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Abstract. One of the most pervading concepts underlying computa-
tional models of information processing in the brain is linear input inte-
gration of rate coded uni-variate information by neurons. After a suitable
learning process this results in neuronal structures that statically repre-
sent knowledge as a vector of real valued synaptic weights. Although this
general framework has contributed to the many successes of connection-
ism, in this paper we argue that for all but the most basic of cognitive
processes, a more complex, multi-variate dynamic neural coding mecha-
nism is required - knowledge should not be spacially bound to a particular
neuron or group of neurons. We conclude the paper with discussion of a
simple experiment that illustrates dynamic knowledge representation in
a spiking neuron connectionist system.

1 Introduction

“Nothing seems more certain to me than that people someday will come to the

definite opinion that there is no copy in the ... nervous system which corresponds

to a particular thought, or a particular idea, or memory”, (Wittgenstein, 1948).
Over the hundred years since the publication of James’ Psychology [8], neu-

roscientists have attempted to define the fundamental features of the brain and
its information processing capabilities in terms of mean firing rates at points
in the brain cortex (neurons) and computations. After Hubel and Wiesel [7],
the function of the neuron as a specialized feature detector was treated as es-
tablished doctrine. From this followed the functional specialization paradigm,
mapping different areas of the brain to specific cognitive function, reincarnating
an era of modern phrenology.
Connectionism mapped well onto the above assumptions. Its emergence is

based on the belief that neurons can be treated as simple computational devices.
The initial boolean McCulloch-Pitts model neuron [10] was quickly extended to
allow for analogue computations. Further, the assumption that information is
encoded in the mean firing rate of neurons was a central premise of all the
sciences related to brain modelling.
Over the last half century such ‘classical’ connectionist networks have at-

tracted significant interest. They are routinely applied to engineering problems



[19], and as metaphors of concepts drawn from neuroscience, have also been of-
fered as models of both high [16] and low level [2] [21] cognition. However the
classical connectionist models of high level cognition have also been strongly
criticized [5] and the situation at the domain of low level neural modelling is
little better [1].
More recently spiking neuron, pulsed neural networks have begun to attract

attention [9]. Such models no longer aggregate individual action potentials as
a mean firing rate but act on temporal sequences of spikes. Like the classical
connectionist models spiking neuron neural networks have been studied both
for their computational/engineering properties and as models of neurological
processes [20].
Although temporal coding of spike trains lends itself more readily to multi-

variate information encoding than rate encoding, both are typically discussed
in a uni-variate framework - an observation that also applies to classicial con-
nectionist frameworks. However uni-variate knowledge representation is limited
to the representation of arity zero predicates and, following Dinsmore [5] and
Fodor [6], we suggest that this is too strong a restriction for representing the
complexity of the real world.

2 Types, Tokens and Arity Zero Predicates

An arity zero predicate is one without an argument, eg. representation of the
class of Morgan cars by the arity zero predicate, MORGAN (). Such predicates
easily express different ‘types’ of entities. eg. A car producer may produce half a
dozen ‘types’ of cars in a year, (here ‘types’ equates to the different models mar-
keted such as the Morgan 4/4 car), but manufacture many thousand individual
cars for sale (‘tokens’). Knowledge of individual ’tokens’, in this case individual
cars, is more clumsily expressed in a predicate of arity zero. eg. To represent
a particular Morgan car (eg. registration YUY405W), the arity zero predicate
MORGANYUY405W () is necessary.
Although a conventional connectionist network can represent ‘type knowl-

edge, of the form ’Morgan 4/4’, by the activation of a single processing node or
group of nodes, because it processes uni-variate information it can only easily in-
stantiate tokens in a similar manner (eg. by an activation on a particular node or
group of nodes). A more elegant method of representing the specific member of a
class (a token) is by the use of the arity one predicate CLASS (INDIVIDUAL).
However, in general this requires the use of bi-variate information to identify
both CLASS and INDIVIDUAL.
However, we do not consider representations of arity zero predicates as suffi-

cient for representation of many complex relationships. Such limitations make it
difficult to interpret and analyze the network in terms of causal relationships. In
particular, (cf. classical symbolic/connectionist divide), it is difficult to imagine
how such a system could develop symbolic representations and quantified logical
inference [17]. Such deficiencies in the representation of complex knowledge by
classical neural networks have long been recognized [18] [6] [3] [15].



