several modifications of the original SDS algorithm
have been used for different problems. In order to categorise all these ar-
chitectures, and see what the differences are, the common properties will be
listed first. Then it will be discussed how some properties can differ between
applications. Several modifications of the original SDS algorithm, which
have been simulated and for which (partial) theoretical results exist, will be
explored.

2.1 Generic Stochastic Diffusion Processes

The classification of Stochastic Diffusion Search as a subclass of pattern
matching algorithms can be found in [9]. From a different viewpoint, SDS
could be regarded as a subclass of a generic Stochastic Diffusion Process
(SDP). The common features of such an SDP would be:

1. a set of independently operating Agents.

2. partial evaluation of possible solutions; the testing phase.

3. selective communication between Agents of solutions promising to be
global-best solutions; the diffusion phase.

4. the stochastic component: which parts of the solution are to be eval-
uated and how selective communication between Agents is established,
is governed by a probabilistic process.

Only one SDP which is not an SDS has been tested so far, a process per-
forming Combinatorial Optimisation. Although not really belonging in this
overview, it will be briefly discussed, for the sake of completeness, at the end
of this chapter.

9

One could argue that, given such a wide definition of SDP, many other
existing algorithms, not featured in this review, would fall in the same class.
This topic will be left aside for a future comparative study, and concentration
will be on the SDP’s performing pattern matching, SDS. Before discussing
abstract properties, an analogy is presented which will make the following
sections (hopefully) more understandable.

2.1.1 Ant Search Analogy

This analogy was first used in [10].

Consider the following example of hypothetical ant-like creatures searching
for a good nutrient source in a dynamic environment. Each ant seeks to locate
some food and return it to the nest. The colony as a whole seeks to maximise
the rate of return of food or to minimise expenditure of energy.

With no a-priori information on the likely location of food, each searching
ant will leave the nest and perform a random walk around the local terrain.
If in the course of its explorations an ant finds some food, it returns to the
nest a positive ant; otherwise it is labelled negative.

On its return to the nest, each positive ant simply tells the first searching
ant it meets the location of its find. If the food source is good (i.e. it is tem-
porally stable and bountiful), over a relatively small period of time the nest
will allocate more and more of its resources (ants) to exploiting it. Whereas
if the resource is poor, any positive ants that are initially attracted to it will
sooner or later not find anything and revert back to being searching ants.
Conversely since unsuccessful ants which meet on their return to the nest do
not exchange resource-location information, they simply re-commence their
random search.

Although meant as an analogy, many ant species do exhibit similar re-
cruitment behaviour ([16]). A very recent publication in Nature ([17]) uses
recruitment in a foraging task for a swarm of small mobile robots; results
indicate that the strategy is superior to foraging without recruitment.

2.2 Basic properties of SDS algorithms

All the Stochastic Diffusion Search algorithms used so far have the following
properties in common:

10

1. a set of Agents performing the search independently.

2. a target pattern, often called the Model. The target pattern is defined
by a set of micro-features. The exact nature of the micro-features
is irrelevant, as long as they provide sufficient characterisation of the
Model.

3. a Search Space, consisting of micro-features of the same nature as
the ones defining the Model.

4. Agents contain a mapping (location pointer) into the Search Space
and have different internal states of operation. Agents in some states
of operation will be more likely to point to an instantiation of the Model
(a part of the Search Space which has many micro-features in common
with the Model) than to background or noise, and will try to attract
other Agents to explore the same location in the Search Space.

5. an initialisation phase

6. a diffusion phase, in which Agents can selectively communicate with
other Agents. The goal of the diffusion phase is to generate new random
Search Space locations to be searched, or to communicate promising
locations to other Agents. The process depends on the Agent’s own
state and/or information from other Agents.

7. a testing phase, in which micro-features of the Model are compared
with the corresponding micro-features of the Search Space, determined
by an Agent’s location pointer.

8. for practical purposes, a termination criterion is required.

9. the stochastic component: which micro-features of the Model are to
be evaluated, which new locations in the Search Space will be investi-
gated and how selective communication between Agents is established,
is governed by a probabilistic process.

This class of algorithms will, in a probabilistic sense, explore the entire
Search Space. They will also, as a result of the competition between Agents
to attract other Agents, allocate resources in a dynamical way to regions of
the Search Space having many micro-features in common with the Model -
exploitation of the Search Space. The dynamical behaviour of a specific
algorithm, and its balance between exploration and exploitation of the Search
Space, is dependent on the details of its implementation. A detailed resource
allocation analysis for some SDS algorithms has been performed in [9].

11

A dynamically changing, but stable (over some period of time) population
of Agents evaluating a position in the Search Space (‘converging onto’), will
be interpreted as a solution to the pattern matching problem. Convergence
of the Agents onto the global-best fit of the Model in the Search Space has
been demonstrated for certain cases of Stochastic Diffusion Search ([8]).

2.3 Filling in the Details

2.3.1 The Timing Behaviour

Time it takes to update an Agent’s state

Update of an Agent’s state will usually consist of a test and/or a diffusion
phase (in any order). During such an update, micro-features of Model and
Search Space can be compared, and communication between Agents might
take place. Under certain conditions, this update could be considered to oc-
cur instantaneously; whereas in other cases, as will be seen during discussion
of the connectionist models using temporal encoding of information in Inter-
Spike Intervals, this update process has a physical dimension of time. This
changes the dynamics of the system, one iteration of one algorithm could
constitute many iterations in another. Moreover, the temporal extent of the
process could be used in directing the process itself (see Chapter 3). Most
- if not all - of the other available alternatives can be combined with these
two different modes of operation.

Mode of operation

Agents can operate synchronously or asynchronously. In synchronous mode,
all Agents update their state at the same moment in time, or over the same
period of time. At least two different modes of asynchronous operation exist:

1. At each iteration, one Agent updates its state at random. It is specifi-
cally suited for software simulations on digital serial computers, and is
easier to analyse than other operational modes.

2. Each Agent has a certain probability distribution over time to update
its state, independent from other Agents. Although it can be imple-
mented in software, this asynchronous mode is specifically suited for
hardware implementation. When the process is continuous in time, it
can be seen as a limiting case of the first definition, since the chance
that two Agents will update their states simultaneously is negligible.

12

However, even in discrete time, the first definition can be seen as an
approximation to the second.

2.3.2 Internal States of Agents

Number of states

In all SDS algorithms used so far, Agents have two internal states, active
and inactive. Active Agents are more likely to point to an instantiation of
the Model in the Search Space than inactive Agents, and will try to attract
other Agents to explore the same location in the Search Space.
The number of states is not limited to two though. More levels of activity
(reflecting the likeliness to point to instantiations of the Model) could be
possible; activity could even be a continuous variable.

Knowledge of internal states of other Agents

Two possibilities : Agents could have access to another Agent’s internal state,
or could have no explicit access. Both possibilities have been tested out and
show slightly different dynamical behaviour. Examples will be given in the
next section.

2.3.3 The Search Space

The nature of the micro-features

The symbolic representation of the problem will in general not be influenc-
ing the resource allocation of the Agents, other than through the number of
micro-features (the alphabet size). What it does change is the computations
during the testing phase, and how the Model is mapped onto a certain posi-
tion in the Search Space by the Agent’s location pointer. In this indirect way,
the representation will influence total computation time, but not the conver-
gence or equilibrium behaviour, which is general and feature-independent.

In one-dimensional string matching, Model and Search Space are strings,
the individual characters of the string being the micro-features. The mapping
(location) of the Model into the Search Space will then be a single integer,
denoting the position of the Model in the Search Space. In the HSDN ([3]),
two-dimensional feature recognition, micro-features are RAM cells, and the
mapping of the Model into the Search Space consists of X and Y translation
parameters, and a rotational parameter, thus constituting a search with 3
degrees of freedom. In 3D object recognition, the degrees of freedom would

13

be 3 translational and 3 rotational parameters, while the test phase would
typically be a rendering of (parts) of a 3D scene.

Strategies to limit the size of the Search Space

Convergence time (the time it takes Agents, evaluating an instantiation of
the Model in the Search Space, to form a stable population) is dependent
on the size of the Search Space. It would therefore be helpful, for very large
Search Spaces, to limit the Search Space Size. In FSDN ([6]), a more and
more detailed search in hierarchically organised search spaces speeds up the
convergence process. No other such ‘heuristics’ have been tried so far.

Boundary conditions

Under certain conditions, partial matches to the Model at both edges of
the Search Space could remain undetected. An example comes from one-
dimensional string matching: consider the Model to be ’blah’, and the Search
Space to be ’lahzzzblahzzzbla’. The best match to the Model starts at lo-
cation 6 in the Search Space, but partial matches start at location 0 and
location 13.
Several possibilities exist: one could completely disregard these partial mat-
ches, being only interested in the middle part of the Search Space. Other
possibility: a number of Search Space locations (in this case, size(Model)−1)
could be added at the beginning and the end of the Search Space, and filled
with a dummy value which will always result in the Agent failing the test
phase. Last possibility (and preferable to the previous) is to allow the loca-
tion pointers of the Agents to point to non-existing locations in the Search
Space. If micro-features at these non-existing locations are to be evaluated,
then this would result in an Agent failing the test. For instance, if we want
the partial match ’lah’, starting at position 0 of the Search Space to be de-
tected, we will have to allow for negative integers as location pointers (-1),
and make sure that in that case the testing of the first micro-feature of the
model (the character ’b’) will result in the Agent failing the test.

2.3.4 The Order of Test and Diffusion

The actual order of test and diffusion phase is quite irrelevant. Initialisation
sometimes determines that the algorithm should start with a test phase; in
other cases, programming elegance makes starting with a diffusion phase
preferable. Any difference in dynamical behaviour can hardly be noticed.

14

In other implementations, the sequence of test and diffusion phases is made
probabilistic or dependent on the internal state.

2.3.5 Initialising

At the start of the algorithm, the internal state of the Agents will be ini-
tialised to inactive. If a-priori knowledge about the position of the Model in
the Search Space is available, then this knowledge can be used to initialise
the location pointers ([6]). The algorithm will then have to start with a test
phase. If no a-priori knowledge is available, then the location pointers could
be initialised to random values, and the algorithm starts with a test phase.
Instead, the location pointers could remain undefined; the algorithm would
then have to start in the diffusion phase.

2.3.6 Testing

During the testing phase, micro-features from the Model are compared with
micro-features from the Search Space, and dependent on the outcome of
the comparison, the activity level of the Agent is changed. Usually only 1
randomly chosen micro-feature of the Model will be compared to the corre-
sponding micro-feature in the Search Space.

2.3.7 Diffusing

Two- or one-way communication

Communication between Agents can be a two- or a one-way process. An
Agent could pick out another Agent at random, by sending a request to get
its location pointer and/or internal state. Alternatively, Agents could just
broadcast any information to a number of other Agents at certain moments
in time, leaving it up to the receiving Agents to use the information or not.

