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Abstract

Stochastic Diffusion Search (sds) was introduced by Bishop (1989a) as an

algorithm to solve pattern matching problems. It relies on many concur-

rent partial evaluations of candidate solutions by a population of agents and

communication between those agents to locate the optimal match to a target

pattern in a search space. In subsequent research, several variations on the

original algorithmic formulation were proposed. It also became evident that

its main principles – partial evaluation and communication between agents

– can be employed to problems outside the pattern matching domain.

The primary aim of this dissertation is to develop these expansive views

further: sds is proposed as a metaheuristic, a generic heuristic procedure for

solving problems through search. Furthermore, it is proposed as a challenge

to the dominant metaphor in computer science: sequential computation. The

thesis proceeds in a structured way by first considering all questions that can

be asked about a heuristic procedure like sds: questions of a foundational

nature, questions pertaining to mathematical analysis, questions about ap-

plication domains and questions about physical implementation.

It is to the foundational issues that most attention is devoted. Analogies

with selective processes in natural and social systems are investigated, as well

as analogies with other metaheuristic techniques from artificial intelligence.

An attempt is made to categorise potential variants, and to establish what

kind of problems sds would be the optimal problem-solving method for.

The work aims to provide an expanded but structured understanding of

sds, to give guidelines for future work, and to establish how progress in other

scientific disciplines can be of use in the study of sds, and vice versa.



Preface

All sciences characterise the essential nature of the systems they study.

These characterisations are invariably qualitative in nature, for they

set the terms with which more detailed knowledge can be developed.

A. Newell and H. Simon (Newell and Simon, 1976)

Cybernetics is the science of defensible metaphors.

G. Pask (von Foerster, 1995)

A personal note

When I started my PhD, I was given the freedom to choose a topic of my

own interest, if only – as my supervisor expressed his hope – it was somehow

related to Stochastic Diffusion Search. That freedom proved hard to handle:

the choice – and the dilemmas created by it – turned out to be enormous.

Four years later, my “explorations” in Stochastic Diffusion Search have pro-

duced this thesis, and the main question is: “why this one?”

Instead of posing a problem and then finding a method to solve the prob-

lem, it presents a method and then tries to find suitable problems. So why

produce a thesis that turns normal scientific reasoning on its head? It was

neither particulary easy to write, nor does it have a conventional structure.
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A first reason is that previous work on sds has seen applications to vari-

ous problems, different kinds of mathematical models, new variants, with

intuitions about its many links to other scientific disciplines, with intuitions

about its strengths and weaknesses, but without a strong foundational frame-

work to support all this. Secondly, in the 14 years since its incubation, sds

has not attracted much attention: it seems to have less intuitive appeal or

is harder to understand than other, related methods. I therefore felt that –

among all the choices I had – this was most needed: a work – to paraphrase

Alan Newell and Herbert Simon – characterising the essential nature of the

system; one that sets the terms with which more detailed knowledge can be

developed.

By taking this unusual but interesting route, I have developed a deeper

understanding of a large number of related topics. Although I have most

likely expressed it inadequately in words, I hope that this work will generate

a renewed interest in many aspects of its content. And, finally, following

Gordon Pask, I would also like to present the thesis as a truly cybernetic

one: in its pages, many metaphors are defended, while others are challenged.
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The Blind Men and the Elephant

John Godfrey Saxe

It was six men of Indostan
To learning much inclined,

Who went to see the Elephant
(Though all of them were blind),

That each by observation The First approached the Elephant,
Might satisfy his mind And happening to fall

Against his broad and sturdy side,
At once began to bawl:

“God bless me! but the Elephant
Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here

So very round and smooth and sharp?
To me ‘tis mighty clear

This wonder of an Elephant The Third approached the animal,
Is very like a spear!” And happening to take

The squirming trunk within his hands,
Thus boldly up and spake:

“I see,” quoth he, “the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee.

“What most this wondrous beast is like
Is mighty plain,” quoth he;

“ ‘Tis clear enough the Elephant The Fifth, who chanced to touch the ear,
Is very like a tree!” Said: “E‘en the blindest man

Can tell what this resembles most;
Deny the fact who can

This marvel of an Elephant
Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,

Than, seizing on the swinging tail
That fell within his scope,

“I see,” quoth he, “the Elephant And so these men of Indostan
Is very like a rope!” Disputed loud and long,

Each in his own opinion
Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong!
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Chapter 1

Introduction

1.1 Context

1.1.1 The Unity of Knowledge

Consilience

Belief in the unity of knowledge, the idea that the world can be explained

by a small number of scientific principles, has appeared at different times

and under different guises throughout the history of science. One of its most

recent proponents, Wilson (1998), termed this alleged unity consilience. His-

torically, consilience of inductions was used to designate the fact that an in-

duction from one class of observations coincides with an induction obtained

from another class. Such consilience was seen as extra evidence for the va-

lidity of the theory derived from the inductions. In Wilson’s (1998) work,

the meaning of consilience becomes slightly more ambitious. It is used to de-

scribe the chain of cause-and-effect explanations that runs upwards through

all disciplines of the natural sciences, from physics to chemistry, and from

chemistry up to higher levels of biological organisation. Wilson argues that,
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although there are still a few missing links, the natural sciences will eventu-

ally be made fully consilient. He also conjectures that this vertical integration

along cause-and-effect relations can be extended into the social sciences and

parts of the humanities, leading ultimately to the unification of science.

Wilson strongly advocates reductionism as a research methodology. How-

ever, the belief that concepts like mind, free will, culture and society can be

investigated using a reductionist approach is not easily accepted by many hu-

manistic scholars (Shweder, 2001). They regard the human sciences as con-

cerned with something genuinely different, something not amenable to causal

explanations in the biological terminology of genes and neurons. Conversely,

Wilson himself does not believe that mind and culture are properties that

are independent of the lower levels of biological organisation (Wilson, 2001).

Complexity

A different form of unity of knowledge was put forward by a school of thought

that flourished in the 1980s and early 1990s: complexity science or the study

of complex (adaptive) systems (Waldrop, 1992; Lewin, 1993). Scientists from

several disciplines affiliated with the Santa Fe Institute to investigate to

what extent common principles are at work in the systems studied by var-

ious branches of science. Complex systems consist of many relatively in-

dependent, but highly interconnected and interactive parts (Cowan, 1994).

Such systems exist at a hierarchy of organisational levels in the real world:

physical, chemical, biological, cognitive, social and economical. Adaptation,

self-organisation, and emergence of new properties are but a few of the ab-

stract principles studied in a cross-disciplinary fashion.

Complexity scientists are not primarily reductionists. Their principal re-

search strategy is one of computer simulations and mathematical modelling

from the bottom-up: starting from assumed properties of the parts and of

their interactions, they try to generate and explain emergent properties on

2



the system level. This approach has been successful in some areas, but so

far the complexity program has achieved few of its initial goals. The belief

that the operation of all different complex systems can be explained by com-

mon principles seems to have all but evaporated. Wilson (1998) argues that

this apparent failure originates from a lack of sufficient empirical knowledge

that can serve as a basis for modelling. In his view, it is exactly a strong

reductionist research program that is needed to supply this knowledge.

Cybernetics

Complexity science has its historical roots in two similar unifying movements

that appeared almost fifty years earlier: cybernetics and general systems the-

ory. During the Second World War, government funding in the United States

and the United Kingdom had strongly stimulated scientific research, resulting

in machines and technologies – most notably the general-purpose electronic

computer – that would lead to new insights in the study of natural and social

systems. Engineers, natural and social scientists had collaborated in inter-

disciplinary research teams, and developed common scientific interests and

vocabularies. It was this climate that, in the aftermath of the war, brought

together an interdisciplinary group of eminent scientists in a series of meet-

ings: the “Macy conferences” on Feedback Mechanisms and Circular Causal

Systems in Biology and the Social Sciences (Heims, 1991). In 1948, Wiener,

one of the pivotal figures of the Macy conferences, published Cybernetics or

Control and Communication in the Animal and the Machine (Wiener, 1961),

and the new field soon became known as cybernetics.

Early cyberneticists were interested in the abstract principles of organi-

sation, control and communication in social, natural and man-made systems.

(Ashby, 1956; Pask, 1961; Heylighen and Joslyn, 2001). Their aim was to

develop a transdisciplinary vocabulary and a set of mathematical formalisms

that would allow a common description and explanation of these systems, re-

3



gardless of the physical medium of their implementation.1 Cyberneticists saw

as unifying principle the notion of circular control – feedback mechanisms –

used for the regulation of systems. Such systems were considered purposeful

or teleological : their behaviour can be interpreted as directed towards achiev-

ing or maintaining a certain goal (Rosenblueth, Wiener and Bigelow, 1943).

Cybernetic research became very popular in the 1950s, strongly influ-

encing the development of control theory and control engineering, computer

science, artificial intelligence, information theory, and certain areas of the

social sciences. It anticipated much of the later work in neural networks,

artificial life, robotics and complexity science. As a transdisciplinary move-

ment, however, cybernetics was less successful: over the years, cybernetic

research became more engineering-oriented and fragmented across subdisci-

plines; this slowly undermined the interests in the original research program.

Many of the notions of cybernetics were assimilated in other disciplines with-

out reference to their historical context; others were forgotten and some of

them later reinvented independently. By the end of the 1960s, some of the re-

maining cyberneticists refocussed on the original notions of circular causality,

autonomy and self-organisation, as well as on the role of the observer in mod-

elling the system and the application of cybernetic principles to the study

of cybernetics itself (von Foerster, 1995; Heylighen and Joslyn, 2001). This

movement became known as second-order cybernetics. Even today, cyber-

netics as a transdisciplinary, theoretical framework is still being studied by

a few dedicated groups (Ibid.).

Unifying Unity

The perspective on the unity of knowledge offered by cybernetics and com-

plexity science is, in a sense, complementary to Wilson’s notion of reduc-

tionist consilience. Whereas Wilson thinks of the unity of knowledge as a

1General systems theory, founded around the same period by von Bertalanffy (1950),

had similar aims, but a different rationale behind it.
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chain of cause-and-effect relationships grounding all scientific explanations

in a few physical laws, cybernetics and complexity science perceive a unity

in the operation of systems at each level. These two disparate views are not

necessarily irreconcilable: both reductionist and systemic consilience might

well prove to be valid. However, it is quite beyond the scope of this text

to discuss the significance of the two perspectives, or to argue about the ef-

fectiveness of reductionist and systemic research methodologies: they fulfill

different roles in the scientific process, and contribute to the growth of sci-

entific understanding at different times and under different circumstances.2

1.1.2 General Selection Theory

Although cybernetics, from its inception, was interested in circular control

mechanisms in natural and social systems, the question of how exactly control

is exercised was less frequently asked. Often, a phenomenological description

of the system as a control system was regarded as sufficient explanation.

Nevertheless, it was well understood that biological control exists to ensure

the survival of organisms (Ashby, 1956; Pask, 1961), and thus has to be the

result of Darwin’s process of evolution through natural selection. Charles

Darwin formulated this theory in 1859 to explain the evolution and diversity

of living organisms, but its principles have subsequently been applied to

practically all processes of historical change (e.g., Dawkins, 1989; Plotkin,

1994; Dennett, 1995; Zimmer, 2002; Wheeler, Ziman and Boden, 2002).

Popper (1966), clearly influenced by the cybernetic thinking of that era,

presented a view that connects this wider application of the natural selection

paradigm with cybernetics: he envisaged each organism as a hierarchical sys-

tem of flexible controls, brought about by natural selection, but each level of

control itself operating according to the trial-and-error-elimination principles

2The same point about the roles of reductionist and systemic thinking in the context

of biology has been thoroughly analysed and defended by Looijen (1999).
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of natural selection. This idea was even more explicitly present in Campbell’s

(1974) evolutionary epistemology. Campbell regarded biological evolution as

a problem-solving or knowledge process, assembling and incorporating know-

ledge about patterns and regularities in the world, and operating in conti-

nuity with other epistemic activities such as learning, thought and science.

He abstracted Darwin’s idea of natural selection to the essential mechanisms

of variation + selective retention (v+sr). One important aspect of such a

mechanistic description of the evolutionary process is its substrate neutrality :

it is independent of the physical medium of its implementation. Campbell

insisted that an abstract description in terms of v+sr mechanisms is appli-

cable to more than just biological evolution: he called the selection paradigm

the universal non-teleological explanation for all the seemingly teleological,

goal-directed processes in natural and social systems. He identified a nested

hierarchy of selective processes at work in natural and social systems: from

biological evolution of locomotor and sensor organs, habit and instinct; over

trial-and-error learning, observational learning, the development of language

and culture; to, eventually, the process of science itself.3 Each of these levels

forms a shortcut in the evolutionary process, a vicarious selector, a control

mechanism reducing wasteful trials of the selective processes on lower levels.

This evolutionary epistemology based on the apparent ubiquity of selec-

tive processes was later designated general selection theory (Campbell, 1997).

General selection theory fits the two notions of consilience perfectly: systemic

consilience because the systems at various levels of biological and social or-

ganisation all seem to be employing similar v+sr mechanisms; reductionist

consilience because the hypothesis that all levels operate according to the

principles of v+sr suggests a reductionist research program that allows the

emergence of new properties on higher levels of the hierarchy to be explained

from the operation of v+sr mechanisms on lower levels of the hierarchy.

General selection theory thus conjoins the two notions of unity of knowledge.

3A similar view was developed, from a purely cybernetic perspective, by Turchin (1977).
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1.1.3 Artificial Intelligence

Symbols and Search

Cyberneticists have always been especially interested in the purposiveness

and intelligence emanating from animal and human brains. This interest

translated itself into an active neurological research program, and especially

into attempts at modelling and simulating the operation of the nervous sys-

tem. From the mid-1950s, however, a view on the study of intelligence and

cognition appeared that was antipathetic to the methodologies of cybernet-

ics. This view would soon develop into the field of artificial intelligence (ai),

situated on the boundary between computer science and cognitive psychology.

ai researchers did not aim to unravel the operation of the nervous system as a

means of understanding intelligence, but wanted to understand and generate

intelligent behaviour by simulating human mentation at a higher level of ab-

straction (Andrew, 1983; Dreyfus and Dreyfus, 1990). They were inspired by

the metaphor of brain-as-computer : not in the quality of computers as elec-

trical devices (a metaphor that inspired cyberneticists), but in their quality

of symbol manipulators. This early ai approach was effectively epitomised in

the physical symbol system hypothesis (Newell and Simon, 1976): a necessary

and sufficient condition for a system to exhibit intelligence is that it contains

symbols, physical patterns that occur as components of expressions, and pro-

cesses that operate on these symbols to produce other expressions. Symbol

systems solve problems by generating tentative solutions (expressions) and

testing them, i.e., by searching among all possible solutions to the problem;

they demonstrate intelligence to the extent that heuristic knowledge limits

the number of candidate solutions that need to be tested to solve the problem.

