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Abstract

The paper discusses ensemble behaviour in the Spiking Neuron Stochas-
tic Diffusion Network, SNSDN, a novel network exploring biologically
plausible information processing based on higher order temporal coding.
SNSDN was proposed as an alternative solution to the binding problem
[1]. SNSDN operation resembles Stochastic Diffusion Search, SDS, a non-
deterministic search algorithm able to rapidly locate the best instantiation
of a target pattern within a noisy search space ([3], [5]). In SNSDN, rele-
vant information is encoded in the length of interspike intervals. Although
every neuron operates in its own time, ‘attention’ to a pattern in the search
space results in self-synchronised activity of a large population of neurons.
When multiple patterns are present in the search space, ‘switching of at-
tention’ results in a change of the synchronous activity. The qualitative
effect of attention on the synchronicity of spiking behaviour in both time
and frequency domain will be discussed.

1 Stochastic Diffusion Search

Stochastic Diffusion Search ([3], [4], [5], [6], [7], [8]) is a parallel, non-deterministic
pattern matching algorithm. It is capable of rapidly locating a specified pattern
– or its best instantiation – in a noisy search space. Its operation is most easily
explained by analogy.

1.1 Ant Search Analogy

Consider the following example of hypothetical ant-like creatures searching for a
good nutrient source in a dynamic environment. Each ant seeks to locate some
food and return it to the nest. The colony as a whole seeks to maximise the
rate of return of food or the minimum expenditure of energy.
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With no a-priori information on the likely location of food, each searching
ant will leave the nest and perform a random walk around the local terrain. If
in the course of its explorations an ant finds some food, it returns to the nest a
positive ant; otherwise it is labelled negative.

On its return to the nest, each positive ant simply tells the first searching
ant it meets the location of its find. If the food source is good (i.e. it is
temporally stable and bountiful), over a relatively small period of time the nest
will allocate more and more of its resources (ants) to exploiting it. Whereas if
the resource is poor, any positive ants that are initially attracted to it will sooner
or later not find anything and revert back to being searching ants. Conversely
since unsuccesful ants which meet on their return to the nest do not exchange
resource-location information, they simply re-commence their random search.

The above is a simple hypothetical example of a self-organising Stochastic
Diffusion Process which will efficiently converge (allocate ants/resources) to the
best point (food) in the Search Space.

1.2 The Algorithm

In SDS a group of independent Matching Agents process information from
the Search Space in order to find the best fit to a specified target pattern
(the Model). The Model and the Search Space consist of sets of micro-
features. For simple, one-dimensional string matching, Model and Search
Space are strings, the individual characters of the strings being the micro-
features. The Matching Agents try to locate the position of the Model string in
the Search Space, by comparing a character of the Model with the corresponding
character in the Search Space, defined by the Matching Agent’s location (the
‘where’-value) plus the offset of the character within the Model.

A Stochastic Diffusion Search involves several stages:

1. Initialise Matching Agents: Agents are assigned random (in the ab-
sence of a-priori information) locations in the search space, and their
state is initialised to inactive.

2. Test: This procedure evaluates a randomly selected micro-feature of the
Model at a given location in the Search Space. If the test succeeds, then
the state is set to active; else, the state is set to inactive.

3. Diffuse: Every inactive Matching Agent chooses a Matching Agent at
random. If the other Agent is active, then its location in the Search Space
is copied. If the other Agent is inactive, a new, random location in the
search space is chosen.

4. Termination: If the termination criteria are fulfilled (if the population
of Agents has converged onto a location in the Search Space), terminate.
Else go back to Step 2.
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2 Text Search with the Spiking Neuron
Stochastic Diffusion Network

Recent neuro-biological experiments indicate that the long-standing assumption
of encoding of information in the mean firing rate of neurons cannot be the only
mechanism of information encoding in the brain. Various new encoding schemes,
based on the timing of spikes are being explored ([9], [10], [11], [12]).

The Spiking Neuron Stochastic Diffusion Network belongs to this latter cat-
egory. It performs SDS-like pattern matching, using communicating neurons
rather than computing ([2]). Its important features will be outlined here:

Temporal Encoding: Information is encoded in the time between spikes, the
Inter-Spike Interval (ISI).

Bivariate Information: Memory Neurons (the Model) and Retina Neu-
rons (the Search Space) communicate 2 kinds of information to the Match-
ing Neurons: the location of a character in the Model or SS (‘where’-
value) and the ASCII-value of the character (‘what’-value).

Matching Neurons perform SDS-like test-diffuse cycles. They communicate
locations of potential solutions to other Matching Neurons in Inter-Spike
Intervals.

No Forced Synchronisation: Matching Neurons operate in their own time.
No global synchronisation method exists.

Randomisation: At various stages in the SDS-algorithm, micro-features or
new locations in the SS have to be chosen at random. In SNSDN, this is
accomplished by choosing first-incoming spikes. A good randomisation is
guaranteed by random refractory periods at certain moments in the oper-
ation of the different kinds of neurons, and by random axon transmission
delays.

3 Results

‘Attention’ for a target pattern in the Search Space results in a self-synchronised
population of Matching Neurons. ‘Shifting of attention’ from one pattern to a
second results in a change of the synchronous activity. Results are presented
for an experiment with 100 Matching Neurons, a Model of 6 characters and a
Search Space of 90 characters. 2 patterns with 5/6 overlap with the Model are
present in the Search Space. This means each pattern has a 16.6% chance of
failing a test-phase. Matching Neuron Activity and Spike Count are reported
every interval of 10 timesteps; the algorithm ran for 50000 timesteps.
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Figure 1: Attention of Matching Neurons looking for the Model in the Search
Space. ‘Switching of Attention’ from one pattern to the second can be seen
halfway the experiment.
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Figure 2: Spikes of Matching Neurons during several stages of attention, each
for 200 intervals (2000 timesteps)
.
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Figure 3: Power Spectra of Matching Neuron Spikes during the respective stages
of attention
.
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