Agents communicating during diffusion

In Standard SDS, only inactive Agents will change their states and/or loca-
tion pointers during the diffusion phase. In Context-Free SDS and Context-
Sensitive SDS([9]), active Agents will also react upon information from an-
other Agent in the population, and possibly change their internal states.
These two alternatives to the standard diffusion phase shift the balance from
exploitation towards more exploration of the Search Space. Note that not
all of these schemes are compatible with one-way communication implemen-
tations or without knowledge of the internal state of the other Agent.

15

Information exchange between other combinations of active/inactive Agents
might result in different diffusion phases, but has not been tried out.

2.3.8 Terminating

For practical purposes, a termination criterium is needed. One possibility
(used mainly when investigating the dynamic behaviour of a particular algo-
rithm) is to run the algorithm for a fixed number of iterations. In practical
implementations, the algorithm has to stop when it has located the Model in
the Search Space. Testing for stability of a population evaluating a position
in the Search Space, or testing for the stability of the overall activity, are
two possibilities. More information can be found in [3], [8] and [9].

2.3.9 Probability Distributions

Micro-features

Any micro-feature to be evaluated during testing, may be chosen at random
with an equal probability.

New Search Space locations

A new Search Space location, adopted by an Agent during diffusion, will
usually by chosen at random with an equal probability. Some heuristical
methods or a-priori information could be applied, like in [6].

Communication between Agents

In Standard SDS, Agents can communicate with all the other Agents; com-
munication being governed by a uniform probability distribution. Such a
probability distribution could also impose a neighbourhood structure on the
Agents, limiting the number of Agents for communication. Self-selection,
the fact that an Agent can pick out itself during diffusion, will also slightly
influence the dynamical behaviour of the network.

Other steps which can be made probabilistic

The above probability distributions can also be changed in an indirect way.
When the timing behaviour is not a passive property of the process, but is
incorporated as an active part of the computational algorithm, then proba-
bility distributions will be dependent on the specific timing details. See the

16

SNSDN model, Chapter 3 for an example. Other steps can be made prob-
abilistic, e.g. the internal state change after failing a test (as in ‘the secret
optimist’, proposed in [5]); the chance of undergoing a diffusion phase (as in
’the hermit’, also proposed in [5]). Most of these modifications will shift the
balance between exploration and exploitation, and their usefulness depends
on the particular search problem.

2.4 Overview of Implemented SDS Algorithms

In the previous sections, the basic common properties of SDS algorithms
were covered, and a number of different ways of filling in the details were
discussed. In this section, focus will be on the algorithms which have ac-
tually been implemented. A roadmap will be made up, moving the original
Standard SDS to one which can, on the one hand, be implemented in hard-
ware more efficiently, and on the other hand, is more biologically plausible.
It will be assumed that all algorithms in this section update states of Agents
instantaneously, and covering of specific issues related to temporal encoding
will be postponed to the SNSDN model of Chapter 3. The search problem
at hand will be one-dimensional string matching. Micro-features and loca-
tions of the Model in the Search Space can then be defined unambiguously;
other search problems would introduce additional complications and divert
us from the basic question, namely, how do the algorithms compare in terms
of convergence time and resource allocation ?

2.4.1 Conventions

To make comparison easier, the naming conventions of [9] will be taken over:

• the number of Agents is denoted by N .

• let the Search Space size (measured as a number of possible mappings
of objects) be M .

• pm is the probability of locating the best fit of the Model in a uniformly
random draw.

• pd is the probability of locating a sub-optimal pattern (one sharing to
some extent micro-features with the Model).

• the probability of a false positive test is p+, and of a false negative test
is p−.

17

2.4.2 Standard Stochastic Diffusion Search

In Standard SDS, introduced in [1] and [2], and analysed in [3], [7], [8] and
[9], Agents operate in synchrony. The algorithm involves several stages:

1. Initialise Agents: Agents are assigned random locations in the Search
Space, and their state is initialised to inactive.

2. Test: A randomly selected character of the Model is compared to the
character of the Search Space, obtained by taking the location pointer
of the Agent and adding the offset of the character in the Model string.
If the test succeeds, then the internal state is set to active; else, the
state is set to inactive.

3. Diffuse: Every inactive Agent chooses another Agent at random. If
the other Agent is active, then its location in the Search Space is copied.
If the other Agent is inactive, a new, random location in the Search
Space is adopted.

4. Termination: If the termination criterium is fulfilled, terminate. Else
go back to Step 2.

It can easily be seen that Agents have access to the internal state of other
Agents; communication is a two-way process. All the probability distribu-
tions used for randomising the process are uniformly distributed.

Since this is the oldest and best-understood form of Stochastic Diffusion
Search, subsequent modifications will be compared with this algorithm, which
will be referred to as Standard SDS.

Context-Free and Context-Sensitive SDS

In [9], two modifications of Standard SDS were introduced. The operation is
similar to Standard SDS, apart from the diffusion phase for active Agents.
Resource allocation analysis can be found in [9].

• Context-Free diffusion phase: inactive Agents perform the same
operation as in Standard SDS. Active Agents choose another Agent at
random. If the other Agent is also active, the Agent becomes inactive
and a new random location in the Search Space is adopted. If the other
Agent is inactive, then the Agent remains active.

18

• Context-Sensitive diffusion phase: inactive Agents perform the
same operation as in Standard SDS. Active Agents choose another
Agent at random. If the other Agent has the same location pointer,
the Agent becomes inactive and a new random location in the Search
Space is adopted. If the other Agent has a different location pointer,
then the Agent remains active.

2.4.3 From Software Implementations to Hardware

In order to move from the standard algorithm to one that can be implemented
in hardware and/or is more biologically plausible, the effects of following
modifications need to be investigated:

1. The internal state of an Agent is not available to other Agents.

2. Asynchronous mode of operation.

3. Local connectivity of Agents. Agents can only communicate with other
Agents in their neighbourhood.

4. A one-way communication protocol.

2.4.4 Unlabelled SDS

Unlabelled Stochastic Diffusion Search was an attempt to propose an algo-
rithm as close as possible to Standard SDS, but without the internal states
(activity label) of Agents accessible to other Agents. Operation is similar
to Standard SDS, apart from the diffusion phase. During diffusion, each in-
active Agent generates a new location in the Search Space at random, then
chooses another Agent at random and copies the location pointer. If the
chosen Agent was active, the location pointer is likely to be pointing to an
instantiation of the Model; if the chosen Agent was inactive, then the Agent
actually adopts a randomly generated search space location in the above
described two-step process. An Agent does not need access to the activity
state of the other Agent, while, on first sight, still sampling from the same
probability distributions as in Standard SDS. The difference is very subtle
though.

Suppose one (possibly imperfect) instantiation of the Model is present in
the Search Space, with no additional noise in the Search Space. This is the
case studied in Chapter 4 of [9] where pm = 1/M and pd = p+ = 0. Two
statements can be proved:

19

1. The probability for a single inactive Agent to get the correct location
value during a diffusion phase is the same for both Standard and Un-
labelled SDS.

2. The probability distribution of the total number of inactive Agents
which get the correct location value during a synchronous diffusion
phase is not equal to the distribution for Standard SDS.

Probability for a single Agent of getting the correct location

For Standard SDS, the probability for an inactive Agent to get the correct
location during diffusion, is given by ([9]):

p =
a
N

+ (1− a
N

)pm

where a is the number of active Agents.

The first term gives the probability of picking out an active Agent during
diffusion; the second term gives the probability of picking out an inactive
Agent followed by the probability of ‘guessing’ the correct location.

For Unlabelled SDS, this probability looks somewhat different:

p =
N−a
∑

k=0

(

N − a
k

)

pk
m(1− pm)(N−a−k)a + k

N

Every term in this sum gives the probability that k out of N − a inactive
Agents ‘guess’ the correct location value during the first step of the diffusion
phase, followed by the probability that one of the a+k Agents with the correct
location value will be picked out during the second step of the diffusion phase.

Looking very different at first sight, both probabilities are actually the
same. The proof of this is rather long and will be summarised here in a few
steps :

1. substitute (1− pm)(N−a−k) by its sum-of-powers form

2. re-order and re-write everything in ascending powers of pm

3. (a) the zeroth order term of the sum is equal to a
N

(b) the first order term of the sum is equal to (1− a
N)

(c) all the higher order terms are zero

20

Probability distribution of getting the correct location

At the startup of Standard SDS, when all Agents are inactive, location val-
ues are chosen by N uniformly random draws of potential positions from
the Search Space (in subsequent diffusion phases, this random draw is only
performed by the inactive Agents that picked out another inactive Agent).
The probability of getting the correct location k times in this procedure is
given by:

p[Xn+1 = k|Xn = 0] =
(

N
k

)

pk
m(1− pm)N−k

At the startup of Unlabelled SDS, or whenever no active Agents are biasing
the process, the probability is given by:

p[Xn+1 = k|Xn = 0] =
N

∑

i=0

(

N
i

)

pi
m(1− pm)N−i

(

N
k

)

i
N

k

(1− i
N

)N−k

Every term in this sum gives the probability that i out of N Agents guess
the correct location during the first step of the diffusion, followed by the
probability that k out of N Agents pick up the correct location during the
second step of the diffusion. That these two distributions are not the same
can be easily seen for k = 0: the first term of the sum for Unlabelled SDS
is equal to the transition probability p[Xn+1 = 0|Xn = 0] in the case of
Standard SDS. This can be interpreted as follows: multiple paths to get
p[Xn+1 = 0|Xn = 0] exist: 0 correct locations can be guessed in the first step
of diffusion, with the obvious result that 0 correct locations will survive the
second step. However, any number of correct locations, generated during the
first step, can be lost in the second step, thus increasing the probability of
having no correct locations at the end of the diffusion phase. On the other
hand, the effect of guessing some correct locations in the first step can be
enhanced in the second.

The general case of having k Agents with the correct location after the
diffusion phase, given a Agents with the correct location before the diffusion
phase, is governed by the probabilities:

p[Xn+1 = k|Xn = a] =
(

N − a
k − a

)

pk−a
1 (1− p1)N−k

for Standard SDS, with p1 = a
N + (1− a

N)pm; and by:

p[Xn+1 = k|Xn = a] =
N−a
∑

i=0

(

N − a
i

)

pi
m(1−pm)N−a−i

(

N − a
k − a

)

(
i + a
N

)k−a(1−i + a
N

)N−k

21

for Unlabelled SDS. Since in a diffusion phase, Agents do not loose the correct
location pointer, it is clear that k ≥ a.