This insistence on generate-and-test processes as the driving force of in-

telligent action, though originating from an entirely different perspective,
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concurs with Campbell’s (1974) epistemic hypothesis on v+sr processes as

the basis for all increases in knowledge. Although this is an example of con-

silience on an epistemological level – in its original meaning of “coming to-

gether of inductions” – there was a strong interpretational difference: firstly,

the kind of search problems ai was primarily concerned with were symbolic

tree-search problems. Secondly, influenced by the apparent sequential nature

of human problem-solving strategies and the metaphor of serial computers,

Newell and Simon (1976, p126) regarded all search as essentially sequential.

These were unnecessary restrictions on the generality of their hypothesis, and

they would in effect be removed by the course ai would take in later years.

Modern AI

In the 1980s, the weaknesses of symbolic ai became increasingly evident; in

response to several different sources of criticism, ai gradually transformed

into a hierarchy of theories that covers all epistemic activities at various lev-

els of abstraction.4 One approach – connectionism or the field of artificial

neural networks (Haykin, 1999) – rejected the symbolic aspect of intelligence

and returned to the cybernetic idea that intelligence is the result of sig-

nal processing in the nervous system. The approach of intelligent agents

or multi-agent systems (Weiss, 1999; Ferber, 1999) criticised the disembed-

ded aspect of symbolic ai: it emphasised the situated and social nature of

intelligence by constructing autonomous agents that interact with their en-

vironment and with other agents. The interest in search problems remained,

not only in the traditional representation of search trees, but in a more gen-

eral form. A new generation of search algorithms, inspired by selective pro-

cesses in natural and social systems, received increasing attention: algorithms

modelled on biological evolution (e.g., Fogel, Owens and Walsh, 1966; Hol-

land, 1992; Kennedy, Eberhart and Shi, 2001, Chapter 4), the behaviour of

4Modern textbooks of ai reflect this hierarchical structure (e.g., Luger and Stubblefield,

1997; Nilsson, 1998).
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social insects (Bonabeau, Dorigo and Theraulaz, 1999), and human coopera-

tive behaviour (Kennedy et al., 2001). These are not only applied to explicit

search problems such as combinatorial optimisation problems, but also (in

the paradigm of artificial life) used as tools for the design of intelligent sys-

tems. Finally, some of the classical techniques of symbolic ai were amended

to allow for reasoning and decision making in the face of the uncertainties

and “fuzziness”of the real world (Luger and Stubblefield, 1997, Chapter 7).

1.1.4 Computational Metaphors

The physical symbol system hypothesis – the dominant view on cognition

for many years – was strongly influenced by other developments in computer

science. Its assumption that all generate-and-test processes are essentially

sequential was imposed by, what Stein (1999) calls, the central computational

metaphor : computation regarded as a sequence of functional steps, calculat-

ing an end-result from some input. The dominance of this classical compu-

tational metaphor originated from two sides: theoretical computer science,

where Turing (1936) had shown the expressive power of a class of abstract

sequential computing machines, long before computers existed; and practical

serial computer systems, based on the ideas of von Neumann (1945).

Recent years have seen the classical metaphor implicitly challenged by

many changes in computer science. Firstly, the above paradigm shifts in ai

led to new modes of problem solving, often inspired by parallel, population-

based problem solving processes in natural and social systems. Secondly,

the complexity of present-day software increasingly forces the use of dis-

tributed techniques in software development, resulting in computer programs

that consist of many interacting components. Thirdly, the advent of con-

current programming methods introduced problems that had no equivalent

within the sequential paradigm. Finally, the practical use of computer sys-

tems has shifted gradually from calculators-of-some-result towards interac-
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tive machines that provide ongoing services without clear end-result. Stein

(1999) concludes from these developments that the computational metaphor

needs revision; she proposes a richer metaphor of computation-as-interaction:

computation regarded as an ongoing process, socially interacting with its end-

users, while the computational system itself can consist of many mutually

interacting, concurrently operating entities.

The influence of the classical computational metaphor did not remain

confined to symbolic ai and computer science. For many years – and even

predating the computational metaphor itself – the dominant view in neu-

roscience and connectionism has been one of individual neurons as simple

computational devices, calculating a non-linear output function of the sum

of their inputs. Although individual neurons are arranged into networks, the

emphasis in these older neural models has been mostly on the computational

aspects of individual cells, and not on their mutual interaction. Nasuto,

Dautenhahn and Bishop (1999) argue that, in light of many recent discover-

ies, this view does not capture the information-processing complexity of real

neurons: they seem to behave more like spatiotemporal filters, selectively

passing on certain signals, than as summation devices. Analogous to Stein’s

metaphor of computation-as-interaction, they propose a new metaphor for

brain operation and cognition in terms of communication, emphasising the

continuing interaction between neurons in the brain.

1.1.5 Context – Conclusion

The ideas outlined in the previous sections form the wider context – the epis-

temic framework – in which this work is embedded. It does not imply that

these topics will be treated much further: this thesis is not about consilience,

general selection theory, cybernetics, artificial intelligence, computer science

or metaphors per se. However, these concepts play a part in the following

sense: the author accepts the world-view of general selection theory, as op-
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posed to a world-view based on, for example, physical determinism. This

entails the acceptance of systemic consilience across a substantial part – if

not all – of the scientific spectrum. Reductionist consilience is not rejected

outright, but pure reductionism needs to be supplemented to understand the

emergence of novel properties at higher levels of complexity, in a similar sense

as proposed by Looijen (1999). By studying a class of very simple v+sr pro-

cesses and their mathematical models, it is hoped that this work will result

in a better understanding of such processes in the real world, making its own

modest contribution to the unification of scientific knowledge.

Cybernetics and complexity science often provide deep insights and useful

vocabulary. Many of the approaches from modern ai provide an interesting

perspective; lying at the intersection of these different approaches, the dis-

cussion hopefully contributes to the unification of the study of intelligence

itself. Finally, as a computational method the subject can be regarded as a

radical exponent of the new metaphor of computation-as-interaction.

1.2 Subject

The primary subject of this dissertation is Stochastic Diffusion Search (sds).

Throughout the pages, the term ‘sds’ will be used in a truly polymorphic

sense. This is comparable to the everyday usage of a word like ‘bread’:

sometimes it is used abstractly as a collective noun for all food that has flour

as main ingredient and is baked in an oven; in other situations it is used to

indicate one specific brand of large white, medium-sliced bread; or it is used

to designate one particular object as belonging to the category of bread.

Different properties of bread are emphasised under different circumstances:

for a baker, bread is a set of ingredients that need to be mixed together and

baked in an oven; for a shopkeeper it is a sales-item with a weight, a price and

a sell-by date; for a gourmand, the important properties are taste, texture

and freshness. For each of these examples, ‘bread’ is considered a subcategory
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of another category: a recipe, a sales-item, and a food-item.

Some of the properties of objects or categories are deemed essential : anything

that is not made with flour of some kind, is quite unlikely to be called ‘bread’.

Some properties are non-essential : for instance, the presence or absence of

salt in bread does not change its status of bread. Finally, many properties

– essential or non-essential – can assume a range of values : ‘weight’ is an

essential property of bread, but has a variable value.

What is essential and what is non-essential is often a matter of definition.

Indeed, as Kennedy et al. (2001, p8, p30) remark, categories are linguistic

conventions. Arguments about properties, or whether an object belongs to a

category, or whether one category is a subcategory of another can sometimes

lead to incessant discussions about the meaning of words. Whenever such

matters arise in this work, they will only be pursued to the degree of what can

be gained from assuming that something belongs to a certain category. This

does not mean that categories and taxonomies of categories are unimportant:

they are often fundamental in shaping scientific theories. However, it should

not be assumed that categories always have static, clear-cut boundaries.

The question “what is sds?” does not have a simple, straightforward

answer. Some philosophers, such as Popper (Magee, 1973, p34, p106), even

argue that questions of this kind are better not asked, since they rarely con-

tribute to the progress of science. However, two short answers provide a

good starting point for discussion: firstly, sds is an algorithmic process solv-

ing certain types of problems through search; secondly, as a computational

system, sds fits into the new metaphor of computation-as-interaction. The

discussion of these answers in Section 1.2.1 and Section 1.2.2 generates a new

set of questions that are essential for developing a full understanding of sds.

These questions will be laid out systematically in Section 1.2.3. The com-

bined answers to all these questions form the answer to the original “what

is. . . ?” question, and are provided – at least partially – in this dissertation.
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1.2.1 SDS as Algorithmic Process

First and foremost, sds is – what Dennett (1995) would call – an algorith-

mic process : a process described by an algorithm. Dennett, in his definition,

implied that algorithmic processes are not algorithms in the narrow sense at-

tributed to the word in theoretical computer science: procedures that spec-

ify with a finite number of instructions the transformation of some input

into an output, with the output fully determined by the input (Prasse and

Rittgen, 1998). Algorithmic processes often behave non-deterministically be-

cause of, for example, randomised steps within the procedure. Moreover, the

observable effects of algorithmic processes are not restricted to what the un-

derlying algorithm computes stricto sensu. For instance, chess programs are

not algorithms “for” winning games of chess; at most, they are algorithms

“for” deciding between legal chess moves. Winning a game – the ultimate

goal of a chess program – is a side-effect of the particular decision strategy

in combination with the moves made by the opponent.

This contrast is reminiscent of the distinction, often made in symbolic ai,

between algorithms and heuristics5 (Andrew, 1983): whereas an algorithm is

a set of instructions producing a definite result, heuristics are procedures for

discovery. They use prior knowledge to guide a search towards solutions to

a certain problem. Heuristics are methods which work most of the time, but

– in contrast with algorithms – are not guaranteed to work in every situa-

tion. The knowledge employed is usually very problem-specific, but recently

a number of more generic heuristic search methods, applicable to different

kinds of problems, have become popular in ai; they are often referred to as

metaheuristics. Some of them are inspired by the problem-solving capabili-

ties of algorithmic processes in natural and social systems.

sds is clearly a metaheuristic, and comparison with other metaheuristics

in Chapter 4 will confirm this point. However, ‘algorithmic process’ seems

5It is not implied here that algorithmic processes and heuristics are exactly the same.
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an equally appropriate term, even if – for reasons stated above – somewhat

confounding. It clearly emphasises the two sides of sds: the algorithmic

side and the process side. sds is not a deterministic algorithm, as it usually

contains several randomised steps.6 Hence, with ‘algorithmic’ is meant that

it is a mechanistic procedure, that it has a finite description in substrate-

neutral terms detailing its operation. However, to fully understand how

sds solves problems, the algorithmic description is not sufficient: sds is a

population-based algorithmic process ; it is to certain statistical regularities

that can be observed on the level of the population as a whole that problem

solving capabilities can be attributed.

1.2.2 SDS as a Metaphor for Computation

As an algorithmic process, sds can be used to solve certain problems using

computers. It does so in a radically different way from most other compu-

tational methods. In sds, the need for a total ordering of computational

steps, as in sequential programming, is rejected; instead, its operation is

intrinsically parallel and concurrent7. sds falls within the generate-and-test

paradigm of ai, but categorically rejects the need for complete testing of can-

didate solutions: it performs many partial evaluations in parallel and in no

specific order, and uses communication between the parallel search threads

to produce a solution on the level of the system as a whole. Consisting of

a population of interacting entities, sds clearly departs from the classical

computational metaphor of sequential computation, and exemplifies the new

metaphor of interaction-based computation.

6Although the procedure can be de-randomised under certain circumstances.
7Concurrent programs define only a partial ordering of computational steps (Burns and

Davies, 1993).
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1.2.3 A Roadmap of Questions

Even without specifying details of its operation, the short discussion of the

two answers to “what is sds?” already generates several new questions: what

kind of algorithmic processes in the natural world are similar to sds? Are

there any similar computational methods, particulary in modern ai? What

kind of problems does sds solve? What are its essential properties? How

should it be implemented? If sds can be regarded as part of the new com-

putational metaphor, then how exactly does it relate to the old one? Is the

new metaphor really an alternative for the dominant position of sequential

computation, or is its influence confined to a small number of applications?

All key questions about sds can be loosely organised in a few categories,

and, although they cannot be answered in complete isolation from each other,

this categorisation lays out a roadmap structuring the work presented here.

Not all questions can be answered conclusively in the course of this text; the

roadmap thus also attempts to provide a structure for future work, even if

the list is probably not definitive. There are four main categories: questions

about the foundations of sds, questions pertaining to mathematical analysis

of process behaviour and search performance, questions about practical ap-

plications, and questions about physical implementation. Finally, there is a

fifth category of meta-level questions about the study of sds itself.

Foundations

The foundational category is divided into three subcategories: questions

about different interpretations of sds, questions about algorithm and process

properties, and questions about applicability and usefulness.

Interpretations sds can be viewed from many different angles. In previ-

ous pages, it was already characterised as an algorithmic process and as a

form of interaction-based computation. Three questions arise from there:
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1. Which algorithmic processes in the real world are similar to sds?

2. What does it do? Which problems does it solve?

3. Where does it fit in as a computational method? Which computational

frameworks does it belong to and can it benefit from? As a stochastic

process, which analytical frameworks can be of use?

Properties Many alterations can be made to the original formulation of

sds. This realisation gives rise to two questions about algorithmic properties:

4. What are the essential algorithmic properties of sds? What distin-

guishes it from other, related search methods?

5. What are the choices that can be made within this framework of es-

sential algorithmic properties?

Executing the algorithm results in a stochastic process that has certain ob-

servable properties. This gives rise to the question:

6. What are the important process properties of sds? How are they in-

fluenced by the algorithmic properties?

Applicability Following from the answers to the questions about what sds

does, and what its essential properties are, two questions about its applica-

bility can be raised:

7. What kind of functions can be optimised in principle using only partial

function evaluations?