3 Spiking Neurons

Taking into account the above considerations we propose to investigate a spiking
neuron connectionist architecture whose constituent neurons inherently operate
on rich (bi-variate) information encoded in spike trains, rather than as a simple
mean firing rate. NESTER, a network of such neurons, was first proposed in [13]
and is further investigated herein. The task of NESTER is to locate an object
(memory) projected onto an artificial retina.
The NEural STochastic diffusion search nEtwoRk (NESTER) consists of

an artificial retina, a layer of fully connected matching neurons and retino-
topically organized memory neurons. The bi-variate information output from
retina/memory cells is encoded as a spike train consisting of two qualitatively
different parts: a tag determined by its relative position on the retina/memory
and a tag encoding the feature signalled by the cell. This information is processed
by the matching neurons which act as spatiotemporal coincidence detectors.
It is important to note that matching neurons obtain input from both retina

and memory and thus their operation is influenced by both bottom-up and
top-down information. As Mumford notices [11], systems which depend on in-
teraction between feedforward and feedback loops are quite distinct from models
based on Marr’s feedforward theory of vision.
Thus matching neurons are fully connected to both retina and memory neu-

rons and accept for processing new information, contingent on their internal
state (defined by the previously accepted spike train).
Each matching neuron maintains an internal representation (a hypothesis)

defining a potential location of the memory on the retina and in operation simply
conjoins the positional tags of the incoming spike trains from the retina/memory,
(corresponding to their retinotropic positions), with its own hypothesis and,
dependent upon the result, distributes its successful or unsuccessful hypothesis
to other matching neurons.
Effectively NESTER is a connectionist implementation of Stochastic Diffu-

sion Search, (SDS) [4], a simple matching algorithm whose operation depends
on co-operation and competition in a population of agents which are realised in
NESTER as the matching neurons. Therefore, in the next section we will describe
the network operation in terms of the simpler underlying generic mechanism of
SDS.

4 Stochastic Diffusion Search

In SDS a group of independent agents processes information from the search
space in order to find the best-fit to a specified target pattern. Each agent
searches for a micro-feature of the target and once found competes to attract
other agents to evaluate this position. In this way the SDS explores the whole
search space. Due to the emergent co-operation of agents pointing to the same
solution, interesting areas in the search space (those that share many micro-
features with the target) are more thoroughly exploited than background areas.



Agents are divided into two classes: active and inactive. An active agent
has successfully found a micro-feature from the target in the search space; an
inactive agent has not. Thus, the activity label identifies agents more likely to
point to an instantiation of the target than to the background. Inactive agents
utilise this activity information when deciding whether to communicate with a
randomly selected agent in a subsequent phase of processing. Communication
only occurs if the selected agent is active and results in the flow of ‘where’
information from the active agent to the inactive one. Conversely, if the selected
agent is also inactive, then there is no information flow between agents; instead,
a new random ‘where’ position is adopted. In this way active agents attract more
resources to examining promising regions of the search space.

5 Experiment using NESTER

NESTER was configured with 100 matching neurons, 6 memory neurons and 90
retina neurons. The content of the target memory is defined by 6 symbols from
the ASCII character set and the retina by 90 symbols.

The following experiment illustrates NESTER utilizing a dynamic assembly
encoding as it locates the best fit of the target memory on the retina. Finding
this on the retina causes the onset of time locked activity in an assembly of
matching neurons, resulting in a characteristic frequency spectrum of their spike
trains.

In this experiment two patterns with 5/6 correct symbols (ie. 16.6% noise)
were projected at different locations onto the retina. Matching neurons first lo-
cated one pattern and formed its representation - a dynamic assembly of neurons
with time locked activity. Figure 1 shows matching neuron activity against time
while locked to the first pattern. The activity is periodic, as indicated by the
dominant frequency in the power spectrum shown alongside. After some time a
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Fig. 1. Network activity and its frequency spectrum while locked to the first pattern



second assembly of matching neurons emerges reflecting the presence of the sec-
ond pattern at a different location on the retina. The activity of a newly formed
assembly corresponding to the second pattern and the resulting power spectrum
are shown in Figure 2. It is clear that this spectrum is very different from that
shown in Figure 1 although the patterns constitute equal instantiations of the
memory.
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Fig. 2. Network activity and its frequency spectrum while locked to the second pattern

6 Conclusions

NESTER uses dynamic assembly knowledge encoding. The experiment illus-
trates that locating the target memory on the retina results in the onset of
time locked activity in an assembly of matching neurons, as indicated by the
characteristic frequency spectrum of matching neuron spiking. Dependent on
the quality of the target instantiation (i.e. how many micro-features it has in
common with the target), matching neurons will spend different periods of time
maintaining particular hypotheses (retinal locations). On average, those match-
ing neurons maintaining the best location hypothesis will spend a longer period
examining the same retinal location than matching neurons with a poor location
hypothesis (i.e. pointing to areas of the retina with few symbols in common with
the target). Hence, such neurons will have more possibilities to communicate
their hypothesis to others, and in this way a population of neurons will rapidly
converge onto the current best instantiation of the target on the retina.
Continuing exploration of the retina by inactive matching neurons ensures

that this process will eventually discover, and converge to, the best-possible fit
of the target on the retina. This convergence to the global-best solution oc-
curs because NESTER implements Stochastic Diffusion Search. This is formally
demonstrated in [14] and the time complexity discussed in Nasuto et al. [12].
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