The above probability distributions are quite different from each other for
small Search Space sizes (high pm) and for a small number of active Agents.
For larger Search Spaces, the difference is less pronounced. The effect of
the number of active Agents can be seen in Figure 2.1. The two probability
distributions for 4 different numbers of a are plotted.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6
0 Agents with correct location before diffusion

Agents with correct location after diffusion

P
ro

ba
bi

lit
y

Standard SDS
Unlabeled SDS

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Agents with correct location after diffusion

P
ro

ba
bi

lit
y

5 Agents with correct location before diffusion

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Agents with correct location after diffusion

P
ro

ba
bi

lit
y

10 Agents with correct location before diffusion

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Agents with correct location after diffusion

P
ro

ba
bi

lit
y

15 Agents with correct location before diffusion

Figure 2.1: Probabilities of having k number of Agents with the correct lo-
cation pointer after diffusion, given a certain number before diffusion. There
are 20 Agents in total, and the number of possible locations in the Search
Space is 20. With 0 Agents before diffusion, the probabilities for Standard
and Unlabelled SDS differ considerably. The difference becomes smaller for
5 and 10 Agents, and can hardly be noticed for 15 Agents.

22

Comparison of Standard and Unlabelled SDS

The difference discussed above forms an explanation for the result in Figure
2.2. Convergence is somewhat slower for Unlabelled SDS, but the equilibrium
populations are equal in size, since a high number of active Agents diminishes
the difference in the diffusion phase.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Iteration

M
ea

n
of

 a
ct

iv
e

A
ge

nt
s

Standard SDS
Unlabeled SDS

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Iteration

S
ta

nd
ar

d
de

vi
at

io
n

of
 a

ct
iv

e
A

ge
nt

s

Figure 2.2: Mean convergence behaviour of 500 runs of Standard and Unla-
belled SDS. Each run lasted 50 iterations. N = 200, M = 104 and p− = 0.2.
Standard SDS converges slightly faster to an equilibrium state, and its stan-
dard deviation over the 500 runs is smaller during the convergence period.

Conclusion

Standard and Unlabelled SDS differ only in their diffusion phases. The al-
tered mechanism of Unlabelled SDS makes knowledge of the internal state of
another Agent unnecessary, while keeping quantitative difference to a mini-
mum. Unlabelled SDS has slightly lower convergence speed, but the equilib-

23

rium population is similar to Standard SDS. A Context-Free Unlabelled SDS
is impossible by definition, but Context-Sensitive SDS could be implemented.

2.4.5 Spiking Neuron SDS

Another SDS algorithm in which Agents do not need knowledge of the in-
ternal state of other Agents, is the search algorithm used in NESTER ([13]).
Its operation is asynchronous and state updates have a physical dimension
of time. Communication is a one-way process and timing of neuronal spikes
is used as a randomisation method. Labels active and inactive are used in a
slightly different way than in Standard SDS. An in-depth description will be
given in section 3.2 on page 43.

2.4.6 Asynchronous SDS

An intermediate step on the Road to Freedom is the study of asynchronous
SDS. The first version of asynchronous (see definition on page 12) Standard
SDS was simulated. If the random distribution for selecting the Agent is
uniform, then results for synchronous and asynchronous SDS will be exactly
the same, apart from the time scale on which they operate. In synchronous
Standard SDS, N Agents update their state in one iteration, whereas in asyn-
chronous (Standard) SDS, only one Agent updates its state in an iteration. N
iterations of asynchronous SDS will then constitute, in a probabilistic sense,
one iteration of synchronous SDS.
Several reasons exist for taking this step: the process can be modelled by a
very simple Markov chain; it is actually a one-dimensional random walk, and
in some cases, an exact formulation of the expected value of the convergence
time becomes possible. Besides this, the process also gives an indication
of the behaviour of the second mode of asynchronous operation (’hardware
asynchronous’), which can be considered as its continuous time equivalent.
It is also very easy to consider the effect on the convergence time of the
possibility of self-selection during diffusion.

Markov chain model for asynchronous Standard SDS

The one step evolution of an Agent is quite similar to the one step evolution
of an Agent in synchronous SDS. Concentrating on the case where one perfect
instantiation of the Model exists in the Search Space, and without additional
noise (p− = 0, p+ = 0 and pd = 0) the process becomes a one-dimensional,
one-directional random walk (total activity of the Agents can only increase,
and by not more than one unit per iteration). The transition probability of

24

the active Agent population is given by:

p[Xn+1 = a + 1|Xn = a] =
N − a

N
(

a
N

+ (1− a
N

)pm)

with the possibility of self-selection of an Agent during diffusion, and by:

p[Xn+1 = a + 1|Xn = a] =
N − a

N
(

a
N − 1

+ (1− a
N − 1

)pm)

without self-selection.

It has been demonstrated in [3] and [8] that if p− = 0, all Agents in
synchronous Standard SDS will converge upon the perfect instantiation of
the Model with probability 1. The same can be proven for the asynchronous
version; moreover, it becomes very easy to compute the expected value of the
number of iterations required for all Agents to become active (convergence
time TC):

E[TC] =
N−1
∑

a=0

N2

(N − a)(a + (N − a)pm)
(2.1)

E[TC] =
N−1
∑

a=0

N(N − 1)
(N − a)(a + (N − 1− a)pm)

(2.2)

with and without self-selection respectively. The difference between both
choices is not very large, except for a small number of Agents. It will be
shown later that in case of a restricted neighbourhood for Agent communi-
cation (Lattice SDS, see next section), self-selection slows down convergence
considerably.

Conclusion

Moving from synchronous to ’first definition’ asynchronous mode of operation
does not have an effect on the resource allocation of SDS. It can be expected
that a move to continuous time asynchrony retains the properties, as it is
a limiting case of the discrete time asynchronous mode. The effect of self-
selection on convergence speed is negligible, except for a small number of
Agents.

2.4.7 Lattice SDS

In Lattice SDS, the probability distribution determining communication be-
tween Agents defines a neighbourhood structure over the set of Agents. Anal-
ysis of this kind of process as a Markov chain is hard: the process is not

25

determined, as in the previous cases, by one or two integers denoting the
number of active Agents, but by the exact location of active and inactive
Agents. The number of states of the Markov chain is given by 2N , which
makes exact formulation of transition probabilities impossible for anything
but a very small number of Agents N . Many of these states are equivalent, so
aggregation of states could be performed. However, determining which states
belong to which class, and how many distinct classes exist, is non-trivial.

For resource allocation analysis of the equilibrium population, the Ising
model - or a formulation as the more general class of Markov Random Fields
- might prove to be a valuable tool. For large numbers of Agents, continuous
diffusion processes could give an approximation for convergence speed. Later
on in this section, an approximative method to determine convergence time
for a small number of Agents, based on graph theory, will be presented.

The main reason for taking the step from global to local interconnections
is implementation in hardware. For instance, CONEMA (see section 4.1)
will consist of 64 processors, each with a maximum of six interconnections
to neighbouring processors. Attention will therefore be focused on a small
number of Agents and a small number of connections, with the main goal of
predicting how such a machine, performing SDS, will compare to Standard
SDS.

The following analysis will consider the asynchronous operation of Lattice
SDS. This in an attempt to simplify the analysis. Results should apply to a
synchronous mode of operation as well, as explained in previous section.

Convergence time will be studied in the case of one perfect instantiation
in the Search Space, and no additional noise (p− = 0, p+ = 0 and pd = 0).
Some experimental results concerning resource allocation (with p− 6= 0) will
be presented, but no theoretical analysis has been performed so far.

Lattices under scrutiny

Lattices with 16, 32 and 64 Agents are investigated. Most of the layouts are
nearest-neighbour lattices: Agents are only connected to the nearest neigh-
bours. Boundary conditions are periodic and self-selection is not allowed.
The links are bi-directional: they allow two-way communication.

26

Other layouts with 16 Agents are tested as well. One is the proposed
PCB layout for CONEMA. The second is the (probably) the layout with
minimal inter-agent distance, for 16 Agents with 4 neighbours each. Links
are bi-directional. A schematic of the layouts can be seen in Figure 2.3.

1 2

4 3

5 6

13 14

16 15

10 9

12

11

7

8

1 2

4 3

5 9 6

1012

8 11 7

13 14

1516

Figure 2.3: Two special lattices with 16 Agents each. Each Agent has four
connections. Left is the proposed layout for the PCB’s of CONEMA: it
is easier to implement than the genuine nearest-neighbour layout, since no
connection lines are crossing. Right is the (probably) optimal layout for 16
Agents with 4 neighbours each.

Time to hit and diffusion time

[1] introduced the terms ‘time to hit’ (TH) and ‘diffusion time’ (TD) in the
analysis of convergence time of Standard SDS. TH is the time it takes for at
least one Agent of the entire population to ‘guess’ the correct location in the
Search Space. TD is the time it takes for one correct location to spread across
the population of Agents. Although this analysis gives a crude approximation
for the convergence time, and a better model has been developed (see [7]),
two reasons exist for revising this method:

1. In case of a large Search Space and a small number of Agents N , TH �
TD. Since in that case, the number of timesteps between two hits will
be much larger than the diffusion time, there will be, in the average
convergence case, on hit which will spread across the entire population

27

before another hit occurs; convergence time can then be approximated
as:

E[TC] ≈ E[TH] + E[TD]

And it forms an upper limit for E[TC] when the Search Space size is
smaller than or comparable to the number of Agents.

2. The expected number of iterations for TH, in the asynchronous case,
is simply the Search Space size:

E[TH] = M

Connectivity is irrelevant until the first hit. To simplify analysis, TH
will be left out, and analysis and experiments will concern the case
where one random Agent is initialised with the correct location, and
pm = 0 for all other Agents.

Solved cases of E[TD]

For some lattices, the Markov chain for the pure diffusion process can be con-
structed, and the expected number of iterations before the initially present
correct location has spread across the network, can be computed.

1. Every Agent in the lattice is connected with every other Agent. This
is the pure diffusion process for asynchronous SDS described in the
previous section, and the expected value for TD can be obtained by
putting pm = 0 in Equation 2.1 or 2.2. In case self-selection is not
allowed, this results in:

E[TD] =
N−1
∑

a=1

N(N − 1)
(N − a)a

2. A one-dimensional lattice, where each Agent has only one neighbour
(e.g. the left one) where it can get the correct location from. Boundary
conditions are periodic (‘ring topology’). The expected values for TD,
with and without self-selection, are given by:

E[TD] = 2N(N − 1)

E[TD] = N(N − 1)

28

3. A one-dimensional lattice, where each Agent has two neighbours, one
to the left and one to the right, and with periodic boundary conditions.
Expected values are, with and without self-selection:

E[TD] =
3
2
N(N − 1) (2.3)

E[TD] = N(N − 1) (2.4)

Diffusion time for other lattices is not easily predicted. Although the number
of allowed transitions is considerably lower than in the general convergence
case, the number of states for the Markov chain is again 2N . Some of the
states have much higher probabilities to be visited than other states, but
determining these states is not straightforward in Markov chain theory.

Some interesting conclusions can be drawn from the solved models: firstly,
self-selection has a strong negative effect when the number of neighbours
is small. Secondly, the linear lattices seem to be forming the worst-case
scenario, with a time-complexity O(N2) in function of the lattice size, on a
serial machine. The full-interconnected lattice is the optimal case, with a
sub-quadratic time complexity on a serial machine (O(N log1.59 N)).