8. On what kind of problems can sds outperform other search methods?
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Analysis

sds can be thought of as a discrete-time stochastic process. Analysing this

process mathematically enables to understand and predict algorithmic per-

formance. Three questions can be discerned here:

9. In general, what would be the interesting behaviour to analyse?

10. Given the algorithmic properties, which behaviour can be analysed?

11. Which types of mathematical methods can be employed for modelling?

Applications

The reason of existence for any problem solving algorithm like sds is its

application to real world problems. A few questions are of interest:

12. What classes of concrete problems is it good for?

13. Given a problem description, how can the problem best be solved? Can

a generic algorithm-design methodology be developed?

Implementations

Given a certain problem description and a choice of algorithmic properties,

there are still several possible choices about the physical implementation:

14. How to write an efficient and/or reusable software implementation for

serial computers?

15. How to implement it on parallel computers or networks of computers?

16. Can it be efficiently implemented in programmable hardware?

17



17. Can it be implemented in application-specific integrated circuits?

18. Can some novel form of hardware be developed that is directly tailored

to the massively interconnected nature of sds?

Meta-Level Questions

Several questions can be asked about the history of sds, about how the study

of sds is conducted, and how it is useful for other scientific disciplines:

A. What is the history and origin of sds?

B. How much work has already been done? Which questions from the

roadmap have already been answered?

C. How can the study of sds benefit from progress in the scientific disci-

plines that it is related to?

D. How can these scientific disciplines benefit from the study of sds?

E. What is the future of sds-type methods?

1.3 Structure

Chapter 2 reviews the work on sds that preceeds this thesis. It describes

its origins, and explains the operation of the original variant – standard

sds – with a few simple examples. This concrete approach contrasts with

the abstract view that was presented in Chapter 1. In later chapters, the

abstract view will be gradually developed, in a top-down manner, into more

concrete ideas. Referring to the concrete examples of Chapter 2 makes this

top-down explanatory process significantly easier. The chapter also places

all previous work on sds within the framework of the roadmap. The chapter

thus answers meta-level questions A and B.
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Chapter 3 develops the abstract view of sds as an algorithmic process

into the view of sds as selective process. The first part of the chapter gives

an account of selective processes in natural and social systems. The second

part analyses mechanisms of variation and selective retention, and discusses

sds within this framework. The chapter provides an answer to question 1 of

the roadmap, and does so in the context of meta-level questions C and D.

Chapter 4 focusses on the problem-solving aspect of sds. It defines a

general terminology for discussing search problems, and gives an overview

of generic search methods. The problem-solving aspects of Chapter 2 are

recapitulated in the newly defined terminology, and sds is compared with

the other metaheuristics. The chapter mainly answers question 2 of the

roadmap. By placing sds within the framework of metaheuristics, it also

provides a partial answer to question 3.

Chapter 5 gives a general definition of sds by listing its essential al-

gorithmic properties, and the process properties that ensue from them. It

then proceeds by detailing the potential choices that can be made within the

framework of this general definition. The effects that algorithmic properties

have on process properties forms a recurring theme throughout the chapter.

The chapter provides answers to questions 4, 5 and 6 of the roadmap.

Chapter 6 discusses the applicability of sds. The first part demonstrates

how in principle all summation functions can be optimised with standard

sds. Furthermore, some ideas are given about applicability towards other

function types. The second part proposes measures and guidelines for estab-

lishing whether sds is applicable in practice, i.e., whether it can outperform

other search methods for particular types of problems. The chapter answers

questions 7 and 8 of the roadmap; some issues are left open to future analysis.

Chapter 7 gives an executive summary of the thesis and its contributions.

This summary forms a natural bridge to a discussion of possibilities for future

research on sds, and finally – meta-level question E – the future of sds itself.
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1.4 Conclusion

This introductory chapter has provided the contextual and structural frame-

work for the remainder of the thesis. Contextually, the most important

elements are the world-view of general selection theory – entailing systemic

consilience – and the approaches of modern ai. Structurally, the roadmap

leads from foundational to more practical questions about sds. It is espe-

cially the foundational issues that will be addressed in the following chapters.

sds itself has only been discussed briefly and rather abstractly: it has been

characterised as an algorithmic process and as an example of interaction-

based computation. Furthermore, a few important properties have already

been mentioned: sds is a randomised algorithm, intrinsically parallel, and

relying on partial evaluations and internal communication to solve problems.

In the next chapter, the discussion will assume a more concrete form, by

addressing some of the historical issues surrounding sds.
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Chapter 2

Stochastic Diffusion Search

Having set a contextual and structural framework in the previous chapter,

this chapter answers some of the historical questions about sds. Section

2.1 briefly outlines the algorithms that formed its inspiration. Section 2.2

describes in detail the operation and behaviour of standard sds – the original

variant – and illustrates this with some elementary examples. Finally, Section

2.3 situates earlier work on sds within the roadmap of Section 1.2.3.

2.1 Origins

sds has its origins in two methods for invariant pattern recognition, the task

of classifying a pattern or identifying it within a larger data structure, irre-

spective of the transformations it has undergone. Examples of such transfor-

mations are translation or shift, rotation, and isotropic or anisotropic scaling.

The first method is a sequential algorithm called Template Matching ; the sec-

ond is a connectionist model called Hinton Mapping.

Template Matching is most often used in the context of 2D image match-

ing. A template image is available and needs to be identified within a larger

input image. For each position that the template can assume in the input
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image and for each additional transformation it can undergo, the correlation

between the transformed template and the corresponding region of the input

image is calculated. The solution is simply the transformation yielding the

highest correlation. In its original brute-force formulation, the main disad-

vantage of this algorithm is the calculation of the entire correlation for each

admissible transformation, making it computationally intensive for large-

scale problems. Several modifications for reducing the workload have been

proposed, like sub-sampling of the template image (Nair and Wenzel, 1999)

or multi-resolution template matching (Rosenfeld and Vanderburg, 1977).

Although humans seem particulary adept at recognising patterns under

various kinds of transformations and distortions, invariance has long been a

fundamental problem for neural networks (Rumelhart and McClelland, 1987,

Chapter 4). Traditionally, it was assumed that man’s ability is due to a nor-

malisation process that occurs prior to recognition of the pattern, but it was

not clear how such normalisation could be made to work within the network.

Therefore, most neural networks (like those based on back-propagation) over-

come the problem by an external pre-normalisation of the input, forcing a

sequential component unto otherwise parallel methods. That connectionist

models can handle invariance at least in principle was demonstrated by Hin-

ton (1981). Hinton Mapping solves the problem by processing all admissible

transformations in parallel. Interactive activation and competition between

mapping units arranged in a network ensures that the transformation yielding

the best match will receive most activation. The network performs inverse

transformation to a normalised, object-based representation and recognition

simultaneously, without evaluating all transformations sequentially and ex-

haustively (see Figure 2.1). In terms of resources, the main disadvantage of

this model is that each admissible transformation needs one mapping unit in

the network, making it impractical for anything but demonstration purposes.

Bishop (1989a), Bishop and Torr (1992) and Nasuto (1999) describe in more

detail the analogies between Hinton Mapping and sds.
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Figure 2.1: Hinton Mapping: retina-based feature detectors are activated

by a 2D input pattern – a square rotated by 45°. Mapping units control a

set of channels (not all are shown) from retina units to normalised, object-

centred feature units. Channels are bidirectional and multiplicative: the

activity of retina units multiplied by the activity of mapping units activates

object-based feature units. In turn, the activity of object-based feature units

multiplied by the activity of retina units stimulates mapping units. Combina-

tions of object-based feature units stimulate object units, each representing a

particular object; object units, when activated, can further stimulate the con-

stituent object features. The positive feedback loops in the network produce

a runaway effect, mutually reinforcing those mapping and object units whose

combined activity is in agreement with the activity of the retina units. Neg-

ative feedback by means of competitive inhibition between units (not shown)

suppresses the activity of less successful object and mapping units.
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Template Matching and Hinton Mapping can be regarded as diametrical

opposites: sequential Template Matching suffers from long running times

for practical problems, whereas parallel Hinton Mapping has large memory

requirements. Bishop (1989a; 1989b) proposed sds as the middle ground

between these two extremes by adopting characteristics from both methods.

2.2 Standard SDS Operation

2.2.1 Problem Description and Terminology

In the original invariant pattern matching description of sds, a number of

agents process information from the search space in order to identify the best

match to a specified target pattern. Search space and target pattern need to

be decomposable into micro-features from a pre-defined set or alphabet. For

instance, in a simple 1D string matching problem both the search space

and target string are composed of a one-dimensional list of characters. In

a 2D image matching problem where target and search space are grey-scale

bitmap images, micro-features could be (naively) thought of as single pixels;

alternatively, if some form of feature extraction is applied to the images, then

higher level features like lines, angles, semicircles etc. could be used as well.

Micro-features of target and search space do not need to be from the same

alphabet: the aim in 3D object recognition is to identify an object, specified

by a 3D model, in a 2D image. Micro-features from the search space could be

pixels or lines, whereas micro-features from the target could be the polygons

used in the 3D representation of the object.

During operation each agent maintains a hypothesis about the correct

solution – the transformation producing the best match between target and

search space. For example, in 1D string matching, the hypothesis could be a

single parameter x, indicating the position of the first character of the target
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string in the search space. In a 2D image matching problem, the hypoth-

esis could be a vector (x, y, θ, s), describing the x and y position, rotation

θ and isotropic scaling s of the target in the search space. Specification

of all admissible domain values for these hypothesis parameters defines the

solution space in which each point corresponds to a set of transformation

parameters mapping the target into the search space. A measure of similar-

ity between the mapped target and the corresponding micro-features from

the search space, defined over all points of the solution space, forms an ob-

jective function. Searching for the target in the search space can thus be

translated into an optimisation problem in the solution space: finding the

global maximum of the objective function; an example of such an objective

function can be seen in Figure 2.5 (p35). Building an explicit representation

of the entire objective function or searching the solution space exhaustively

is often unfeasible. This would practically be equivalent to brute-force Tem-

plate Matching. In sds individual agents never calculate values of the objec-

tive function explicitly. In each iteration, agents evaluate a hypothesis only

partially by comparing one or a few micro-features from target and search

space. Through repeated communication they share information about the

perceived quality of a hypothesis, and also the hypothesis itself. Good hy-

potheses are evaluated and communicated more frequently, and clusters of

agents with a common hypothesis start to form. The solution to the opti-

misation problem can eventually be identified from these clusters. Although

the computational abilities of agents are insufficient to allow them to decide

on the optimal solution individually, sds as a system eventually discovers

the optimal solution.

2.2.2 Algorithmic Description of SDS

Agents in the original sds algorithm operate synchronously. They undergo

various stages of operation, which are summarised in Table 2.1.
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Initialise(Agents);

repeat

Test(Agents);

Diffuse(Agents);

until (Halting Criterion)

Table 2.1: Standard sds operation.

Initialise As a first step, agents’ hypothesis parameters need to be ini-

tialised. Different initialisation methods exist, but their specification is not

needed for the basic understanding of the algorithm.

Test All agents evaluate their hypothesis by randomly selecting one or a

few micro-features from the target, mapping them into the search space using

the transformation parameters defined by their hypothesis, and comparing

them with the corresponding micro-features from the search space. Based on

the outcome of the comparison, agents are divided into two groups: active or

inactive. Active agents have successfully located one or more micro-features

from the target in the search space; inactive agents have not. The test phase

is described in pseudo-code in Table 2.2.

for agent = 1 to All Agents

mf1 = Pick-Random-MF(target);

mf2 = Find-Corresponding-MF(mf1,agent.hypothesis);

if (mf1 == mf2)

agent.activity = TRUE;

else

agent.activity = FALSE;

end

end

Table 2.2: Test phase with comparison of a single micro-feature.
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Diffuse During the diffusion phase, each inactive agent chooses at random

another agent for communication. If the selected agent is active, then the

selecting agent copies its hypothesis: diffusion of information. If the selected

agent is inactive, then there is no flow of information between agents; instead,

the selecting agent adopts a new random hypothesis. Conversely, active

agents do not start a communication session in standard sds.

for agent = 1 to All Agents

if (agent.activity == FALSE)

agent2 = Pick-Random-Agent(Agents);

if (agent2.activity == TRUE)

agent.hypothesis = agent2.hypothesis;

else

agent.hypothesis = Pick-Random-Hyp();

end

end

end

Table 2.3: Standard sds diffusion phase.

Halt Several halting criteria exist; their specification is not needed for the

understanding of the algorithm and will be postponed until a later chapter.

2.2.3 From Agent Operation to Population Behaviour

The algorithmic description of individual agent operation is insufficient to

understand how sds solves optimisation problems. Therefore, it is neces-

sary to consider what happens with the population as a whole. By iterating

through test and diffusion phases individual agents explore the whole solu-

tion space. Since tests succeed more often in points in the solution space

with a good match between target and search space than in regions with a
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poor match, agents will spend on average more time examining high-quality

solutions, at the same time attracting other agents, which in turn attract

even more agents. This positive feedback ensures that potential matches are

identified by clusters of agents at certain points in the solution space.

2.2.4 Examples

A few examples will clarify the differences between individual and group-level

behaviour: the first example, finding a particular playing card in a deck of

cards, describes step-by-step the algorithmic operation of a small number

of agents. The second example, a more realistic image matching problem, is

used to illustrate the overall search behaviour of a large population of agents.

The Queen of Hearts

The task of finding a target pattern in a search space is analogous to finding a

desired object among a set of objects. Consider the example of finding a par-

ticular card among the five playing cards depicted in Figure 2.2. Each playing

card is unambiguously described using two properties (micro-features) that

can be evaluated separately: ‘type’ and ‘value’. The domain values for ‘type’

are ‘hearts’, ‘diamonds’, ‘spades’ and ‘cups’. The possibilities for ‘value’ are

‘ace’, ‘two’ ... up to ‘ten’, ‘jack’, ‘queen’ and ‘king’.

Figure 2.2: Find the Queen of Hearts among these five playing cards.
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The solution space consists of the set {1, 2, 3, 4, 5}, the position of each

of the five cards in Figure 2.2 counting from the left. The task is to find

the Queen of Hearts, card number 4. All agents are inactive at the start

and initialised with a randomly chosen hypothesis from 1 to 5. In the test

phase, each agent randomly evaluates either the type or the value of the card

indicated by its hypothesis. If the type is ‘hearts’ or the value is ‘queen’, then

the agent will be in state active during the next diffusion phase. In all other

cases, the agent will be inactive. In the diffusion phase, each inactive agent

contacts one randomly chosen agent. If the contacted agent is active, the

selecting agent copies the hypothesis from the contacted agent. Otherwise,

the selecting agent generates a new random hypothesis. The algorithm halts

when all agents are active. In the following step-by-step description 3 agents

are used. Tables 2.4 to 2.10 provide all the details.

Agent Card Property State

1 3 type inactive

2 1 type inactive

3 5 value inactive

Table 2.4: Agents at the end of the first test phase. No agent evaluated

type=‘hearts’ or value=‘queen’, so all of them remain inactive.

Agent State Contact New card

1 inactive 2 4

2 inactive 1 2

3 inactive 1 1

Table 2.5: Agents at the end of the first diffusion phase. Each agent contacted

another inactive agent, thus randomly generated a new hypothesis.
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Agent Card Property State

1 4 value active

2 2 type inactive

3 1 value inactive

Table 2.6: Agents at the end of the second test phase. Agent 1 evaluated

value=‘queen’ and becomes active. Agent 2 evaluated type=‘diamonds’ and

agent 3 evaluated value=‘jack’; both agents remain inactive.

Agent State Contact New card

1 active – –

2 inactive 1 4

3 inactive 2 5

Table 2.7: Agents at the end of the second diffusion phase. Agent 1 was active

and did not start a communication session. Agent 2 contacted active agent

1 and copied its hypothesis: diffusion of information. Agent 3 contacted

inactive agent 2 and generated a new random hypothesis.

Agent Card Property State

1 4 type active

2 4 value active

3 5 type inactive

Table 2.8: Agents at the end of the third test phase. Agent 1 evaluated

type=‘hearts’ and agent 2 evaluated value=‘queen’; both are now active.

Agent 3 evaluated type=‘spades’ and remains inactive.
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Agent State Contact New card

1 active – –

2 active – –

3 inactive 2 4

Table 2.9: Agents at the end of the third diffusion phase. Agents 1 and 2 are

active. Agent 3 contacted active agent 2 and copied its card number.

Agent Card Property State

1 4 value active

2 4 value active

3 4 type active

Table 2.10: Agents at the end of the fourth test phase. All agents evaluated

value=‘queen’ or type=‘hearts’ and are now active. All of them have as

hypothesis card 4, the Queen of Hearts.

Stereo Matching on Mars

This section presents an example of standard sds behaviour on an elementary

image matching problem. The task is to locate the small image of Figure 2.3

within the larger left and right stereo-pair images.1 The inset is taken from

the left image; a perfect match between some part of the left search space and

target can thus be expected. Due to a slightly different camera position, the

target cannot be expected to have a perfect match in the right search space.

Suitable micro-features are generated using a sampling method similar to

the one used in (Bishop and Torr, 1992) (see Figure 2.4 for details). Only

1The method, although using real images, does not attempt to be a robust stereo

matching algorithm. Rather, it is used to generate some interesting objective functions,

more interesting than can be easily generated in an artificial manner.
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translational transformations in two dimensions are taken into account. The

transformation parameters (x, y) indicate the position of the top left corner

of the target window in the search space. The objective functions over the

left and right solution spaces are shown in Figure 2.5; they are generated

by counting the number of micro-features in common between the target

and the equally sized and sampled window with top left corner (x, y) in

the larger image. The values of the objective function at each point in the

solution space divided by the total number of micro-features give the relative

frequency with which tests of that hypothesis result in agents being active:

this is the test score. The objective functions are rather flat with an average

over the whole solution space of approximately 25% of the maximum value

and a sharp, single peak of higher values close to the correct solution.

The search behaviour of a population of 1000 agents for 1000 iterations

is shown in Figure 2.6. Depicted are the total number of active agents at

each iteration, and the number of active agents supporting the optimal hy-

pothesis. The left graph corresponds to a search of the left solution space

in Figure 2.5, where a perfect solution exists. The search behaviour of the

system can be divided into distinct stages: at the start of the search, activ-

ity fluctuates around 280 agents; this is the background activity, caused by

the overall level of the objective function. After 80 iterations, a reasonable

solution is discovered, and activity suddenly increases to 500 agents; this

is called a convergence stage. Shortly thereafter, a new convergence stage

occurs, and activity jumps to and stabilises around 700 agents. The system

can be said to have converged upon the solution. The stable stage is termed

quasi-equilibrium in (Nasuto, 1999). Activity rarely ventures far from this

quasi-equilibrium value, unless a better solution is discovered. Just before it-

eration 200, the correct solution is discovered, and all agents converge rapidly

upon that one. During the entire search, the system automatically allocates

resources to solutions in a manner dependent on their quality: the better

the quality of a match, the more resources are allocated to the corresponding
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Figure 2.3: Stereo pair of images from Mars Explorer. The small inset is

the target pattern to be identified within the two images, and is taken from

the left image. The resolution of the large images is 248 ∗ 256 pixels, the

resolution of the target image is 40 ∗ 40.

solution. A dynamical balance between a further exploration of the search

space and exploitation of already discovered good solutions emerges from

interaction between agents and interaction of agents with the environment.

The right graph of Figure 2.6 corresponds to the right solution space, and

has only approximate matches. Here too, different convergence and quasi-

equilibrium stages are present. Around iteration 550 the optimal match is

discovered, attracting most but not all of the resources. A small percentage

of the agents remain exploiting suboptimal matches, whereas a larger fraction

keep exploring the search space for possible improvements.
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Figure 2.4: Generating suitable micro-features from grey-scale pixel values.

Minchinton cells (Bishop et al., 1990) transform the 8-bit grey-scale values

of the pixels into binary values: each cell takes two randomly chosen pixels

as input; if value A > value B, then the output of the cell is 1, else it is 0.

These binary outputs are then used as address lines into an n-tuple network

(Aleksander and Stonham, 1979) with ram of size 2: a ‘1’ is stored at the

location addressed by two Minchinton cells taken together. Even though

this is an unusual way of using n-tuple networks (the sampling can hardly

be called training of the network since only one image is available), it still

provides some generalisation and results in more suitable micro-features than

the output of single Minchinton cells. Furthermore, although a ram consists

of 4 memory locations, it contains only a single ‘1’. It can thus be represented

by a number from 0 to 3, designating the memory location where the ‘1’ is

stored. The 1600 pixels from the target are sampled by 1600 Minchinton

cells, resulting in 800 ram that can assume values from 0 to 3. These form

the micro-features of the image matching problem.
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Figure 2.5: Objective functions obtained by matching of the target with left

and right images of Figure 2.3 for all possible (x, y) values. The target image

consists of 800 micro-features, as explained in the caption of Figure 2.4. The

left objective function has a maximum of 800, corresponding to the perfect

match; the right objective function has a maximum of 565, corresponding to

a test score of 0.71. The size of the solution space is 208 ∗ 216 = 44928.
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Figure 2.6: Search behaviour of a population of 1000 agents for 1000 iter-

ations on the left and right objective functions of Figure 2.5. Depicted are

the total agent activity and the number of agents supporting the optimal hy-

pothesis. During each test phase, each agent compares a single micro-feature

from the target with the corresponding micro-feature of the search space.
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Some positive and negative aspects of sds are already apparent from

these simple experiments: standard sds devotes most of its resources to the

best match discovered so far. This is good when one is only interested in

the best solution, but less desirable if also suboptimal solutions are of in-

terest. When waiting long enough, standard sds will always converge upon

the optimal match. However, it is possible that for long periods of time, the

system will focus on a suboptimal solution. This is mainly because standard

sds does not use an explicit hill-climbing mechanism. This is a strength as

well as a weakness: it makes sds a good choice for search problems without

useable gradient information in the objective function; however, the down-

side is that standard sds has no way of improving on a solution other than

discovering a better one by chance. A suboptimal solution can even hinder

system performance, by attracting some of the system’s resources and pre-

venting them from discovering better solutions. In spite of this, the computa-

tional gain relative to ordinary Template Matching should be obvious: it took

44,928 positions ∗ 800 micro-features = 35,942,400 comparisons to generate

the complete objective functions of Figure 2.5, whereas even the naive and

straightforward 1,000 iterations by 1,000 agents require 1,000,000 compar-

isons (and with a suitable halting criterion convergence can be determined

even earlier). The number of agents needed is only weakly dependent on the

properties of the target and search space: the use of 100 or 2000 agents would

have given qualitatively similar behaviour. It is thus less memory intensive

than Hinton Mapping that would have needed 44,928 mapping units.

2.3 Previous Work on SDS

In accordance with the road map proposed in Section 1.2.3, all the previ-

ous work on sds can be discussed along the four main avenues: foundations

(Section 2.3.1), analysis (Section 2.3.2), applications (Section 2.3.3) and im-

plementations (Section 2.3.4).
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2.3.1 Foundations

Foundational questions concerning sds have not received much systematic

treatment so far. The most complete overview of interpretations was given by

Nasuto (1999), linking sds to the domains of pattern matching, randomised

search and optimisation algorithms, and multi-agent architectures. An in-

teresting resemblance between attentional phenomena in sds and attentional

processes in the brain has been explored in (Nasuto and Bishop, 1998; Bishop

and Nasuto, 1999; Nasuto et al., 1999; Summers, 1998). This work led to

the implementation of sds in a neural architecture with biologically inspired

neurons (Nasuto et al., 1999; De Meyer, Bishop and Nasuto, 2000; Morey,

De Meyer, Nasuto and Bishop, 2000). Emergent synchronisation across a

large population of neurons in this network can be interpreted as a mecha-

nism of attentional amplification (De Meyer et al., 2000); the formation of

dynamic clusters can be interpreted as a mode of dynamic knowledge repre-

sentation (Bishop, Nasuto and De Meyer, 2002).

Many variations on standard sds have been proposed: Grech-Cini (1995)

describes the secret optimist, an agent that does not always discard a hypoth-

esis after a failed test; and the hermit, an agent that does not always want

to communicate a seemingly good hypothesis to other agents. Nasuto (1999)

proposes two modified diffusion mechanisms: in context-free sds, each active

agent communicates during the diffusion phase with one randomly chosen

agent and switches to inactive when the other agent is also active; in context-

sensitive sds, an active agent switches to inactive if the contacted agent is

active and additionally maintains the same hypothesis. Both mechanisms re-

sult in a substantially different resource allocation. Beattie (2000) introduces

focused sds, a mechanism that does not attempt to find the best solution

directly, but instead seeks the region in solution space that contains good

solutions and then focusses on a correct solution by sub-dividing the region

into ever smaller parts. To this end, many new features are introduced into

the operation of the algorithm, the most important of them the focus level, a
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parameter that dynamically alters aspects of the testing phase. Hurley and

Whitaker (2002) use a similar strategy of repeated self-focusing runs. Other

variations have also been investigated: not communicating activity states, or

asynchronous instead of synchronous operation (De Meyer, 2000).

In lattice sds, inter-agent communication is restricted to a limited number

of neighbours, with as main rationale a more efficient implementation in sil-

icon hardware. The effects of such restrictions on the resource allocation

properties are investigated in (De Meyer, Bishop and Nasuto, 2002), which

is included in Appendix A.5 (p157).

The only work to date addressing the question of what type of solution

spaces or objective functions sds is good for is Grech-Cini’s (1995). He

argues that sds is useful in large spaces with little or no surface information

in the objective function to guide a search towards a correct solution. He

also proposes a systematic method to check whether the objective function

of a specific matching problem is suitable for sds: correct solutions should

have test scores higher than a certain threshold rc, where rc is dependent on

the test scores of all incorrect solutions (see also Equation 2.1).

2.3.2 Analysis

Bishop (1989a) investigates sds performance with a mixture of probabilistic

reasoning and simulations. The number of agents in his description is fixed

to the number of micro-features in the target. Results are mostly reported

in terms of the time ratio, the ratio of target size to solution space size. In

the general case, when the number of agents differs from the target size, the

important factor is the ratio of number of agents to solution space size.

Bishop and Torr (1992) give a proof of convergence in case of no noise and

infinite alphabet size. The proof is based on the formulation of the homoge-

neous Markov Chain describing system behaviour under these conditions.

Grech-Cini (1995) develops a probabilistic model to investigate the critical
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response, the minimal test score for which a point in the solution space can

attract a cluster of agents, given the background response of the whole so-

lution space. For background response rb, the critical response is given by:

rc =
1

2− rb

(2.1)

Sustainable, stable populations cannot form at locations with r < rc. Al-

though it was later shown by Nasuto (1999) that even at these locations

transient, short-lived populations can form, rc effectively forms a critical

signal-to-noise ratio of what can be easily detected and what not.2

An interesting property investigated empirically in (Grech-Cini, 1995) is the

efficiency of sds: the average number of micro-feature evaluations before

convergence. For the specific problem described in (Grech-Cini, 1995), the

system has an efficiency equivalent to 5.2 tests per admissible transforma-

tion, independent of the size of the target.

Analysis of some important properties of sds was completed using Markov

Chain theory and Ehrenfest Urn models. Nasuto and Bishop (1999) prove

convergence of all agents to the correct solution in the presence of one perfect

match and in absence of noise; and also prove that in other situations, conver-

gence can be understood as approaching an equilibrium in a statistical sense.

Nasuto, Bishop and Lauria (1998) prove the convergence time of standard

sds to be sub-linear in solution space size in absence of noise. Nasuto (1999)

develops a general model for the resource allocation of standard, context-free

and context-sensitive sds. Expressions for the mean and standard deviation

of the overall activity in steady state are derived for various problem set-

tings. The byproduct of the model is the generalisation of convergence (in a

statistical sense) to the optimal solution in noisy search spaces.

2In fact, all states of the Markov Chain describing standard sds are transient when no

perfect matches are present; this means that all clusters are transient and would disappear

given a long enough time period. However, the system behaves very differently on either

side of rc, suggesting that the notions sustainable and transient apply at least in practice.
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2.3.3 Applications

Bishop (1989a) describes the application of sds to two types of problems:

locating an array of m digits in a search space of M digits; and classification

of an image of m micro-features into 1 of M classes.

The first real-world application of sds was to locate eyes within grey-scale

images of human faces (Bishop and Torr, 1992). The method consisted of a

combination of sds with an n-tuple network (Aleksander and Stonham, 1979)

as a pattern classifier or low-level feature extractor. The system attained per-

fect performance on the data on which it was trained, and 60% performance

on unseen data; its performance was not limited by sds itself but by the

rejection and generalisation characteristics of the n-tuple classifier.

The same combination of n-tuple classifier and sds was used by Grech-Cini

(1993; 1995) for the tracking of the eye-nose region in video images of human

faces (the location of the mouth region was inferred relative to the location

of the eye-nose region). After a good but maybe suboptimal solution is iden-

tified by sds, it is refined using a hill-climbing algorithm. The combination

of the three systems was found to be fast and very reliable.