Approximate method based on graph theory

A method, based on graph theory, will allow to predict an upper limit for
E[TD], given the lattice connections. Before explaining the method, some
basic terminology from graph and network theory is defined ([18]):

Definition 1 A graph G consists of a set of elements (vertices), and a list
of unordered pairs of these elements (edges). A directed graph (digraph)
has a set of vertices, and a set of ordered pairs of vertices (arcs). A sub-
graph of G has as vertices a subset of the vertices of G, and as edges a subset
of the edges of G. Two graphs G and H are isomorphic if H can be obtained
from G by relabelling the vertices. A network is a graph where each edge
has a cost or distance associated to it. The number of edges incident with
a vertex is called the degree of the vertex. If every vertex in the graph has
the same degree r, then the graph is regular of degree r. A path between
vertices x and y is a list of edges or arcs leading from vertex x to vertex y,
visiting every edge (or arc) and every vertex not more than once.

It is clear that a lattice of SDS Agents forms a graph, with Agents as vertices
and connections as edges, if all the connections between Agents allow bi-
directional communication. It forms a digraph if connections are one-way.

29

Furthermore, define the distance between vertices as the minimum path
length between vertices, given that the path length between vertices which
are connected by an edge, is 1.

The diffusion process can be reformulated as a particle travelling from one
vertex to another on the graph. Given a starting vertex, it is the maximum
distance in the graph to other vertices which will influence the time of the
journey. Not only the maximum distance in the graph, but also the number
of paths connecting the starting vertex with the most distant vertices is im-
portant, as it increases the chance of getting the particle from the starting
vertex to the most distant vertices.
As an approximation, the paths with length greater than the distance be-
tween the vertices will be discarded. This corresponds to discarding the
improbable states in the Markov chain; which was not straightforward in the
Markov chain itself, but becomes an easy task in the graph. The following
algorithm will provide an upper limit for the diffusion time TD, since, as
a byproduct, it will only consider the most probable states of the Markov
chain:

1. Determine all the different classes of vertices. Vertices belong to the
same class if the subgraphs, containing all the shortest paths between
the vertex and its most distant colleagues, are isomorphic.

2. Take a starting vertex from each class of vertices. Take as a subgraph
H from the original lattice G, the digraph containing all the shortest
paths between the starting vertex and the vertex which is most distant;
if there is more than one most distant vertex, repeat the process for all
different classes of most distant vertices.

3. Transform the digraph H to a network by labelling each arc with a
travel time. The travel time of an arc is the expected number of iter-
ations for an Agent X to become active, given the Agents from which
arcs from H arrive in X , are active.

4. Compute the travel times for all shortest paths. Average over all paths.

5. Average over all different classes of most distant vertices.

6. Average over all different classes of starting vertices.

30

Example1 The network, derived from an 8 by 1 linear lattice, with
two nearest neighbours and with periodic boundary conditions, is shown in
Figure 2.4. All vertices in the network belong to the same class, i.e. the
maximum distance in the graph is the same starting from each vertex , and
subgraphs connecting vertices which are most distant are all isomorphic to
each other. When choosing vertex 1 as the starting point, the most distant
vertex is vertex 5. Two paths connect vertices 1 and 5: (1, 2, 3, 4, 5) and
(1, 8, 7, 6, 5). Arc (1, 2) has a travel time 2N associated to it; this travel
time is the expected number of iterations it will take for Agent 2 to become
active, given Agent 1 is active. Arcs (4,5) and (6,5) have an associated travel
time N ; this is the expected number of iterations for Agent 5 to become
active, given Agent 4 and Agent 6 are active at iteration 0. The total travel
time for both paths is 7N ; this is the value predicted by Equation 2.4. The
approximate method gives the exact prediction, because the shortest paths
connecting vertices 1 and 5, are the only paths in this case; there are no
non-shortest paths in the one-dimensional lattice.

1 2 3 4 5 6 7 8
2N 2N2N2N 2N 2NNN

Figure 2.4: Network containing all shortest paths from vertex 1 to vertex
5. The network is derived from an 8 by 1 linear lattice, with two nearest
neighbours, and with periodic boundary conditions.

Example2 The network in Figure 2.5 is derived from an 8 by 2 lat-
tice; each vertex has three nearest neighbours and boundary conditions are
periodic. All vertices belong to the same class. The largest distance in the
network is 5, for instance from vertex 1 to vertex 13. There are 10 paths
from vertex 1 to vertex 13. Arc (1,2) has a travel time of 3N , because there
is only 1 arc arriving in vertex 2. This is the expected number of iterations
it takes for Agent 2 to become active, given Agent 1 is active at iteration 0.
Vertex 12 has two arriving arcs, (4,12) and (11,12); they are labelled with a
travel time of 3N

2 , because that is the expected time for Agent 12 to become
active, given Agents 4 and 11 are active at time 0.
Four paths exist which have a travel time of 8.5N , two paths have a travel
time of 10N and the last four paths have a travel time of 11.5N . Averaging
over all these paths gives a travel time of 10N , which gives E[TD] = 160.
The experimental value from Table 2.1 is 149 iterations, which is very close
to the predicted value. The difference is caused by the contribution of the

31

non-shortest paths in the lattice, e.g. (1,2,3,4,5,6,14,13), which are not al-
lowed in the network approximation (because of the direction of arc (6,5)).
Discarding these paths is similar to discarding the less probable transitions
in the Markov chain.

1 2 3 4 5 6 7 8
3N 3N3N3N 3N 3N3N/23N/2

9 10 11 12 13 14 15 16
3N/2 3N/23N/23N/2 3N/2 3N/2NN

N3N 3N/2 3N/2 3N/2 3N/23N/2 3N/2

Figure 2.5: Network containing all shortest paths from vertex 1 to vertex 13.
The network is derived from an 8 by 2 lattice, with three nearest neighbours,
and with periodic boundary conditions.

More examples In a four by four lattice with four nearest neighbours
each and periodic boundary conditions, all the vertices belong to the same
class. The maximum distance in the lattice is 4, and there are 24 paths
leading from a starting vertex to the most distant one. Each path has a
travel time of 8.33N , which gives a predicted TD of 133 - as opposed to the
experimental value of 117.
The lattice in Figure 2.3a has a maximum distance of 4 starting from all
vertices. However, there are two different classes of vertices: vertices 1 to 4
and 13 to 16 have 16 shortest paths between most distant nodes; vertices 5
to 12 have 10 shortest paths. The predicted value for TD is 155; experiments
give E[TD] = 127. The difference here is quite large; the reason is the
existence of quite probable non-shortest paths; e.g. paths of length 5 exist,
which is not the case for the 4 nearest-neighbour model, where, apart from
the shortest paths, only paths of length 6 and more exist.
The layout in Figure 2.3b is probably the optimal case for a lattice of 16
Agents with 4 neighbours each. In the optimal lattice, each Agent is at a
distance 1 from 4 other Agents, and at a distance 2 from all other 11 Agents.
Whether such a lattice could be constructed is highly doubtful (the proof of
lattice optimality could not be found in a reasonable amount of time, but
a strong suspicion exists after failing to develop a construction method for
such a lattice; anyway, the question is only of theoretical interest); the lattice
in Figure 2.3b comes very close to these requirements: only Agents 9 to 12
have one maximum distance of 3 (e.g. from Agent 9 to Agent 11). All other

32

Agents are at most distance 2 away from all other Agents. The predicted
value for TD is 130, with an experimental value of 115.

Conclusion on predicting E[TD] A method, based on elementary
graph-theoretical concepts gives an upper limit for E[TD]. The method
provides an easy, indirect way of discarding improbable states in the corre-
sponding Markov chain. Moreover, the method seems to suggest that two
parameters could be used to compare lattices with equal numbers of Agents:
a first parameter is, the maximum distance in the lattice, given a starting
vertex, averaged over all starting vertices (since the probability that the ini-
tial hit occurs in an Agent is uniform for all Agents). A second parameter is
the number of shortest paths from one Agent to the most distant Agents, av-
eraged over all number of distant Agents and all starting Agents. For optimal
performance, the first parameter needs to be minimised, while maximising
the second. Comparison of these two parameters, calculated for different
lattices, allows a ranking of lattices to be made up, without specifically pre-
dicting E[TD] or simulating the lattices. The method will be used during
construction of CONEMA, where optimal performance and practicability of
wiring the machine both need consideration.

Experimental results for TD

Experimental resource allocation results

Some experiments on resource allocation of Lattice SDS are reported in Table
2.2. The same conclusions as in previous section can be drawn: the shorter
the distance from one Agent to other Agents, the better a stable population
can sustain itself. If the Model is only slightly distorted, then results are
similar to Standard SDS, and scale well with Search Space size. However,
Lattice SDS does not seem to scale very well with high distortion and large
Search Space size.

Conclusions on Lattice SDS

Lattice SDS removes the need for full connectivity between Agents. Simula-
tion experiments seem to suggest that for 4 to 6 connections in a lattice of 16
to 64 Agents, performance will be acceptable, compared to Standard SDS.
An approximative method to compute the diffusion time of correct locations
was developed. Based on this method, parameters can be extracted from the
lattice layout, which will allow a qualitative ranking of lattices to be con-
structed, so that optimal lattice layouts can be easily found. No attempt to

33

Agents Layout Neighbours P1 P2 Predicted Simulated
16 Full 15 1 1 100 100
16 Optimal 4 2.25 1.82 130 115
16 4× 4× 1 4 4 24 133 117
16 PCB 4 4 13 155 127
16 8× 2× 1 3 5 10 160 149
16 16× 1× 1 2 8 2 240 242
32 Full 31 1 1 250 250
32 4× 4× 2 5 5 120 365 300
32 8× 4× 1 4 6 60 420 362
32 16× 2× 1 3 9 18 608 560
32 32× 1× 1 2 16 2 992 992
64 Full 63 1 1 596 598
64 4× 4× 4 6 6 720 941 716
64 8× 4× 2 5 7 420 1051 836
64 8× 8× 1 4 8 280 1094 900
64 16× 2× 2 4 10 180 1459 1234
64 16× 4× 1 4 10 180 1459 1231
64 32× 2× 1 3 17 34 2368 2165
64 64× 1× 1 2 32 2 4032 4023

Table 2.1: Diffusion time for lattices with 16, 32 and 64 Agents. ’Full’ layout
is asynchronous Standard SDS without self-selection; ’Optimal’ is the layout
from Figure 2.3b and ’PCB’ the layout from Figure 2.3a; all the other lat-
tices are nearest-neighbour layouts with periodic boundary conditions. Each
Agent in a given lattice has the same number of neighbours. P1 is the aver-
age, over all Agents, of the longest distance to other Agents in the lattice. P2
is the number of shortest paths existing between two most distant Agents,
averaged over all combinations of most distant Agents. The predicted TD for
the ’Full’ layout is obtained from the Markov chain model for asynchronous
SDS; TD for other lattices has been predicted using the network approxima-
tion. The simulated TD is the average number of iterations over 5000 runs,
starting with 1 randomly chosen active Agent and until all Agents in the
lattice are active.