Beattie and Bishop (1998) and Beattie (2000) developed the Focused Stochas-

tic Diffusion Network to handle the very large solution spaces of the self-

localisation problem of an autonomous wheelchair. They report a set of re-

sults for simulated and real environments. For the largest, most-demanding

industrial environment, the system located itself accurately in 58% of the

trials and was robust to environment noise. Closer inspection of the results

reveals that the system suffers from a well-known problem in robotics, percep-

tual aliasing : the problem that distinct places look the same to the robot’s

limited perception apparatus.

Hurley and Whitaker (2002) apply the main principles of sds to a problem

outside the pattern matching domain: site selection for wireless networks.

These are problems with costly objective functions, and eliminating the need

for complete evaluations has a great potential of reducing solving times.
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2.3.4 Implementations

Although sds is inherently parallel, most applications so far have been im-

plemented in software on single serial computers. Only once has it been

implemented on a multi-processor machine (Morey et al., 2000). The main

purpose of that implementation was not speed nor efficiency, but results in-

dicate that assigning a single agent to each processor leads to communication

overhead that could make the process run slower than on a serial machine.

2.4 Conclusion

This chapter has answered some of the historical questions about sds, in

particular meta-level questions A and B from the roadmap in Section 1.2.3.

It has also concretised the abstract discussion of the previous chapter by

explaining in great detail the operation of standard sds. Leaving these details

aside, the main principles of sds can be recapitulated: it is a population-

based, randomised algorithmic process. The algorithm relies on partial rather

than complete evaluations of hypotheses, and on sharing of information about

the quality of hypotheses. An observer looking at the system as a whole

perceives behaviour – the clustering of agents in certain points in the solution

space – that was not explicit in the algorithmic description of individual

agent operation, but can only be understood when probabilistic arguments

are taken into account. It is to this behaviour on the population level that

problem solving capabilities can be attributed.

In the next chapter it will be argued that many biological and social

systems operate according to similar algorithmic processes. It forms a first

step towards a structured and wider understanding of what sds is.
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Chapter 3

Selective Processes in Natural

and Social Systems

Whereas the previous chapter focused on the historical context of sds, this

chapter is concerned with part of the wider scientific context: it discusses

processes in a number of natural and social systems that consist, just like

sds, of many interacting entities. These systems are implemented in a variety

of physical substrates, but their operation can be abstracted into algorithmic

descriptions that have several elements in common. Each of these algorithmic

processes also has elements in common with sds on one or more levels of

abstraction. Although the different levels of abstraction or perspectives of

observation are not independent from one another, and although it would be

impossible to disentangle them, it is useful to understand what they are:

1. The algorithmic description of individual behaviour: it is abstracted

from the physical implementation and substrate-neutral.

2. The group dynamics perspective: the dynamical process on a collective

level that is the result of actions and interactions of individuals.

3. The historical perspective: the long-term picture of historical change

on the system level.

42



4. The problem solving perspective: individuals and the system as a whole

can be regarded as solving certain problems. The problems solved by

the system can be different from the ones solved by individuals.

There are several reasons for addressing the relevant details of these pro-

cesses. They will be treated at length in Section 3.8, but are outlined here:

1. Discussing these processes provides a partial answer to question 1 from

the roadmap in Section 1.2.3: “What does sds resemble?”

2. Meta-level questions C and D from the roadmap suggest two reasons:

answers to question 1 indicate where to look for possible answers to

other questions from the roadmap. Conversely, answers developed in

the study of sds can be of use in the fields of study described here.

3. Discovering common mechanisms of operation on different levels of bi-

ological and social organisation is an example of systemic consilience.

This consilience can be used to generate hypotheses about the operation

of other, less-well understood systems, and result in the specification

of reductionist research programs to investigate these hypotheses.

4. With seemingly similar mechanisms operating at different levels of bi-

ological and social organisation, the more fundamental question arises

of why this is the case. Dependent on the answer to that question, it

can be argued that these mechanisms should be applied more system-

atically. Understanding how they work can provide safeguards against

improper use and wrongful application.

The processes in the following sections are described in as much detail

as necessary in the context of this work, meaning that they are simplified to

a large extent. Moreover, certain processes are not covered at all; this can

be for several reasons: they could be less relevant, similar to other processes

that have been covered, less-well studied by the scientific community, or
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unknown to the author. The descriptions that have been included, though,

have the intent of conveying the message that many real-world systems have

fundamental principles of operation in common, and that knowledge of those

common principles is of substantial interest in the study of sds.

Section 3.1 starts with the process that is the precursor to all others in

a historical sense: biological evolution. Following this, Section 3.2 describes

the immune system’s response to intruders in the animal body. Section 3.3

then takes a look at how and when diseases spread through a population of

individuals. Section 3.4 details the recruitment behaviour in integrated soci-

eties of social insects. Section 3.5 briefly describes processes of cultural and

social change. After these accounts of processes in natural and social sys-

tems, Section 3.6 then highlights what all of them have in common. Section

3.7 discusses how these common principles relate to the operation of sds.

Finally, Section 3.8 reviews the four reasons for undertaking the chapter in

the first place.

3.1 Biological Evolution

The diversity of living organisms and their often astonishing adaptations to

surrounding environments are thought to be the results of the process of

Darwinian evolution – adaptation through natural selection.1 Prior to Dar-

win’s publication of The Origin of Species in 1859, the prevailing doctrine

stated that the Creator had designed each and every species for a particular

purpose, ruling out the possibility of evolutionary change of the original cre-

ation. In The Origin of Species, Darwin argued for the existence of evolution

in the natural world, resulting in the diversity, but also in the genealogical

connection among all earthly organisms. He also proposed a mechanism –

natural selection – to explain the causes of evolutionary change.

1Unless specified otherwise, this section is based on (Campbell and Reece, 2002).
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Darwin had not been the first to perceive the existence of evolution; half

a century earlier, Lamarck had published Philosophie Zoologique, propos-

ing a theory of evolution through the inheritance of acquired characteristics

(Barthélemy-Madaule, 1979). In this concept of heredity, an individual or-

ganism can undergo modifications during its lifetime (through the effects of

use and disuse of organs) and pass them on to offspring. Selection mecha-

nisms did not occupy any significant position in Lamarck’s theory, but they

are not necessarily incompatible with his mechanism of inheritance. How-

ever, Weismann’s discovery in 1883 of the barrier between somatic and germ

cells in sexually reproducing multicellular organisms rules out the possibil-

ity that modifications occurring in somatic cells during an organism’s life

can be transferred to the germ cells that are responsible for reproduction.

Since then, it has become widely accepted that Lamarckian inheritance is

impossible in the physical substrate of the biological reproduction process.

3.1.1 Natural Selection

The theory of natural selection is based on a few simple observations: firstly,

that all living organisms produce more offspring than can possibly survive on

the limited resources of the environment. Secondly, that individuals within a

population vary extensively. Thirdly, that much of this variation is heritable.

From these facts Darwin inferred that, since only some offspring can survive,

the survivors are more likely to be those variants that are better adapted

to the conditions of the local environment. If those variations are heritable,

they will be passed on to organisms of the next generation. Over time, better

adapted variants will become more and more prevalent, and the population

will, on average, become better adapted to local conditions. Different local

conditions lead to the prevalence of different variants in different locations,

and eventually to the formation of distinct species. In short: differential suc-

cess in survival and reproduction on the individual level leads to adaptation

of the population, and eventually to evolution into distinct species.
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The mechanism of inheritance and the causes of variation were unknown

in Darwin’s age. It was not until much later that their molecular basis

was uncovered: genes form the discrete units of inheritance. They are the

functional parts of dna molecules in the organism’s cell(s) that (indirectly)

specify cell development and operation and thus affect the characteristics of

the organism. An organism passes its dna on to its offspring through asex-

ual or sexual reproduction. With some minor exceptions, inheritance seems

to be solely based on the replication of dna in the reproduction process,

confirming Weismann’s hypothesis and ruling out Lamarckian inheritance.

Genetic variation – and hence: variation in characteristics – is generated by

two random processes during reproduction: mutations arise from copying er-

rors during the replication process of a dna molecule. It is the only process

that gives rise to new types of genes. They can change a single base in the

dna molecule (point mutations) or affect larger parts. Mutations are rare in

general and most of them have either negative or no effects on the survival

and reproduction chances of an organism. Occasionally, however, a mutant

gene makes its bearer better adapted to the environment and improves its

reproductive success. The second random process, sexual recombination, oc-

curs, in conjunction with mutation, in many multicellular species. Sexually

reproducing organisms give rise to offspring that have unique combinations

of genes of the two parents. Recombination does not introduce new genes

into the gene pool – the total set of genes present in a population at a cer-

tain moment. It merely shuffles and randomly deals genes of both parents to

determine the genetic makeup of the individual. Its primary evolutionary ad-

vantage is thought to lie in an increased resistance to parasites (Ridley, 1994).

The natural selection process has different effects on different timescales.

On a generation-to-generation timescale, a change in gene frequencies in the

gene pool can occur through the combined effects of random fluctuations,

mutation, and natural selection. This is evolution on the smallest scale, and

therefore often referred to as micro-evolution. The cumulative effect of all
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those small changes over long periods of time, together with the effects of

exposing populations to different environmental conditions, leads to diverging

morphologies and the formation of new species. Over even larger time spans,

it is thought to account for the historical diversity of bio-organic life. This is

evolution on a grander scale: macro-evolution. Whether random mutations

and natural selection are sufficient to generate this diversity is highly debated,

but not a critical issue in the context of this work.2

Primary interest goes to the effects of natural selection on a micro-

evolutionary timescale: the fluctuation of gene frequencies in the gene pool.

At any given moment, a number of alleles (different variants of a gene) can

be present in the gene pool of a population. One of these alleles might be

fitter than others, because the organism endowed with it is better adapted

and has a higher chance of surviving until it can reproduce.3 Such an allele

is more likely to add copies of itself to the gene pool than less fit alleles, and

over time it will become more and more prevalent.

By itself, natural selection would soon push most of the less viable alleles out

of the gene pool. Competition for limited environmental resources has the

effect that individuals carrying a weaker allele are more likely to die before

reproduction can take place. Whereas mutation introduces variation into the

gene pool, selection reduces it. However, additional aspects of the physical

implementation of the reproductive process can preserve variation; they are

based on the fact that most multicellular organisms have two or more copies

of a specific gene. It allows some of the variation to be “hidden” from selec-

tive pressures. In other cases the combination of two different alleles might

benefit its bearer more than the possession of two identical alleles.

In order to better understand the adaptive side of the natural selection

process, it can be useful to visualise it as individuals living and reproducing

2Dennett (1995) gives an overview of many criticisms; he either rejects them as irrele-

vant or accepts them as refinements of the original theory of natural selection.
3There exist genes that influence replication in different ways.
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on a rugged surface of selective values or fitness landscape. Such landscapes

have been used both as metaphor and analytical tool, with fitness values a

function of either genes or characteristics (Cruzan, 2001). The higher the

value or fitness of individuals, the more they contribute on average to the

gene pool of the next generation. Individuals constitute points on the land-

scape, and populations form clouds of points. Adaptation can be regarded

as a population moving gradually towards a nearby peak on the landscape.

Although natural selection can improve the average fitness of a population,

it does not create perfection. Biological evolution is strongly constrained

by its own historical course: mutations and selection cannot easily build

complex structures from scratch, but adapt existing structures to new situ-

ations. Moreover, adaptations are often compromises to the many different

conditions faced by an organism during its lifetime.

3.1.2 Summary

The relevant aspects of natural selection operating on bio-organic entities

can be summarised as follows:

� Individual organisms can vary with respect to their genetic make-up.

This leads to variation in the characteristics of the organisms.

� Some genetic variations are more advantageous to its carrier than oth-

ers. These become more prevalent in the gene pool of a population.

Variations that are less favourable tend to disappear.

� Variation is introduced by mutation and reduced by selection. Other

aspects of reproduction can preserve variation.

� The population adapts to the local environment.
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3.2 Vertebrate Immune Systems

Biological evolution has not produced a variety of species evolving in isolation

from each other, but has shaped an intricate and constantly changing web

of interdependent organisms. One such interdependency is that of parasites

needing the resources and reproductive mechanisms of host organisms for

their own reproduction. The environment contains a multitude of microbes

that can infect and disrupt the metabolism of specific organisms, leading to

disease and, if left unchecked, eventually to the death of the host. There

is no malice involved on the part of the parasites; they do what they do

well because natural selection favours genes that are good at replicating,

whatever the means. On the part of the hosts, selection responds by favouring

organisms capable of defending themselves against such attacks. Parasites

then are under selective pressure to evolve mechanisms that evade these

defenses, in turn giving rise to hosts with even more effective defenses. At

the same time, natural selection also has a preference for less lethal parasites

(Stolley and Lasky, 1995, p208). Indeed, a parasite that kills its host too

quickly might die with it before being able to spread to other susceptible

hosts, and is thus not very effective at reproducing. This co-evolutionary

process leads to a dynamical balance between the efficiency of attack and

defense mechanisms, a process known as the Red Queen effect (Ridley, 1994).

The most sophisticated defense mechanisms against parasites can be

found in the vertebrae.4 The vertebrate immune system consists of a rel-

atively small set of rather general, non-adaptive mechanisms, called innate

immunity. It also comprises a very large number of specific immune defenses:

acquired immunity. Instead of evolving new defenses every time parasites es-

cape the guard of the old mechanisms, natural selection shaped a highly

diversified and adaptive mechanism that can recognise and improve recogni-

4The material in this section is based on (Campbell and Reece, 2002, Chapter 43) and

(Roitt, Brostoff and Male, 2001).
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tion of an enormously wide variety of micro-organisms. The adaptive immune

system is modified through exposure to certain parasites over the life span of

an individual animal, but no evidence suggests that these modifications are

passed on to offspring, as in Lamarckian inheritance.

Any immune response to infection involves two tasks: firstly, recognition

of the intruder, and secondly a reaction to eliminate it. This latter reactive

stage is a complex cooperation of all parts of the immune system, innate

and acquired alike. Recognition, on the other hand, is largely performed

by the adaptive immune system, and more specifically by cells called lym-

phocytes. Each lymphocyte carries surface receptors that can recognise a

specific antigen, a molecule that is part of a parasite but foreign to the host.

As undifferentiated cells develop into lymphocytes, gene segments specifying

the antigen receptors are recombined in an almost unique fashion for each

individual cell. This process creates an enormous diversity of lymphocytes

with specific receptors, long before any contact with foreign antigen occurs.

Having such a wide variety of lymphocytes means that the body cannot

maintain sufficient amounts of each variation to react rapidly and effectively

against all possible parasites. This ability however is assured and improved

by clonal selection, a process akin much to natural selection.

3.2.1 Clonal Selection

There are several different types of lymphocytes, each capable of undergoing

clonal selection, but of special interest here are the so called B-cells. When

B-cells become activated upon recognition of a specific antigen, they start to

multiply and to differentiate into two clones. One clone consists of a large

number of plasma cells, short-lived cells that combat the antigen-bearing

parasite by secreting antibodies, receptor molecules in soluble form. Anti-

bodies can bind to the antigen that initially activated the B-cell, labelling

the antigen-bearing parasite as ‘foreign substance’, so that other cells of the
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immune system can eliminate it. The other clone consists of memory cells,

long-lived cells that enable a faster response upon subsequent infection with

the same antigen-bearing parasite. Memory cells are receptor-carrying B-

cells, and can undergo further clonal selection.

Upon the first infection with a particular microbe, only a small amount

of all the B-cells in the body has a type of receptor that fits the shape of

one of the antigens on the parasite, and only these cells will become acti-

vated and start multiplying. However, it is quite unlikely that any of these

fits is perfect: the affinity of the receptor for the antigen is said to be low.

Some of the B-cells might have a slightly higher affinity than others. These

cells can bind to an antigen more easily and for a longer amount of time be-

fore thermodynamical disruptions destroy the relatively weak, non-covalent

bonds. They will produce on average more plasma and memory cells than

other B-cells. After several days, plasma cells with the highest affinity will

become abundant enough to produce enough well-fitting antibodies so that

other mechanisms of the immune system can eliminate the parasites.

In addition, mutation during cell cloning plays a role in fine-tuning the B-cell

response. Parts of the genes responsible for the production of the receptor

molecules are especially prone to point mutations during cloning. These mu-

tations can result in a receptor with a higher affinity for a particular antigen,

giving the corresponding B-cells a selective advantage for subsequent cloning.

The highest affinity of receptors and antibodies for a particular antigen will

thus increase over time through this process of affinity maturation.

A subsequent infection with a parasite carrying the same antigen will be

greeted by a host of memory cells from the previous infection, each with a

high affinity for the antigen. Production of plasma cells and secretion of

antibodies occurs faster and in higher quantities than during the previous

infection, resulting in a more effective response. It is this memory that is

thought to cause immunity against subsequent infections, by detecting and

eliminating the parasites before they succeed in making the host ill.
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Perelson and Oster (1979) introduced the concept of shape space in the

study of antibody repertoire size. They assumed that it is possible to describe

the antibody features relevant for antigen binding by a number of shape

parameters ; geometric quantities such as size and physical quantities such as

dipole moment are among the possible candidates. If combined into a vector,

they form an N -dimensional vector space S, in which antibody and antigen

are represented as points. A distance metric on S, not necessarily Euclidean,

can be used as a measure of affinity. It is assumed that a foreign antigen

is likely to activate a B-cell if it falls within a ball with radius ε around

its antibody. For an immune system to recognise all possible intruders, the

total volume of the balls should cover the whole shape space. In that case,

at least one type of B-cell would become activated for each possible antigen.

Mutations during cell-cloning fine-tune the response, producing cells with an

ever higher affinity. Affinity maturation can thus be thought of as a cloud of

antibodies moving gradually closer to a parasitic antigen in the shape space.

3.2.2 Summary

Some of the main principles of natural selection also seem to be at work in

clonal selection, but some of the details are substantially different. Sum-

marising the relevant facts on different levels of observation gives:

� Individual B-cells vary in genetic make-up, leading to large variation

in antigen receptors, even before infections have occurred.

� Infection with an antigen activates the reproduction of certain cells

more than others. These cells become more prevalent. The other vari-

ants remain low in number or disappear.

� Upon infection, the total population of lymphocytes increases tem-

porarily, and large groups of cells with similar receptors form to combat

the infection.
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� The immune system adapts to the infection.

� Mutations fine-tune the response.

� Memory assures a more effective response in the future.

3.3 The Spread of Disease

When parasites enter the body of an animal or a human, they will usually

trigger a reaction from the immune system. Sometimes that response is too

slow or inadequate to prevent the micro-organisms from multiplying exten-

sively and getting a foothold in the host: the individual becomes infected.5

All diseases caused by micro-organisms are called infectious ; if the disease

can spread from one infected host to another, it is said to be communicable.

There are various transmission routes that communicable diseases can take:

there is transmission through different forms of direct contact, and there are

indirect routes through the environment.

In addition to one or more characteristic transmission routes, each com-

municable disease also has a characteristic risk of transmission when contact

between an infected and uninfected individual occurs, and a typical infec-

tious period : the time span during which an infected individual can transmit

the disease. How fast a disease spreads through a population does not only

depend on these factors, but also on the contact patterns between individu-

als. In modern human society, where contact patterns are changing rapidly

due to increased mobility, this is a factor of growing concern, and the main

cause for the increasing occurrence of previously unknown or rare diseases. A

factor with a negative influence on transmission is the immunity of a fraction

of the population because of vaccination, previous infection, or mutations

protecting its carrier from infection. The combined effect of all these factors

5Definitions in this section are based on (Giesecke, 2001).
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taken together can be seen in the reproductive rate of a disease – the average

number of individuals infected during the infectious period of one individual.

On a collective level, the question of concern is whether the occurrence of

a disease in one or more individuals will lead to a major outbreak or epidemic

affecting a substantial part of the population. It can be easily seen that for

a disease entering a population, the necessary condition for the occurrence

of an epidemic is that the reproductive rate R > 1. As an infection spreads

through a population, the number of susceptible individuals starts to decline

(because more of them are either immune or infected), with the effect that

the reproductive rate of the infection decreases, until R < 1. Since each

individual now infects less than one new individual on average, the epidemic

will soon disappear or stabilise. Other ways of reducing R is by blocking the

transmission route or by changing contact patterns between individuals.

3.3.1 Summary

The approach of this section has been somewhat different from the two previ-

ous ones: the emphasis was more on the short-term dynamics of the spreading

process than on its causes. The important principles can be summarised as:

� Communicable diseases can spread from one individual to others.

� The reproductive rate of a communicable disease is influenced by factors

such as contact patterns and level of immunity in the population.

� On the population level, epidemics can be observed if R > 1. The

higher R, the faster the disease will spread through a population, and

the more individuals will be affected.

� Epidemics can be brought to a halt by reducing R < 1.
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3.4 The Social Insects

Ants, termites and certain species of wasps and bees live together in highly

organised colonies, usually consisting of many workers and one or more re-

productive queens. These insects, eusocial as they are called, have three

traits in common (Wilson, 1971): individuals of the same species cooperate

in caring for the young; more or less sterile individuals work on behalf of

fecund individuals; and there exists an overlap of at least two generations

capable of contributing to colony labour.6

Colonies require many different tasks to be performed in order to maintain

themselves: reproduction, brood care, nest building, nest defense, foraging

for food etc. Division of labour among these tasks, but also the allocation

of workers to the exploitation of different food sources and the choice of new

nest sites are problems encountered by colonies during their life cycle. These

problems are not solved using a centralised control or decision making centre,

but in a highly distributed fashion through the interaction of many individu-

als reacting to limited and local information. Natural selection has shaped a

wide variety of behavioural responses and direct or indirect communication

mechanisms to enable efficient cooperation. In the context of this work, the

most relevant of these mechanisms is recruitment. It is defined as communi-

cation that brings nestmates to some point in space where work is required

(Wilson, 1971) for joint efforts in food retrieval or during migration to new

nest sites. Recruitment generally serves two different subtasks: individu-

als need to be stimulated to perform a certain task, and orientated to the

location where the task needs to be performed. Often these two functions

are mixed: the same signal both stimulates and orientates other individuals;

however, in some cases separate signals are used for each function.

6Eusociality has also evolved in mammals: for instance, in naked and normal mole-rats

(Campbell and Reece, 2002).
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3.4.1 Recruitment in Ants

Ants are the most widely distributed of the eusocial insects, and their ecolog-

ical and social adaptations are highly diversified.7 Food specialisation and

nesting habits differ widely from one species to the next. Such a diversity is

also present in the many recruitment strategies employed by different species

of ants for cooperative foraging and nest relocation. Communication through

the use of chemical signals or pheromone trails constitutes the primary form

of recruitment. It is assumed that this form of indirect communication has

evolved many times independently from more elementary mechanisms, and

intermediate evolutionary stages still exist.

The most elementary strategy of recruitment seems to be tandem run-

ning : a successful foraging ant will, upon its return to the nest, attract a

single ant (different strategies exist: chemical, tactile or through motor dis-

play) and physically lead this ant to the food source. The leading ant may

or may not have deposited pheromones along the way, but these have no

stimulative effect by themselves; they are merely used as orientational signs

by the leading ant. In so called group recruitment, an ant summons several

ants at a time, then leads them to the target area; pheromones have only for

the leader ant an orientational function, and no stimulative effect. In more

advanced recruitment strategies, successful scouts lay a pheromone trail from

the food source to the nest; this trail in itself does not have a stimulative ef-

fect. However, ants that are stimulated by, for instance, motor display in the

nest can follow the trail to the food source without additional cues from the

recruiter. Finally, the most developed form is mass recruitment. Stimulation

and orientation occur indirectly: worker ants encountering a pheromone trail

will follow it without the need for additional cues or stimulation.

Two examples will clarify how simple behavioural responses to limited

7Unless stated otherwise, the contents of this section follows Hölldobler and Wilson

(1990), which provide a detailed account of all aspects of ant physiology and behaviour.
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and local information coupled with recruitment can lead to collective deci-

sion making and flexible resource allocation.

Ants of the primitive species Leptothorax albipennis live in small colonies

with only a few hundred workers. These ants recruit via tandem running or

social carrying. They nest in preformed rock crevices and frequently need

to relocate when the old nest deteriorates or becomes too small. Choosing a

new nest site typically consists of a two stage process, carried out by a small

group of active scouting ants (Mallon, Pratt and Franks, 2001; Pratt, Mal-

lon, Sumpter and Franks, 2002). When a scouting ant discovers a potential

nest site, she evaluates it at length and, if satisfied with the result, starts

to lead tandem runs to the potential site. Some of her recruits also lead

tandem runs, and the population at the new site gradually increases. The

perceived quality of a nest site influences the latency of individual recruit-

ment behaviour: ants having discovered mediocre nest sites seem less eager to

recruit and wait on average longer before starting than ants at superior nest

sites. This means that the buildup of a population goes faster at superior

sites than at mediocre sites. Once a quorum of ants is present at a nest site,

the active workers switch to recruiting the passive majority of the colony via

transports, in which remaining nestmates and brood are simply carried to the

new site. The switch from tandem running to the faster transport phase can

be regarded as a decision point: a sufficient number of workers have agreed

on the future nest site. In addition to the distributed decision making pro-

cess, Mallon et al. (2001) claim at least a partial role for individual decision

making: scouting ants that visit both a mediocre and superior nest site often

prefer to recruit for the superior site. Whether this trend is really caused by

an individual’s capacity to make explicit comparisons between two sites is

debatable and remains an open question. Large differences in the number of

ants visiting two sites, reported for different colonies in (Mallon et al., 2001),

do not lead to a noticeable difference in the dynamics of the decision process.

This indicates that individual decision making does not play a significant

role in the observed colony migrations (Pratt, personal communication).
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Ants of the species Solenopsis invicta form colonies containing up to 200,000

workers that use mass recruitment for foraging purposes. When returning

from a food source, individual ants deposit an amount of pheromones along

the way, dependent on variables like perceived quality or type of the food

source. Trails of individual workers evaporate within a few minutes. How-

ever, the combined trail laying activity of many ants may lead to the estab-

lishment of a stable trail. A stable allocation of workers at a single food

source is achieved as follows: initially the buildup of workers at a newly dis-

covered food source is exponential since the outflow of workers from the nest

is linearly dependent on the amount of pheromone discharged by foragers al-

ready in the field. When workers become crowded on the food source, newly

arriving workers are unable to reach the food source and turn back without

laying trails. As a result, the number of workers stabilises at a level which

is a linear function of the area of the food mass. When the food source is of

low quality or far away, the number of workers may stabilise at a lower level.

Different foraging and recruitment strategies induce different quantita-

tive performances: empirical results from (Chadab and Rettenmeyer, 1975)

show that tandem running is slower than group recruitment, which in turn

is slower than mass recruitment. Furthermore, the degree of accuracy – how

many ants reach the food source for which they have been recruited – is

dependent on the type of communication used and differs significantly from

species to species. It varies from as low as 20% for group recruitment up to

70% for pure mass recruitment. Deneuborg, Pasteels and Verhaeghe (1983)

argue that communication in ants is essentially probabilistic and that this

“strategy of errors” may have adaptive advantages in that it allows a colony

to discover previously unexploited food sources. Another important issue is

how rapidly a colony adapts its forager allocation to a changing environment.

Results from a number of sources, summarised in (Bonabeau, Theraulaz and

Deneuborg, 1998), show that tandem running and group recruitment strate-

gies have no problem in shifting resources towards a superior food source
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that is introduced some time after a poor food source has been discovered.

Colonies using pure mass recruitment, however, are often trapped at the

poor site. Whatever the exact details of the recruitment behaviour, it is

likely that each strategy is well adapted to the food specialisation and needs

of the colony. It leads to a balance between exploration for new food sources

and exploitation of discovered food sources that is sufficient for the survival

of the genes causing the observed behaviour.

3.4.2 The Dance of the Honeybees

Recruitment mechanisms in honeybees (Apis mellifera) have been the most

intensely studied of the social insects so far. The colony’s food collection and

nest site selection processes have proven to be very amenable to empirical

analysis. Colonies of honeybees, containing up to 20,000 workers, are easily

kept in observation hives, so that the normally hidden activities of individual

bees can be studied in detail. Moreover, it is possible to label each bee

for individual identification, enabling the study of the relationship between

individual and colony-level behaviour.

Honeybees forage for nectar and pollen from flowers.8 Like ants, they use

recruitment to regulate a colony’s exploitation of discovered food sources.