model resource allocation of Lattice SDS has been made, but the same pa-
rameters seem to give a qualitative indication of robustness. The Ising model
- or more generally, Markov Random Fields - looks like a natural candidate
for modelling resource allocation. In general, results from this section seem
to suggest that, if implemented in hardware with limited interconnections,

34

Agents Layout Neighbours Active Agents (%)
p− = 0.1 p− = 0.3

100 300 500 100 300 500
16 Full 15 88.7 89.0 88.8 51.4 49.4 42.2
16 Optimal 4 88.2 88.8 88.5 46.8 40.7 34.9
16 4× 4× 1 4 88.5 88.8 88.6 47.3 39.5 35.6
16 PCB 4 88.6 88.5 88.6 44.3 38.5 33.4
16 8× 2× 1 3 88.2 88.1 88.2 40.1 26.9 23.4
16 16× 1× 1 2 87.1 87.4 87.4 25.2 16.3 13.3
32 Full 31 89.2 88.9 88.9 55.2 55.8 56.8
32 4× 4× 2 5 88.6 88.5 89.0 51.6 51.4 50.1
32 8× 4× 1 4 88.6 88.5 88.2 48.0 47.3 45.7
32 16× 2× 1 3 88.4 88.3 88.3 40.4 33.1 32.3
32 32× 1× 1 2 87.6 87.6 86.9 23.8 14.9 8.6
64 Full 63 88.7 88.6 89.0 57.0 56.1 56.5
64 4× 4× 4 6 88.6 89.0 88.6 53.8 52.5 53.6
64 8× 4× 2 5 88.5 88.3 88.5 50.2 51.6 50.0
64 8× 8× 1 4 88.5 88.6 88.4 50.0 49.0 46.0
64 16× 2× 2 4 88.6 88.5 88.4 49.3 46.6 46.4
64 16× 4× 1 4 88.6 88.5 88.8 49.5 46.7 47.6
64 32× 2× 1 3 88.4 88.2 88.2 39.2 37.5 28.7
64 64× 1× 1 2 87.5 87.8 87.3 23.5 12.4 7.8

Table 2.2: Resource allocation for lattices with 16, 32 and 64 Agents. ’Full’
layout is asynchronous Standard SDS without self-selection; ’Optimal’ is the
layout from Figure 2.3b and ’PCB’ the layout from Figure 2.3a; all the other
lattices are nearest-neighbour layouts with periodic boundary conditions.
Each Agent in a given lattice has the same number of neighbours. Experi-
ments have 1 imperfect instantiation of the Model in the Search Space (once
with p− = 0.1 and once with p− = 0.3) and were conducted for three differ-
ent Search Space sizes (M = 100, M = 300 and M = 500). The resulting
values are the average percentages of active Agents, over 128000 iterations
in steady-state.

SDS will still be a fast and robust pattern matching algorithm.

2.4.8 One- or Two-Way Communication

The last issue raised in Section 2.4.3 was one-way communication. Most,
if not all, of the discussed algorithms can use both ways of communication:

35

an Agent can try to set up a communication link with one of its neighbours
to get the required information; or if Agents send out the needed informa-
tion at certain moments, an Agent can just sit and wait till the required
information comes in. It is more a question of which option will provide
the heaviest network traffic, waiting times etc., and it is difficult to simu-
late this in software. From the biological viewpoint, it is logical to move to
one-way communication, since hand-shake protocols seem quite improbable
in neurons.

2.4.9 Conclusions

The effect of relaxing properties of Standard SDS, which are considered to
be biologically implausible or difficult to implement in hardware, has been
investigated. Results show that Agents can operate asynchronously, without
knowledge of the internal state of other Agents, and with limited connections
to other Agents, and still perform a fast and robust search. Some of these
relaxations are already used in the present version of the connectionist model
of SDS, SNSDN, which will be further discussed in Chapter 3.

2.5 Combinatorial Optimisation

Some ideas on using Stochastic Diffusion Processes for Combinatorial Opti-
misation are presented. The work is far from conclusive, but initial results
are promising. The proposed technique was used on the Weighted Matching
Problem (WMP) and the Travelling Salesman Problem (TSP). WMP is a
polynomial-time problem, and results will not be discussed here. TSP is an
NP-complete problem, and therefore much more interesting; it is also one
of the most popular optimisation problems, and several fast and effective
methods exist, some of them in ideas quite similar to the proposed method.
The main question will be whether SDP can provide a valuable contribution
to the field. In order to answer this question, much more research is needed.

2.5.1 Travelling Salesman

The TSP is an old and well-known Combinatorial Optimisation problem.
The goal is, given a list of cities and distances between them, to minimise
the length of the tour which visits every city just once. The problem is NP-
complete, which means that the time it takes to solve the problem exactly,
grows exponentially with the number of cities N . An introduction to the
TSP can be found in [19]. An overview of algorithms based on local heuristic

36

optimisation techniques can be found in [20]. Among the algorithms dis-
cussed are 2-OPT, 3-OPT and the Lin-Kernighan algorithm, which seems to
be the heuristic champion so far. 2-OPT operates by picking out two edges
in the tour, deleting them and then reconnecting them in the other possi-
ble way. The edges are not picked out at random, but in such a way that
an optimal improvement is being made. An interesting approach, based on
the same ideas as SDP, is presented in [21]; it was originally proposed in [22]
and termed Memetic Algorithms or Genetic Local Search. Agents go through
periods of independent, local optimisation, interspersed with periods of in-
teraction with other Agents. The details of the algorithm are quite different
though: local optimisation is based on Simulated Annealing and interaction
is based on Genetic Algorithms. A set of benchmark problems for TSP is
available, TSPLIB ([23]). It contains various interesting and hard-to-solve
instances of TSP. Results presented here will be based on instances from
TSPLIB, for which, in most cases, the optimal solution is known.

2.5.2 The Algorithm

The algorithm consists of four steps:

1. Initialise Agents: The internal state of the Agents is set to inactive.
Each Agent is initialised with a randomly generated tour visiting all
cities. The micro-features are the distances between two cities which
are neighbours in the tour.

2. Test: A random micro-feature (i,j), the distance between city i and
city j, is chosen from the Agent’s tour. Another Agent is chosen at
random for comparison. In that Agent, the micro-feature (i,k) is de-
termined by starting city i from the first micro-feature. The end-city
k determines a micro-feature (k,l) in the original Agent. The following
test is performed:

d(i, j) + d(k, l) ≤ d(i, k) + d(j, l) (2.5)

with d() an arbitrary distance measure, determined by the problem
at hand. If Equation 2.5 is true, then the Agent’s state is set to ac-
tive, otherwise it is set to inactive. Activity means then that the cho-
sen micro-feature is better than the corresponding micro-feature in the
other Agent.

3. Diffuse: Active Agents do nothing in this phase. Inactive Agents’
behaviour is dependent on the internal state of the Agent chosen for

37

comparison during the Test phase; if an inactive Agent lost the com-
parison from an Active Agent, it will copy the micro-feature (i,k) to its
own tour. If an inactive Agent lost the comparison from another inac-
tive Agent, it will swap the micro-feature (i,j) for a randomly chosen
new one.

4. Termination: The algorithm ends when all Agents are active during
a certain number of iterations. 100% activity means it is unlikely that
any more improvements will be made using this method.

Agents operate synchronously. It should be clear that nowhere in this algo-
rithm, the total length of the tour needs to be computed. Only at the end,
when the algorithm has terminated, need the lengths to be calculated and
the optimal tour selected.

2.5.3 Results

A typical result is presented in Figure 2.6. It optimises hk48 of TSPLIB. The
problem has a symmetric distance matrix, but distances are non-euclidean,
i.e. they do not fulfill d(i, j) ≤ d(i, k) + d(k, j). The optimal tour has length
11461. This particular run returns as best tour 11607, which is 1.27% from
the optimal tour. Note that tour lengths during convergence have only been
computed for inspection purposes.

2.5.4 Conclusion

Problems like hk48 are merely toy problems. Some instances in TSPLIB
consist of up to 80000 cities, and euclidean problems of millions of cities
have been reported in the literature. Certain algorithms, like variants of Lin-
Kernighan, provide solutions within a few percents of the optimal solution
in a matter of minutes. More testing needs to be performed on the present
instance of SDP optimisation, and modifications need to be investigated. The
algorithm as it is described here, seems to be nothing more than a stochastic
variant of 2-OPT. Also, the requirement for each Agent to have a copy of a
complete tour, might prove to be unacceptable for large numbers of cities.
Apart from these objections, first results indicate an interesting opportunity
for an extension of SDS to Combinatorial Optimisation.

38

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4
x 10

4

Iterations

O
pt

im
al

 to
ur

 le
ng

th

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

Iterations

A
ge

nt
 a

ct
iv

ity

Figure 2.6: A typical run for a population of Agents performing optimisation
on the TSP. The best tour in the population is depicted in the upper graph;
the lower graph gives the Agent activity. As activity increases, optimisation
slows down. The population is considered to be converged when activity is
at a maximum. The problem at hand was hk48 from TSPLIB. 100 Agents
were allowed to optimise over 2000 iterations.

39

Chapter 3

Connectionist Models of SDS

The Nineties were proclaimed the ’Decade of the Brain’ in the United States.
With that decade now officially closed, one might ask whether it has brought
the revolution that was expected 10 years ago. Improved imaging and record-
ing techniques and anatomical studies have led to a detailed mapping of func-
tions to specific areas of the brain. Cellular and Molecular Neuroscience have
seen a real explosion of different cell types and neurotransmitter systems.
However, are we really any closer now ? Many questions remain unanswered:
the basic mechanisms of memory and information encoding and decoding
are still largely a mystery. Higher up the ladder, a firm link between mind
and brain is far from established: little is known about how activation of
neurons in this or that area, using such and such neurotransmitter, leads to
an internal representation, awareness of that representation, and eventually
awareness of self. Not only is research into consciousness in a “preparadig-
matic” stage, there is not even a consensus on what has to be explained ([24]).
This confusion is even apparent in the popular scientific literature: books,
ranging from the optimistic “we-are-almost-there” tone of voice (e.g. [25])
to the “it-will-never-happen” doom scenarios (e.g. [26]), are being published
at an astonishing rate; undoubtedly, there is a huge market for both kinds.

Almost every introduction or layman’s text on Neuroscience starts with
the statement that the human brain is the most complicated structure in
the known universe. If the past decade has taught us anything at all, then it
should be that we (again) underestimated the problem. Several long-standing
‘dogmas’ are being questioned by new empirical data. For instance, it was
long thought that no neuron regeneration takes place after birth. However,
recent research ([27]) showed that new neurons are generated in the brain
stem and can replace dead neurons in certain areas of the neocortex. Another
problem forms the neural code: the prevailing opinion was that neurons

40

encode information in their mean firing rate, but research on reaction times
and spike reproducibility suggest this cannot be the full story. Dendrites,
which were supposed to be passive cables, transporting the incoming signals
to the soma where the computation occurs, turn out to be highly complex
structures with active membrane properties, capable of selectively filtering
out single spikes. These - and more - discoveries make it difficult to sustain
the McCullogh-Pitts ([28]) model of a neuron as a simple computational
device. A more rigourous critique on this subject is developed in [12].

A concise overview of biological evidence for different information encoding
schemes in the brain and dendritic processing capabilities will be presented in
a first section. The Spiking Neuron Stochastic Diffusion Network (SNSDN),
inspired by the evidence, will then be described in detail. Next, attention
modelling with SNSDN will be discussed. To conclude the chapter, some
directions for further research will be proposed.

3.1 Biological Neurons

3.1.1 Neural Codes

Information encoding in the brain is the subject of an intense debate. The
classical viewpoint of information encoded in mean firing rates of single neu-
rons, is being questioned for a number of reasons. For instance, the time
window over which averaging takes place has to be fairly large because of
high variability observed in recordings of single in vivo neurons, when pre-
sented with the same stimulus; this is in contradiction with the timescale of
certain processes in the brain, some of them occurring on a timescale of less
than 100ms, much less than averaging over a time window for a single neuron
would allow ([29]). A second problem is the irregularity of spike timing itself.
[30] demonstrates that a simple integrate-and-fire model, receiving irregular
spike trains as input, can not maintain the same irregularity in its output.
They propose that information is carried by the exact arrival times of spikes
and that neurons act as coincidence detectors of presynaptic events.

That the timing of spikes can carry information about the temporal struc-
ture of the stimulus in certain areas of the brain, is widely acknowledged; that
it is a mechanism used in the cortex, and can carry information about other
stimulus characteristics such as spatial form, is not so easily accepted ([31]).
The above problem of spike irregularity can be explained differently: it can
be caused by a balance between excitatory and inhibitory inputs ([32]); or

41

by synchronicity in the input signal ([33]). Whatever the explanation, both
approaches move away from time-averaging over single neurons, to averaging
over a population of neurons.

Some researchers claim that certain results are better explained by time
encoding. In [34], recordings in the visual cortex of the macaque monkey sug-
gest that neurons are well equipped to decode stimulus-related information
on the basis of relative spike timing and interspike interval (ISI) duration.

For other researches, the question of time or rate encoding is an irrelevant
one. The dividing line between pulse codes and rate codes is not always clear
([29]), and leads them to the conclusion that the question is merely one of
timescales ([31]). This conclusion sidesteps an interesting possibility: time
encoding has a higher information capacity than rate encoding, a capacity
which can not only be used to send the same sort of information faster, but
allows multiplexing of information. It has been argued in [10] that multi-
variate information encoding could solve some of the problems in classical
connectionism.

3.1.2 Dendrites

Dendrites have long been considered to be passive cables. Even when reports
of dendritic action potentials surfaced in the 1960s, the idea of active den-
drites was slow to spread ([35]). It was not until the advent of new techniques
that voltage-gated Ca2+, Na+ and K+ channels were discovered in several
types of neurons ([36],[37]). As a result of these active membrane proper-
ties, dendrites can react in a much more complex way to the input than just
transporting it to the axon hillock. In [38], four types of information flow
are identified:

1. information transfer from dendrites to the axon hillock.

2. local integrative sites within the tree

3. information flow from the axon hillock back into the dendrites

4. multiple active dendritic sites for initiating information flow

It is suggested (e.g. in [39]) that these properties allow neurons to selectively
react upon single EPSPs, as opposed to the classical view where all EPSPs are
integrated in the soma. According to [35], coincidence of back-propagating
spikes and EPSPs produces long-term potentiation, a cellular mechanism
that may underlie learning.

42

Not only active membrane properties, but also morphology of dendritic
trees are thought to influence neuronal behaviour. A review can be found in
([40]).

Although a conceptual framework for the significance of all this new in-
formation is lacking at present, it is clear that new levels of complexity are
being added. In the next section, some of the new ideas will be (implicitly)
incorporated into a neural network, performing an SDS-like search.

3.2 Details of SNSDN

3.2.1 High Level Description of the Network

The network consists of three sets of neurons. Memory Neurons encode the
micro-features of the Model, one for every micro-feature; Receptor Neu-
rons encode the micro-features of the Search Space, which is also called the
Retina. The search is performed by Matching Neurons, neuronal equiv-
alents of SDS Agents. In this particular exposition, the network performs
one-dimensional string matching; micro-features are therefore single charac-
ters.

Memory and Receptor Neurons are fully connected to all Matching Neu-
rons; Matching Neurons are also connected to all other Matching Neurons.
It is assumed that Matching Neurons have knowledge about the source of a
signal, i.e. they know whether a spike is generated by a Memory, Receptor
or other Matching Neuron.

All neurons communicate via spike trains; information is encoded in the
time between spikes, the interspike intervals (ISI). Memory and Receptor
Neurons encode two types of information: the first ISI of a spike train en-
codes where a micro-feature (character) is located in Model or Search Space,
the second ISI encodes what the micro-feature is. Matching Neurons commu-
nicate only one type of information to other Matching Neurons: a location
pointer into the Search Space.

Matching Neurons have two different internal states, labelled active and
inactive; but the meaning of these states is slightly different from Standard
SDS. Inactive Matching Neurons do not have a location pointer into the
Search Space; as a result, they can not undergo test phases. They wait
for incoming spikes; if the first spike comes from another Matching Neuron,

43

then they decode the information from its spike train, store the location
pointer and change the internal state to active. If the first spike comes from
a Memory or Receptor Neuron, then the where value is decoded from its
spike train; the Matching Neuron then waits for a spike from a Receptor or
Memory Neuron respectively. It adds the two where values, obtaining a valid
location pointer into the Search Space which is then encoded in a spike train
and send out to other Matching Neurons. The mechanism of generating new
random location pointers is thus similar to the one used in Unlabelled SDS.
Active Matching Neurons wait for a first Memory spike to arrive; its where
value determines the micro-feature which will be tested. Together with the
location pointer of the Matching Neuron, it also determines the correspond-
ing Receptor Neuron. When both the what value from Memory and Recep-
tor Neuron have been extracted from their respective spike trains, they are
compared; if the test fails (the micro-features are not the same), then the
Matching Neuron switches its state to inactive. If the test succeeds, then
the location pointer of the Matching Neuron is encoded in a spike train and
broadcasted to other Matching Neurons. A population of Matching Neurons
evaluating the same location in the Search Space results in a dominant spike
train, defining this location.

In terms of the classification of SDS algorithms given in Chapter 2, the
state updates have a physical dimension of time. Every neuron operates in
its own time, but the probability distributions of updating are dependent
on the behaviour of other neurons. Therefore, it is difficult to call the net-
work asynchronous as defined in section 2.3.1. Although the exact meaning
of internal states active and inactive is different from Standard SDS, their
interpretation remains: activity over long periods of time means likeliness to
point to the correct instantiation. No explicit knowledge of internal states of
other Matching Neurons is necessary, and communication is one-way. Match-
ing Neurons are fully interconnected with all other Matching Neurons, but
work on Lattice SDS suggests this condition can be relaxed. The stochastic
component in the process is governed by a set of random refractory pe-
riods and transmission delay parameters, which will be discussed in the
next subsection.

With respect to the section on new neurobiological knowledge (3.1), it
can be seen that neurons use a time encoding scheme, multiplexing of in-
formation, and that local dendritic processing is implicitly present in the
mechanism of filtering out spikes from a single source.

44

3.2.2 Randomisation Process

Standard SDS operates by picking micro-features, other Agents and new
Search Space locations out at random. Chances that a biological neuron
can operate in the same way are minimal. Randomisation in the network
therefore is accomplished through a set of parameters, mimicking refractory
periods and transmission delays. After every spike train, a Memory or Retina
Neuron waits a random number of timesteps before it starts sending a new
spike train. In Matching Neurons, sending of spike trains and receiving of
spikes (for the next update) can occur simultaneously. Separate refractory
parameters for both processes exist. In addition to the refractory parameters,
every neuron-to-neuron contact (synapse) can have a separate delay param-
eter; this simulates axon and synapse transmission delays. As will be seen
in the following section, the balance between exploration and exploitation is
very sensitive to these parameter settings.

3.2.3 Comparison with Standard SDS

Within certain ranges of the randomising parameters, behaviour of Standard
SDS and SNSDN is qualitatively similar. This can be seen in Figure 3.1. In
this experiment, only random transmission delays are used. Since the trans-
mission delay is set for every synapse independently, complete decoupling
of spiking events is assured. The randomisation processes will therefore re-
semble the uniform random distributions from SDS. The difference between
the two is mainly explained by the timing behaviour: several hundreds of
timesteps in SNSDN make up one iteration in SDS. The timescale of SNSDN
is compared to the timescale of SDS by counting the number of test-phases
that occurred during the entire run.

When no transmission delay parameters are set, or the random refractory
intervals are large compared to the transmission delays, then spiking events
are not completely uncoupled. Suppose a group of Matching Neurons is
waiting for a spike from a Memory Neuron; if one Neuron fires a few timesteps
before other Memory Neurons fire, then this neuron will be picked out by
all waiting Matching Neurons. They will all start testing the same micro-
feature; in case it is a faulty micro-feature, they will all switch to inactive.
The result is that populations are less stable, as can be seen in Figure 3.2.
The same experiment was performed as in Figure 3.1; the only difference
was that refractory parameters were set as well. The graph shows more an
all-or-nothing behaviour: populations can reach higher values, but are not
equally stable.

45

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200
Standard Stochastic Diffusion Search

Iterations

A
ge

nt
s

0 1 2 3 4 5 6

x 10
5

0

50

100

150

200
Spiking Neuron Stochastic Diffusion Network

Timesteps

M
at

ch
in

g
N

eu
ro

ns

Figure 3.1: a) Time evolution of the cluster of Agents evaluating the correct
location in the Search Space. b) Time evolution of the number of active
Matching Neurons, emitting the spike train encoding the correct location.
N = 200, M = 200 and p− = 0.2. For SNSDN, only transmission delay
parameters are set. SNSDN ran for 60000 timesteps, in which approximately
the same number of test phases occurred as in the 1000 synchronous iterations
of SDS.

A formal analysis of balance between exploration and exploitation, of clus-
ter stability and cluster size in relation to randomisation parameters, has not
been carried out. One experiment does show the sensitive dependence of the
exploration/exploitation balance on the randomisation parameters. Eight
experiments were conducted, in which was counted how many times an in-
active neuron picked out another inactive neuron during diffusion (and thus
effectively generated a new random location pointer into the Search Space -
exploration), and how many times an active neuron was chosen - exploita-
tion of the correct location. The balance between the two gives an indication

46

0 1 2 3 4 5 6

x 10
5

0

50

100

150

200

Timesteps

M
at

ch
in

g
N

eu
ro

ns

Spiking Neuron Stochastic Diffusion Network

Figure 3.2: Time evolution of the number of active Matching Neurons, emit-
ting the spike train encoding the correct location. N = 200, M = 200 and
p− = 0.2. In addition to transmission delays, also refractory periods are
used. This results in higher, but less stable populations.

of the resource allocation for that particular set of parameters. It can be
seen in Table 3.1 that the balance shifts considerably from experiment to ex-
periment, although the difference in randomisation parameters is small from
experiment to experiment. As a reference, the same values for SDS are given.