Unlike ants however, communication is not chemical but primarily via motor

display: the principle mechanism of recruitment (having both a stimulative

and orientational function) is the waggle dance, a miniaturised reenactment

of the journey to a patch of flowers. It is a descriptive and truly symbolic

message, separated in space and time from the actions on which it is based

and the behaviours it will guide. A dance consists of one or more straight

waggle runs in which the recruiter vigorously waggles her abdomen, followed

by turns looping back to the starting point. The direction of the waggle run

8All aspects of the food collection process are discussed in (Seeley, 1995), where a more

detailed account can be found.
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indicates the direction of the flower patch in relation to the sun. The dura-

tion of a single waggle run is a measure of the distance to the source. Dances

are performed on the dance floor, a part of the hive near the entrance.

Nectar is the colony’s prime source of energy. Having discovered a nectar

source, a forager seems to be able to estimate quite correctly its energetic

profitability, taking into account factors such as sugar concentration, distance

to the hive, accessibility etc. The total quantity of the source, however, is in-

formation that is not readily available to individual foragers. Nectar source

profitability influences the probability that a bee will advertise it on the

dance floor, and also the length of the total dance: the more profitable, the

more waggle runs in a single dance – numbers range from as low as 1 up

to 100 runs. There is strong variation among individual bees in the dance

response to a source. This makes the total length of a dance a poor pre-

dictor of nectar source profitability. However, unemployed forager bees – if

not scouting for new food sources themselves – sample the dance of a sin-

gle, randomly chosen recruiter for only a few waggle runs, meaning that no

information about the source’s profitability is transmitted. They then try

to find the food source reported by the dance. If successful, a recruited for-

ager can in turn perform waggle dances to advertise her location. The more

waggle runs are performed for a specific location, the more likely it is that

this location will attract recruits that can perform even more waggle runs;

the number of foragers at the site thus increases until overcrowding starts to

reduce profitability or competition from other sites has drastically reduced

the number of unemployed foragers. Despite large individual differences in

dance behaviour, rich food sources receive on average more advertisement

and are more actively exploited than poor food sources.

Although an employed forager sometimes abandons a poor food source, she

does not use information from the dance floor to make that decision. Em-

ployed forager bees indirectly estimate the overall nectar intake of the colony

in order to determine whether they should abandon a food source or change

their amount of advertisement. An individual bee estimates overall nectar
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intake by measuring the time before she is unloaded by a food-storer bee.

Longer waiting times indicate higher nectar intake. If overall intake is high,

only very profitable sources are advertised on the dance floor; if intake is low,

exploitable but less profitable sources are advertised more vigorously.

The combination of these information feedback mechanisms allows for a flex-

ible and context-dependent allocation of foragers among all discovered flower

patches. Seeley (1995, p151) even argues that, despite the fact that individ-

ual bees possess only limited information about their own flower patch, the

steady-state allocation pattern is as efficient as the one that would result

from foragers that each have complete knowledge about all nectar sources.

When compared to the stimulative function of recruitment strategies in

ants, honeybees can be said to practice group recruitment: each bee can

directly recruit several other bees during its time on the dance floor. The

orientational function is very different: whereas ants either lead the follower

to the food source – which is time consuming – or leave chemical signposts

along the way, honeybees do neither. Natural selection has evolved a commu-

nication mechanism that is more adapted to their specific living conditions.

The physical implementation of the recruitment process determines its

quantitative performance. For instance, it seems that a colony has little dif-

ficulties in rapidly adapting its allocation pattern to a changed environment

(Seeley, 1995, p134). Communication in bees is inherently probabilistic and

the accuracy of recruitment is not perfect: Michelsen, Andersen, Kirchner

and Lindauer (1991) describe an experiment with four sugar-water feeders

in the same direction of the hive but at different distances. They measure

the number of bees that arrive at each feeder when recruitment is restricted

to one of the four feeders. Roughly half of the bees arrive at the feeder for

which they have been recruited, with the other half divided between the re-

maining feeders. Seeley (1995, p126) reports that in more natural foraging

conditions, only 1 in about 4 dance-guided searches are successful. Imperfect

recruitment could have similar adaptive advantages for bees as for ants.
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Similar recruitment mechanisms operate when a colony chooses its future

nest site (Seeley and Buhrman, 1999; Seeley and Buhrman, 2001). This is a

problem not of resource allocation, but of distributed decision making. When

a colony outgrows its hive it divides itself by swarming. The mother queen

and about half the workers leave the hive to establish a new colony, while

a daughter queen and the remaining workers stay behind. After leaving the

hive, the bees gather at an interim site to choose their future nest. The deci-

sion process is performed by only a small part of the colony: several hundred

scout bees fly from the swarm to search for potential nest sites. On return,

they report their findings by means of waggle dances; direction and duration

of a waggle run indicate direction and distance of the site. The estimated

quality of a potential nest site determines the number of waggle runs in a

dance. Unemployed scouts will, just as in the food collection process, follow

the dance of one randomly chosen bee. Better nest sites, being advertised

by longer dances, have a higher probability of attracting scouts which, after

inspection of the site, possibly perform even more recruitment dances. A

dozen or so discovered sites could be advertised on the dance floor during

the 2 to 3 day process. Unanimity between the dancing bees before take-off

of the swarm seems to be a requirement. This is achieved by a combination

of two behavioural responses: a small number of bees switch their allegiance

from one site and start dancing for another; more important however is the

propensity of individual bees to reduce dancing over time or stop dancing

altogether and leave the decision making to new scouts. Mediocre sites that

do not recruit new scouts fast enough to compensate for this abandonment,

soon disappear out of the decision process altogether.

As in the case of nest relocation in Leptothorax albipennis, individual bees of-

ten visit more than one potential nest site, indicating that direct comparisons

between sites might play a role in the decision making strategy. However,

preventing bees from making comparisons (Visscher and Camazine, 1999)

did not prevent or delay swarms from arriving at a decision, meaning that

direct site comparison does not have great influence on the decision process.

62



Recruitment as a Selective Process

Seeley (1995, p136) compares the process of forager allocation to a natural

selection process operating on nectar sources: variation is introduced by

foragers discovering new food sources. Reproduction occurs in the form of

recruitment to a food source. The finite number of available recruits induces

competition between flower patches, resulting in the “survival” of only the

most profitable food sources. On the population level, this process leads to

an allocation pattern that is well adapted to the changing environment. The

nest site relocation process has a similar interpretation as selective process.

There exist, of course, many differences between the recruitment process

and “real” natural selection. Nectar sources and nest sites take the place of

genes as units of replication. They are not unalterably bound to the organism

for its entire lifetime like genes in dna, but exist as modifiable patterns of

nervous system activity. This means, among other things, that Lamarckian

inheritance is not impossible in the physical implementation of this system,

and a “strategy of errors” could well be interpreted as such.

3.4.3 Summary

The focus in this section has mostly been on the global problem solving abil-

ities that arise from the interaction of poorly informed individuals. Whether

it is about ants or bees, chemical or visual signals, forager allocation or nest

relocation, the following points summarise the important facts:

� An individual has only limited information about a single location.

This information elicits a recruitment response, which correlates on

average in strength or duration with some measure of quality.

� A single site attracts a number of recruits in proportion to a combina-

tion of measures such as distance, surface (quantity), and quality.
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� Cooperation between a finite number of ants or bees gives rise to a

competitive, selective process between sites.

� Slightly different mechanisms lead to either a context-dependent and

flexible allocation pattern among different sites, or to an unanimous

decision about the best site.

3.5 Culture and Society

Selectionist reasoning has been applied to many aspects of cultural and social

change. Darwin himself interpreted the historical development of languages

within a selectionist framework (Plotkin, 1994, p62).9 The development of

science, an integral part of western culture, has often been phrased in evo-

lutionary terminology: Popper (1972, p261), for example, argued that the

gradual growth of scientific knowledge is the result of a natural selection of hy-

potheses. Kuhn advocated a similar view on the role of selection mechanisms,

but his process is one of revolutionary episodes of dramatic paradigm shifts

interspersed with longer periods of normal science (Hull, 1988, p12). Evo-

lutionary theorising in economics has an even longer history: Adam Smith’s

The Wealth of Nations (1776) can be easily interpreted as an evolutionary

account avant la lettre.10 An overview of evolutionary thinking in economics

can be found in (Nelson, 2002). Dennett (1995) discusses the development

of morality in evolutionary terms, and refers to the implicit evolutionary el-

ements in Hobbes’s Leviathan (1651), a treatise on the creation of the state

and the appearance of morality. The idea of evolutionary change has also

been applied several times to cultural change at large, the most popular of

these accounts starting with the introduction of the meme concept, a cultural

9It has even been suggested that William Jones’s theory (1786) on the development

of Indo-European languages formed a direct source of inspiration for Darwin’s original

formulation of the natural selection theory (Kennedy et al., 2001, p245).
10Smith’s work too has often been named as a source of direct inspiration for Darwin.
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equivalent to genes (Dawkins, 1989). Memes are ideas, beliefs, elements of

culture that can be passed on from individual to individual mainly through

imitation, giving rise to a process of cultural change through a differential

success in survival and replication of different meme variants. Imitation is a

form of social learning that only humans seem to be particulary good at.11

It is widely accepted that it gives an adaptive advantage to individuals, and

thus can be the product of biological evolution. However, Blackmore (1998)

argues that, once imitation has appeared, the things that can be imitated –

the memes – start leading a life of their own, and that their success is to a

large degree decoupled from biological advantage or disadvantage.

The analogy between genes and memes is not always regarded as very

fruitful (Jablonka, 2002; Midgley, 2002), and serious doubts exist whether

memetics, the study of memes, can develop into a sound scientific discipline.

There are many reasons for this scepticism: first of all, the concept ‘meme’

covers a wide variety of cultural elements. Plotkin (2002) distinguishes be-

tween at least 6 different functional groups: actions, methods, gossip, ar-

tifacts, concepts and social constructions. With such a wide variety, it is

difficult to imagine a common physical substrate for implementation. It is

usually believed that memes exist in the brain as patterns of activity or con-

nectivity, but this hypothesis has proven so far to be untestable. Memes can

also exist exosomatic – outside the brain – in books, on CD’s, in computer

memories etc., and can continue to exist in this form even if forgotten by all

humans. There are other differences than just implementational: memes can

spread horizontally from individual to individual, much like a disease spreads

through a population, or be transmitted vertically from parents to offspring,

like genes (Blackmore, 1998). Variation arises from more than just copy-

ing errors: memes can be modified during and after transmission through

reinterpretation of the imitating individual (Jablonka, 2002), meaning cul-

11There are other, less powerful forms of social learning that some animal species have

mastered (Alonso, d’Inverno, Kudenko, Luck and Noble, 2001).
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tural inheritance is more Lamarckian than Weismannian. A further difficulty

arises from the fact that evolution occurs simultaneously on many levels of

social organisation: informal interactions between individuals lead to the ap-

pearance of social institutions that can exert downwards causal influences on

the evolution of culture itself (Runciman, 2002).

Although these objections indicate that the analogy between genes and

memes should not be taken too literally, they do not invalidate the basic

premises of the idea: that imitation leads to the replication of cultural el-

ements, some more readily than others; that variation is introduced in a

number of ways; and that the limitedness of resources (human brains, books

etc.) introduces selective pressures. However, because of the more complex

mechanisms involved, it will prove difficult to move evolutionary theory in

the social sciences from appreciative to formal12 status.

Another way of looking at the processes that arise from human inter-

action is the problem-solving perspective. An overview of this approach is

given by Kennedy et al. (2001); they argue that cultural evolution has the

same result as biological evolution: adaptation. Individual humans are envis-

aged as searching for solutions through abstract, high-dimensional problem

spaces. They evaluate their own ideas and beliefs, and compare with and

learn from the experience of neighbouring individuals. What is perceived

as better knowledge spreads faster through society, resulting in the overall

growth of knowledge and cognition. In this view, individual cognition is

considered the product of culture, whereas it was classically believed that

culture is the result of individual cognition. In reality, cognition and culture

have probably reinforced each other in a circular causal fashion.

12Terminology used by Nelson and Winter (Nelson, 2002) to describe the different levels

of abstraction in the social sciences: appreciative theory is relatively informal, a verbal

account specifying key causal mechanisms; formal theory is more abstract, more rigourous,

farther away from empirical substance. Ideally, appreciative and formal theories should

be in accordance in a particular field of study, but this is not always so: e.g., in economics

most appreciative theories are evolutionary, whereas formal theories are neoclassical.
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3.5.1 Summary

Processes of historical change in culture and society have been described

using the general terminology of biological evolution, although details are

different and many issues remain unresolved. Most relevant to this work is

the problem solving perspective, which can be summarised in short as follows:

� When searching for solutions to problems, individuals often learn from

the experience of others.

� Cooperation between a finite number of humans leads to competition

between different facts of knowledge.

� Better knowledge spreads faster through society.

� Cooperation leads to adaptation: it improves knowledge and cognition.

3.6 Selective Processes

The previous sections have presented appreciative accounts of processes oc-

curring in natural and social systems. There are several aspects that they

have in common: all of them are population-based processes that can be

viewed from a number of perspectives or levels of abstraction. These per-

spectives, already announced in §3p42, will first be reviewed. Following that,

it will be argued that from one of these perspectives all processes can be seen

as functioning according to v+sr mechanisms. Finally, it will be discussed

how they fit the hierarchical framework of general selection theory.

3.6.1 Perspectives

The processes described in the previous sections are implemented in a range of

physical substrates. The physical substrate determines what is possible in a
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system: for instance, Weismann’s hypothesis (§3.1p45) rejects inheritance of

acquired characteristics in biological evolution because of the barrier between

somatic and germ cells in sexually reproducing organisms, but in cultural evo-

lution “acquired characteristics” can be transferred during imitation learning

(§3.5p66). The physical substrate also affects the pace of each process: bio-

logical reproduction takes more time than imitation learning, meaning that

biological evolution is generally slower than cultural evolution.

Differences in physical implementation thus lead automatically to dis-

analogies between the different processes. However, a number of analogies

between all these processes exist that are more significant than the disanalo-

gies resulting from the physical implementation. These analogies appear

when describing the systems on several different levels of abstraction: firstly,

there is the substrate-neutral, algorithmic description of the behaviour of

individual elements in the system; secondly, the relatively short-term group

dynamics on the system level; thirdly, the long-term perspective of historical

change; and finally, the description as a problem-solving process.

Individual Behaviour

In a system consisting of many entities, algorithmic descriptions that “ex-

plain” the behaviour of the system as a whole are often in terms of be-

haviour of the individual entities. These substrate-neutral descriptions are

abstractions and idealisations that allow a more simplified reasoning about

the mechanisms and processes involved. For instance, the concept of genes

as discrete units of information and the description of natural selection in

terms of their variation and replication are abstractions of physical reality.