3.3 Attention

One of the main reasons to implement SDS as a neural network is that it
seems to present itself as a model for attention. The question of selective at-
tention has been an important area of research in psychology for a long time;
however, it has remained controversial whether there are separate mecha-
nisms subserving attention.

It is argued in [41] that brain activity in many cortical areas can be se-
lectively amplified or suppressed, as a function of the attentional set. Atten-
tional amplification is just that what SNSDN seems to do: given the Memory
that has to be attended to, the corresponding target on the Retina is detected
and its stimulus is amplified in the dominant spike train of a population of
Matching Neurons, and this in a dynamical way: a moving pattern, a new
pattern that has to be attended to, different patterns between which switch-
ing of attention occurs, all result in a different amplified signal, by the same
set of neurons.

47

Exp. Inactive Active Balance Iterations Mean Pop.
SDS 2122 4672 31%/69% 300 78%

1 411 6822 6%/94% 320 85%
2 644 6257 9%/91% 320 84%
3 1860 5895 24%/76% 300 80%
4 1885 6138 24%/76% 310 80%
5 1978 5899 25%/75% 310 80%
6 1808 5487 25%/75% 310 83%
7 2505 4077 38%/62% 335 85%
8 660 2483 21%/79% 330 94%

Table 3.1: The balance between exploration and exploitation as a function
of randomisation parameters. The experiment, with N = 100, M = 95 and
p− = 1

6 was conducted with different sets of randomisation parameters. Of
the 8 different randomisation parameters, only 1 was changed from experi-
ment to experiment. ‘Inactive’ gives the number of times an inactive neuron
was picked out during diffusion; ‘Active’ the number of times an active neuron
was chosen. ‘Balance’ gives the ratio between previous two columns. Iter-
ations gives the equivalent number of Standard SDS iterations, and Mean
Pop. the average population with the correct location. Note that in SNSDN,
the number of diffusion phases is not equal to the number of test phases, and
that a higher Mean Pop. value means that less diffusion phases take place,
and thus less exploration.

The problem of attention is also related to the binding problem. Differ-
ent binding problems exist ([42]): one of them is how different properties of
objects (e.g. shape and colour) are bound to the objects they characterise.
Attention seems to be underlying binding ([42]), since, for binding to occur,
attentional amplification is necessary. It is simply impossible for the brain
to combine all different features of one kind to features of another kind, and
then select the correct combination.
A number of possible binding mechanisms have been envisaged; one receiv-
ing much attention nowadays is synchronised firing of populations of cells
([42],[43]).

For a certain range of randomisation parameters in SNSDN, the dominant
spike train of the Matching Neurons, evaluating the correct location in the
Search Space, will be loosely synchronised. This synchronisation results in
a dominant frequency in the frequency spectrum of the Matching Neuron
spikes. The dominant frequency is dependent on the location pointer encoded

48

in the spike train: if a different target is attended to, then the dominant
frequency will change. Figure 3.3 shows how attention is shifted from one
pattern to the second. In Figure 3.4, the Matching Neuron Spikes are shown
during various stages of attention, together with the power spectra. The
different spiking behaviour during the three different stages of attention can
be clearly distinguished: first, Pattern 1 is attended; during the shift from
the first to the second pattern, there is no synchronisation, no dominant spike
train so no dominant frequency. When the second pattern is discovered, a
new dominant frequency emerges from the network.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Interval number (10 timesteps)

N
um

be
r

of
 M

at
ch

in
g

N
eu

ro
ns

Pattern 1
Pattern 2

Figure 3.3: Time evolution of Matching Neurons, evaluating the two imper-
fect instantiations of the Memory on the Retina. N = 100, M = 95 and
p− = 1

6 .

49

500 520 540 560 580 600 620 640 660 680 700
0

10

20

30

40

50

60

70

80

90

100
Attention for Pattern 1

Interval Number

M
at

ch
in

g
N

eu
ro

n
S

pi
ke

 C
ou

nt

Pattern 1
Pattern 2
Other Matching Neurons

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6
x 10

5 Attention for Pattern 1

Relative Frequency

P
ow

er
 S

pe
ct

ru
m

2250 2300 2350 2400 2450
0

10

20

30

40

50

60

70

80

90

100
Switching of Attention

Interval Number

M
at

ch
in

g
N

eu
ro

n
S

pi
ke

 C
ou

nt

Pattern 1
Pattern 2
Other Matching Neurons

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6
x 10

5

Relative Frequency

P
ow

er
 S

pe
ct

ru
m

Switching of Attention

4200 4220 4240 4260 4280 4300 4320 4340 4360 4380 4400
0

10

20

30

40

50

60

70

80

90

100
Attention for Pattern 2

Interval Number

M
at

ch
in

g
N

eu
ro

n
S

pi
ke

 C
ou

nt

Pattern 1
Pattern 2
Other Matching Neurons

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6
x 10

5 Attention for Pattern 2

Relative Frequency

P
ow

er
 S

pe
ct

ru
m

Figure 3.4: On the left side, spikes of Matching Neurons during several stages
of attention, each for 200 intervals (2000 timesteps); on the right, their re-
spective power spectra. The three different stages of attention can be clearly
seen in both time and frequency domain
.

50

3.4 Further Research

The SNSDN model gives rise to interesting properties, but is simulated on
a rather high level; it would be very interesting to develop it further. First
step to be implemented is local connectivity. Work on Lattice SDS has shown
that this should pose no problems. The main reason for local connectivity is
implementation in hardware: the number of connections will always be the
limiting factor in that case, as will be seen in Chapter 4. Another reason is
biological plausibility: although small groups of neurons could be completely
interconnected, it would be strange to assume this for large groups of neurons.

Although spatial dimensions of the neurons are simulated by transmission
delays, neurons in SNSDN do not have a 3D morphology. Simple distance
measures between neurons could form a start of giving the neurons a spatial
extension; this would affect the transmission delays, which would be partly
random (mimicking variability in synaptic transmission), and partly depen-
dent on distance between neurons. Higher levels of detail could bring a more
exact dendritic morphology into account, but this would increase complexity
of the simulation much more. Together with spatial dimensions, dendritic
active membrane properties could be incorporated as well; this leads to so
called compartmental models (see Chapter 1 in [29]). Their complexity is too
high to simulate with a large number of neurons, but small numbers could be
used to see whether the current level of SNSDN operation can be obtained
using lower level dendritic membrane properties.

A last interesting suggestion has to do with the output signal of the Match-
ing Neurons; currently, the attentional amplification is not used anywhere.
Suppose the Retina is dynamical, can slide over the Search Space, and has a
coarser sampling of the Search Space at its borders than in the centre. The
output signal of the Matching Neurons could be used by another set of Motor
Neurons to steer the Retina so that the desired pattern falls in the centre of
vision, or to track a moving pattern.

51

Chapter 4

Hardware Implementations

A first attempt at parallel implementation of SNSDN ([15]) was not very
successful; an SGI Genesis machine with 12 processors was much slower than
a normal PC. The main reasons are the overhead of the communications
protocol (such a machine is made for heavy computations and relatively
little communication between processors) and the constant workload caused
by other users. It also proved to be difficult to program the communication
protocol.

A lot of work on parallel implementations of Spiking Neurons has been done
by other researchers (see Chapter 3 and 5-9 of [29]). Implementations range
from detailed neuromorphic models in Analog VLSI to digital simulations on
parallel computers. The main problem all pure hardware implementations
seem to suffer from is limited connectivity; it seems to be very difficult to
get the same number of connections as in the brain. Another indication that
neuronal operation is better described in terms of communication !

Analog VLSI is unfortunately out of range, because it is too costly. Three
other possibilities will be discussed, of which the first will definitely be imple-
mented in the coming months, as part of a fourth year undergraduate project.
The other two will need more exploration before they can be attempted.

4.1 The Communicating Neurons Machine

The ‘Neuron’ chip from Echelon is a small processor specifically designed
for communication. It has all the necessary built-in communication and
control functions for the LonTalk network protocol, a protocol which has
very little overhead compared to e.g. an Ethernet protocol. The advantages

52

of using this chip are abundant: since all the communications machinery
is on board the chip, design of a multiprocessor machine will be relatively
easy. The operating system takes care of all the communication, which is
conducted by two dedicated CPU’s on the chip. A third CPU takes care
of the user application. This setup makes the chip easy to program as well.
Disadvantages of the chip are its limited resources: 3kB of EEPROM have to
host the user application, while 4kB or RAM can be used for data. The chips
only run at 10 or 20Mhz. So it will not be possible to use this machine for
computation-intensive applications. However, since SNSDN is mainly based
on communication, the Neuron chip seems to be the ideal choice.

CONEMA, the Communicating Neurons Machine, will use 64 Neuron pro-
cessors on 4 PCB’s with 16 processors each. All the processors will be con-
nected to each other via a serial bus. This makes implementation of Stan-
dard SDS possible on the machine. The problem with using the serial bus
for studying asynchronous SNSDN, is that it will not have the dynamical
behaviour that it should have: if a Matching Neuron has to wait until it
finds a free slot on the bus to put its spike train on, then the exact timing
of the spike train will be lost. However, the chip has 11 I/O pins, which can
be set as input or output by the user. This allows 5 bi-directional links to
neighbouring chips. A certain level of unpredictability on these lines will be
caused by encoding and decoding of the spikes by the dedicated communi-
cation CPU’s, but timing behaviour should be more controllable than when
using the serial bus.

Since Memory and Receptor Neurons need full connectivity to Matching
Neurons, they will either have to be simulated indirectly in memory or over
the serial bus by some of the processors.

The proposed layout of the PCB’s can be seen in Figure 2.3. Four con-
nections to neighbours are on-board. The advantage of this layout is that
no lines connecting the chips directly, are crossing. The design will therefore
become feasible on a two-layer PCB, with one layer accommodating the serial
bus, power, clock and ground lines, and the other layer the direct intercon-
nections between processors. Two of the remaining I/O lines will be used to
make connections to chips on other PCB’s.

Since the available on-chip memory is too small to record the Matching
Neuron’s behaviour during a run, some other inspection method will need to
be used. The serial bus could be used for this, but it is not certain at present

53

whether its bandwidth will be sufficient, especially if it will also be used for
Memory and Receptor Neurons. Alternatively, the last I/O line could be used
for inspection purposes. All lines could be assembled on a special-purpose
designed board, where information about the exact occurrence of spikes can
be collected and eventually transmitted into the memory of the host PC.
Whether its design is feasible and worth the effort will have to be decided
later on.

4.2 Programmable Digital Hardware

Although custom made VLSI chips are not a possibility, another interesting
option for direct implementation in hardware exists: programmable or recon-
figurable hardware. Of all the architectures available, Field Programmable
Gate Arrays (FPGA’s) offer the most desirable properties. They consist of
small logic blocks, which can be programmed to implement a set of func-
tions, and of interconnection lines which can be configured to connect logic
blocks into more complicated logic functions. FPGA’s offer high logic capac-
ity, i.e. the amount of digital logic that can be mapped into a single chip.
Some of them are also highly reconfigurable, even during program execution.
Dynamic hardware, as it is called, offers interesting perspectives on network
adaptivity, neural plasticity and learning processes. A slightly outdated but
still useful starting point on FPGA’s and other programmable logic can be
found in [44].

FPGA’s are meant to work as synchronous logic; but since they are re-
configurable, implementation of asynchronous circuits is not impossible. [45]
proposes an architecture called STACC (Self-Timed Array of Configurable
Cells), which replaces the global clock of an FPGA with an array of timing
cells that provide local self-timed control to a region of logic blocks. This
architecture could prove very useful for the implementation of the self-timed
Spiking Neurons.

Whether FPGA’s can provide a good platform for SNSDN implementa-
tion is not certain at present. FPGA’s have a high logic capacity, often
an equivalent of many tens of thousands of logic gates. However, no work
has been done on rethinking SNSDN in terms of its basic logic operations.
An estimation of the number of neurons that can be implemented on an
FPGA is therefore not possible. As is the case in most direct hardware im-
plementations of neural networks, the limiting factor will most likely be the

54

connectivity of the network, since a limited number of interconnection lines
between logic blocks is available on chip.

The implications of reconfigurable hardware on computation in general
are only starting to surface. With the advent of high-level programming
languages (like Handel-C, a language very much like C), and chips which
are in situ reconfigurable, the future of computation might look completely
different: the ease of software design combined with the speed of dedicated
hardware.

4.3 Programmable Analog Hardware

Very recently, a new form of reconfigurable hardware appeared in the elec-
tronics world: Field Programmable Analog Devices (FPAD) or Totally Re-
configurable Analog Devices (TRAC), as they are called by their manufac-
turers ([46]), offer blocks of circuitry which can be configured to perform
analog signal processing. What their capacities are in terms of neurons is
even less clear than for FPGA’s.

4.4 Conclusion

Of the three parallel implementations discussed in this chapter, the first is
being constructed. Once the hardware for this machine is finished, SNSDN
will be implemented and provide us with insight in the dynamical behaviour
of SNSDN.

55

Bibliography

[1] J.M. Bishop, (1989). Anarchic Techniques for Pattern Classification.
PhD. Thesis, Chapter 5, University of Reading.

[2] J.M. Bishop, (1989). Stochastic Searching Networks. Proc. 1st IEE Conf.
on Artifical Neural Networks, pp 329-331, London.

[3] J.M. Bishop, P. Torr (1992). The Stochastic Search Network. In R. Ling-
gard, D.J. Myers, C. Nightingale (eds.), Neural Networks for Images,
Speech and Natural Language. New York, Chapman & Hall.

[4] I. Aleksander, T.J. Stonham (1979). Guide to Pattern Recognition using
Random Access Memories. Computers & Digital Techniques, 2(1), pp.
29-40.

[5] E. Grech-Cini, (1995). Locating Facial Features. PhD Thesis, University
of Reading.

[6] P.D. Beattie, J.M. Bishop, (1998). Self-Localisation in the ’Senario’ Au-
tonomous Wheelchair. Journal of Intelligent and Robotic Systems 22,
pp 255-267, Kluwer Academic Publishers.

[7] S.J. Nasuto, J.M. Bishop, S. Lauria (1998). Time Complexity of Stochas-
tic Diffusion Search. Neural Computation ’98, Vienna, Austria.

[8] S.J. Nasuto, J.M. Bishop, (1999). Convergence Analysis of Stochastic
Diffusion Search. Journal of Parallel Algorithms and Applications 14,
pp 89-107.

[9] S.J. Nasuto, (1999). Resource Allocation Analysis of the Stochastic Dif-
fusion Search. PhD Thesis, University of Reading.

[10] J.M. Bishop, S.N. Nasuto, (1999). Communicating Neurons - an Alter-
native Connectionism. Proc. WNNW99, York.

56

[11] S.J. Nasuto, J.M. Bishop (1998). Neural Stochastic Diffusion Search Net-
work - a Theoretical Solution to the Binding Problem. Proc. ASSC2,
Bremen.

[12] S.J. Nasuto, K. Dautenhahn, J.M. Bishop, (1999). Communication as an
Emergent Methaphor for Neuronal Operation. Lecture Notes in Artificial
Intelligence, 1562:365-380, Springer.

[13] S.J. Nasuto, J.M. Bishop, K. De Meyer, (submitted). Emergent Compu-
tation Based on Inter-Spike Interval Coding and Active Communication.
Neural Networks.

[14] K. De Meyer, J.M. Bishop, S.J. Nasuto, (2000). Attention through Self-
Synchronisation in the Spiking Neuron Stochastic Diffusion Network. In
Proc. ASSC4, Brussels. Consciousness and Cognition, 9-2 p.S81, Aca-
demic Press.

[15] T. Morey, K. De Meyer, S.J. Nasuto, J.M. Bishop, (2000). Implemen-
tation of the Spiking Neuron Stochastic Diffusion Network on Parallel
Hardware. In Proc. ASSC4, Brussels. Consciousness and Cognition, 9-2
p.S97, Academic Press.

[16] B. Hölldobler, E.O. Wilson, (1990). The Ants. Springer Verlag, Berlin.

[17] M.J.B. Krieger, J.B. Billeter, L. Keller, (2000). Ant-Like Task Allocation
and Recruitment in Cooperative Robots. Nature 406, 992-995.

[18] A. Dolan, J. Aldous, (1993). Networks and Algorithms, Chapter 2. John
Wiley & Sons.

[19] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, (1985).
The Traveling Salesman Problem: A Guided Tour of Combinatorial Op-
timization. Wiley & Sons, New York.

[20] D.S. Johnson, L.A. McGeoch, (1996). The Traveling Salesman Problem:
a Case Study in Local Optimization. In E.H.L. Aerts, J.K. Lenstra, Local
Search in Combinatorial Optimization. Wiley & Sons, New York.

[21] P. Moscato, M.G. Norman, (1992). A ‘Memetic’ Approach for the Trav-
eling Salesman Problem: Implementation of a Computational Ecology
for Combinatorial Optimization on Message-Passing Systems. In M.
Valero, E. Onate, M. Jane, J.L. Larriba, B.Suarez, Parallel Comput-
ing and Transputer Applications. IOS Press, Amsterdam, pp. 187-194.

57

[22] P. Moscato, (1989) On Evolution, Search, Optimization, Genetic Algo-
rithms and Martial Arts: Towards Memetic Algorithms. Caltech Con-
current Computation Program, C3P Report 826.

[23] http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

[24] T. Metzinger, A. Engel, (2000). Constraining Consciousness: Towards
a Systematic Catalogue of Explananda. In Proc. ASSC4, Brussels. Con-
sciousness and Cognition, 9-2 p.S10, Academic Press.

[25] R. Carter, (1999). Mapping the Mind. Seven Dials, London.

[26] J. Horgan, (1999). The undiscovered mind : how the human brain defies
replication, medication and explanation. Free Press, New York.

[27] S.S. Magavi, B.R. Leavitt, J.D. Macklis, (2000). Induction of neurogen-
esis in the neocortex of adult mice. Nature 405, 951-955.

[28] W.S. McCulloch, W. Pitts, (1943). A logical calculus immanent in ner-
vous activity. Bulletin of Mathematical Biophysics 5, 115-133.

[29] W. Maass, C.M. Bishop, (1999). Pulsed Neural Networks. MIT Press,
London.

[30] W.R. Softky, C. Koch, (1993). The Highly Irregular Firing of Corti-
cal Cells is Inconsistent with Temporal Integration of Random EPSPs.
Journal of Neuroscience 13, 334-350.

[31] R.C. deCharms, A.M. Zador, (2000). Neural Representation and the
Cortical Code. Annual Review of Neuroscience 23, 613-647.

[32] M.N. Shadlen, W.T. Newsome, (1998). The Variable Discharge of Cor-
tical Neurons: Implications for Connectivity, Computation and Infor-
mation Coding. Journal of Neuroscience 18(10), 3870-3896.

[33] C.F. Stevens, A.M. Zador, (1998). Input Synchrony and the Irregular
Firing of Cortical Neurons. Nature Neuroscience 1(3), 210-217.

[34] D.S. Reich, F. Mechler, K.P. Purpura, J.D. Victor, (2000). Interspike
Intervals, Receptive Fields and Information Encoding in Primary Visual
Cortex. Journal of Neuroscience 20(5), 1964-1974.

[35] R. Yuste, (1997). Dendritic Shock Absorbers. Nature 387, 851-852.

58

[36] D. Johnston, J.C. Magee, C.M. Colbert, B.R. Christie, (1996). Active
Properties of Neuronal Dendrites. Annual Review Neuroscience 19, 165-
186.

[37] D.A. Hoffman, J.C. Magee, C.M. Colbert, D. Johnston, (1997). K+

Channel Regulation of Signal Propagation in Dendrites of Hippocampal
Pyramidal Neurons. Nature 387, 869-875.

[38] G.M. Shepherd, (1999). Information Processing in Dendrites. In M.J.
Zigmond, F.E. Bloom, S.C. Landis, J.L. Roberts, L.R. Squire, Funda-
mental Neuroscience. Academic Press.

[39] H. Barlow, (1996). Intraneural Information Processing, Directional Se-
lectivity and Memory for Spatio-Temporal Sequences. Network: Compu-
tation in Neural Systems 7, 251-259.

[40] G.A. Ascoli, (1999). Progress and Perspectives in Computational Neu-
roanatomy. Anatomical Record 257(6), 195-207.

[41] M.I. Posner, S. Dehaene, (2000). Attentional Networks. In M.S. Gaz-
zaniga, Cognitive Science - a Reader. Blackwell Publishers, Oxford.

[42] A. Treisman, (1996). The Binding Problem. Current Opinion in Neuro-
biology 6, 171-178.

[43] C. Tallon-Baudry (2000). Oscillatory Synchrony as a Signature for the
Unity of Visual Experience. In Proc. ASSC4, Brussels. Consciousness
and Cognition, 9-2 p.S25, Academic Press.

[44] S. Brown, J. Rose, (1996). Architecture of FPGAs and CPLDs: A Tu-
torial. IEEE Design and Test of Computers 13(2), 42-57.

[45] R. Payne, (1997). Self-Timed Field Programmable Gate Array Architec-
tures. PhD Thesis, University of Edinburgh.

[46] www.fac.co.uk and www.latticesemi.com

59