However, it is commonly assumed that it is logically possible to construct

abstract descriptions that capture the aspects necessary for explanation of

the underlying material processes.13

13Not everyone would agree: Searle (1990), for instance, rejects the possibility of such

explanations for the phenomena of human understanding and intentionality.
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In the systems described in previous sections, ‘individual behaviour’ can

actually be separated into two different perspectives: the perspectives of

replicator and interactor (Hull, 1980). The former is defined as an informa-

tional entity whose structure is transferred largely unchanged during replica-

tion; the latter is defined as an entity that somehow contains the replicators

and interacts with its environment in such a way that replication is differen-

tial. A description on the level of the individual can adopt the perspective

of the interactor: the emphasis in this description is on the actions and in-

teractions of individuals. Or the description can take the perspective of the

replicator and specify mechanisms of variation and selection. It is from this

perspective that the processes are most aptly called ‘selective’ or ‘selection-

ist’. For instance, the process of natural selection was described twice: once

from the perspective of organisms, the interactors (§3.1.1p45); and once from

the perspective of genes, the replicators (§3.1.1p47). Recruitment in bees has

consistently been described from the perspective of interactors, except where

it is described as a selective process operating on nectar sources (§3.4.2p63).

Short-term System Dynamics

Certain relatively short-term dynamical effects that result from combined

individual behaviour can be observed on a collective level or the level of the

system as a whole. The effects are often described as diffusive: replicators

diffusing across a population of interactors, such as the spread of genes,

disease or memes in a population; or as a group of interactors clustering in

a region of a certain space, such as in insect recruitment, the description

of organisms on fitness landscapes (§3.1.1p48) and immune cells in shape

spaces (§3.2.1p52). Sometimes, the effects can be observed in the formation

of certain physical structures, like pheromone trails in mass-recruiting ants

(§3.4.1p58). On this level, properties of the system as a whole (and not of

its individual elements) are often modelled with stochastic or deterministic

differential equations.

69



Historical Perspective

The historical perspective is concerned with the long-term picture of histor-

ical change that is the result of many iterations of v+sr mechanisms. In

biology it is adopted in the reconstruction of the lineages of common ances-

try of species; in linguistics in the research of the development of different

languages from common precursors. It is from this perspective that the pro-

cesses can best be described as ‘evolutionary’.

Solving Problems

The systems described in this chapter can all be regarded as solving problems

or assembling knowledge about the external world; they are therefore often

called ‘adaptive’. This adaptiveness or problem solving on the system level

can be quite unrelated to the problems that are solved by the individual

elements themselves: for instance, biological organisms face the continuing

problem of individual survival; natural selection results in a population whose

successive members become progressively better at surviving. Individual bees

solve problems of finding food, navigating and surviving; cooperation in a

group of bees results in a resource allocation pattern on the colony level that

is well adjusted to the local environment (§3.4.2p61).

3.6.2 Variation + Selective Retention

It is from the replicator perspective that the processes of previous sections

are most homogeneously described in terms of Campbell’s (1974) framework

of variation + selective retention (§1.1.2p6). Each process relies on:

1. Mechanisms that introduce variation.

2. Consistent (on average) mechanisms of selection.

3. Mechanisms for retaining and/or replicating selected variations.
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Variation

Here are a few examples of the variation mechanisms that have been described

in previous sections:

� Relatively small dna mutations in natural selection (§3.1.1p46).

� The almost arbitrary recombination of gene segments during the de-

velopment of undifferentiated cells into lymphocytes (§3.2p50)

� Fine-tuning point mutations in clonal selection (§3.2.1p51).

� Introduction of independently discovered nectar sources on the dance

floor by forager bees (§3.4.2p60).

� Discovery of food sources in the neighbourhood of already exploited

sources through a “strategy of errors” in ants (§3.4.1p58) and bees

(§3.4.2p61).

It can be seen that there are roughly two types of variational mechanisms:

those that introduce only small variations on the information that is al-

ready present in the system; and those that introduce variation that is rela-

tively independent of existing knowledge. If a process relies mainly on small-

variational mechanisms, then it can be said to be historically constrained :

its evolutionary course is very much dependent on its own past; this is the

case in biological evolution. Conversely, small-variational mechanisms can

take advantage of certain regularities in the world that would be overlooked

by large-variational mechanisms: for instance, there is a reasonable chance

that profitable food sources are located in each other’s proximity; hence the

existence of a “strategy of errors” in addition to the independent scouting

efforts of a fraction of the unemployed ants and bees.

In his original description of v+sr mechanisms, Campbell strongly em-

phasised the blindness of variational mechanisms. By this he meant that,
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although a selective process can be regarded as solving a certain problem,

the generation of variation cannot be a priori directed towards the solution

of that problem. To use his own words: “In going beyond what is already

known, one cannot but go blindly” (Campbell, 1974, p422). Whenever varia-

tion does seem to be directed, it has to be the consequence of some previous14,

more fully blind v+sr process, and/or the result of blind v+sr processes

on other levels. For example, during clonal selection only parts of a B-cell’s

genome are especially prone to point mutations, namely those parts that are

responsible for the structure of the cell’s antigen receptors (§3.2.1p51). This

targeting of variation is the result of a v+sr process that operates on mu-

tation rates of different dna segments.15 Bees decide to advertise a nectar

source on the dance floor, based on its profitability and some limited infor-

mation about the overall nectar intake of the colony (§3.4.2p60). This means

that the variation introduced on the dance floor is somewhat directed, since

not all discovered food sources are advertised. However, the information used

by an individual bee to come to its decision is very limited, and obtained by

a process that itself consists of a random sampling of both the food source

and the overall nectar intake of the colony. Moreover, a colony maintains a

large variance in individual dance thresholds. This is the result of a natural

selection process that operates on genes of individual bees; the composition

of the colony in terms of individuals with large differences in dance thresh-

olds is the result of a natural selection process operating on colonies. It can

therefore be seen that all knowledge used to direct the variation on the dance

floor is itself the result of other, more fully blind selective processes.

14Small-variational mechanisms lead to historical constraints on the generation of new

variation, but what is meant here is more general.
15Strictly speaking, this example does not even violate Campbell’s often-misunderstood

notion of ‘blind’, since mutations in other parts of the genome would barely alter the shape

of the receptors; hence, they would not affect the course or outcome of the clonal selection

process, but affect the operation of the cell in other, possibly harmful ways. Nevertheless,

the difference in mutation rates needs to be explained somehow: a sensible hypothesis

seems that it is the result of selective processes on other levels of biological organisation.
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Selection

From the interactor perspective, interactions can be competitive, cooperative,

or a mixture of both. Whether competitive or cooperative, they will always

result in some form of selective pressure on the variance of replicators, due

to limitedness of resources. For example, competition between animals for a

limited commodity in the environment leads to selective pressure on different

alleles in the gene pool, with only the fittest alleles prevailing (§3.1.1p47).

Cooperation between a limited number of honeybees leads to selective pres-

sure on nectar sources, with only the most profitable ones surviving on the

dance floor (§3.4.2p63). Here are a few examples of selection mechanisms:

� Death of organisms because of maladaptation to the environment or

because of direct competition with other organisms.

� Mate choice in sexually-reproducing organisms.

� Selection of B-cells by binding to an antigen on a parasite (§3.2.1p50).

� Selection of a dancing bee by an unemployed forager (§3.4.2p60).

� Abandonment of a food source by a forager bee (§3.4.2p60).

It can be inferred from the examples that there are at least two kinds of selec-

tion mechanisms: positive and negative. Positive selection leads to replication

or reinforcement of the selected variants; negative selection leads to elimi-

nation of the selected variants. In reality, each selective process most likely

uses a number of different positive and negative selection mechanisms.

Replication and Retention

Finally, there are mechanisms that ensure that positively selected variants

come to dominate in number or strength:
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� Replication of dna through reproduction of organisms (§3.1.1p46).

� Cloning of activated B-cells (§3.2.1p50).

� Transmission of disease (§3.3p53).

� Recruitment to a food source or nest site (§3.4p55).

� Imitation learning (§3.5p66).

The mechanisms of replication and variation are sometimes linked, like copy-

ing errors that occur during replication of dna. However, on average repli-

cation needs to be fairly accurate; if not an evolutionary system would not

be able to stabilise and exploit the knowledge it has accumulated about reg-

ularities in its environment. In some mechanisms, selected variants are not

explicitly replicated, but only retained or reinforced.

3.6.3 General Selection Theory

According to Campbell (1974, p421), the mechanisms of v+sr are funda-

mental to all genuine increases in knowledge, or to all increases in fit of

system to environment. He called the natural selection paradigm – follow-

ing in the tracks of Popper (1966) – “...the universal non-teleological ex-

planation of teleological achievements, of ends-guided processes, of “fit””

(Campbell, 1974, p420). It provides a plausible explanation for the apparent

purposiveness of the natural and social control systems of cybernetics. For

example, one could easily be misguided in thinking that the near-optimal

allocation of foragers to nectar sources needs to be the result of a purposeful

controlling unit with complete knowledge about the profitability and quan-

tity of all available nectar sources. Yet interaction in a population of bees,

with each bee using a limited repertoire of behavioural responses and com-

munication mechanisms, gives rise to a selective process that achieves exactly

the same without central control.
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The “parameters” or criteria of the recruitment process – for instance,

the composition of a colony in terms of individual dance thresholds – are but

“trials” of the natural selection process on the level of the genes. In turn, the

recruitment process affects the evolutionary course of the natural selection

process itself: since nectar-producing flowers often use bees as pollinators,

they are dependent on them for procreation. A selective process operating

on the dance floor thus leads to selective pressure on the reproductive success

of patches of flowers in the neighbourhood of the hive. It is this interplay

of upwards and downwards causal forces generated by v+sr mechanisms

that led Campbell to the hypothesis of general selection theory (§1.1.2p6):

all truly creative knowledge processes in the natural world form part of a

nested hierarchy of v+sr processes, each level in the hierarchy a shortcut

or vicarious selector of the “original” natural selection process. General

selection theory does not imply a perfect analogy of all v+sr processes to

the neo-Darwinian theory of biological evolution. And it does certainly not

treat all selective processes as isolated or existing in their own right: they

are all the product of a selective process operating on a biochemical level.

The selective processes described in this chapter cover only part of Camp-

bell’s hierarchy, but it can be easily seen how they fit in: clonal selection, a

selective process in single vertebrate bodies, occurring in somatic time; the

diffusive process of disease propagation as the short-term dynamical result

of differential contact patterns and infectiveness; the recruitment process in

colonies of ants and bees. All are processes whose criteria have been set by

natural selection, and at the same time they are genuine selective processes

themselves that are the result of repeated interactions between individuals.

And the hierarchy of selective processes extends higher, into the realm of the

social sciences: natural selection has produced an animal with the ability of

imitation learning; imitation has lead to evolving cultures that give rise to

languages, a scientific process, technological innovations, societal institutions

and commercial firms that all evolve through v+sr mechanisms themselves.
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3.7 SDS as a Selective Process

In the first chapter, sds was defined – rather abstractly – as a population-

based algorithmic process (§1.2.1p13). The second chapter gave a concrete

example of an sds variant; a clear distinction was drawn between the al-

gorithmic description of individual agent operation (§2.2.2p25) and the dy-

namical properties and problem-solving capabilities of the population as a

whole (§2.2.3p27). In this chapter, after having discussed several concrete

examples of selective processes and selective processes in general, it will now

be argued conclusively that sds itself can be regarded as a selective process.

Algorithmic descriptions of sds variants are usually presented from the

perspective of the interactors: the individual sds agents. Contrastingly, the

hypotheses maintained by these agents are the replicators, and from their per-

spective sds can be described in terms of v+sr mechanisms. For instance,

for standard sds, variation is introduced in two ways: in the initialisation

phase of the algorithm; and at the end of each diffusion phase when inactive

agents that contacted other inactive agents adopt new random hypotheses.

These new hypotheses are independent of the hypotheses already present in

the population, meaning that standard sds does not utilise small-variational

mechanisms. Negative selection occurs at the end of the test phase, when

agents that failed the test discard their present hypothesis and become in-

active. Positive selection occurs in the diffusion phase, when inactive agents

pick active agents for communication. Positive selection leads to replication,

the copying of the hypothesis parameters of the active agent by the inactive

agent. This replication mechanism is completely accurate. Retention occurs

when agents pass a test and keep their present hypothesis.

The combination of these mechanisms gives rise to a stochastic process

exhibiting dynamical behaviour that is typical of the selective processes dis-

cussed in this chapter: the behaviour can be interpreted as hypotheses diffus-

ing across a population of agents, much like the spread of diseases or memes.
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Conversely, it can also be interpreted as agents clustering in points of the

solution space, much like the effects of insect recruitment. The problem solv-

ing capabilities of sds as a system are attributed to these effects – diffusion

or clustering – on the collective level: since good solutions are on average re-

tained and replicated more often than poor solutions, they can attract larger

clusters; good solutions can then be identified from clusters of agents in the

solution space. Each variant of sds exhibits its own distinctive dynamical

behaviour. For instance, standard sds is greedy: the best solution discovered

so far will attract a large cluster of agents, while slightly poorer solutions are

not able to simultaneously attract a stable population. Standard sds also

exhibits punctuated equilibrium behaviour, as observed in Figure 2.6 (p35):

long periods of quasi-equilibrium are interspersed with short periods of rapid

convergence.

Although sds has some elements in common with all of the selective

processes described in this chapter, the ones it resembles most are the re-

cruitment processes in honeybees, especially on an abstract level of how in-

teractions between individuals give rise to information feedback mechanisms

on the colony level that reduce the uncertainty experienced by single bees.

During foraging, a honeybee seems to behave as a mixture of a hermit and a

context-free sds agent (§2.3.1p37): hermit because a bee does not always ad-

vertise its foraging location on the dance floor; context-free because she bases

the probabilities of dancing and abandonment on limited information about

the overall foraging activity of the colony. The outcome of this process is an

allocation pattern that reflects the quality and quantity of different nectar

sources in the environment. The nest site relocation process of honeybees

is more like standard sds: the greediness of the process results in a clear

decision about the best site. One of the real conceptual differences between

recruitment processes and sds variants described so far is the accuracy of

replication: sds agents do not have the equivalent of a “strategy of errors”

to exploit regularities in the solution space.
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3.8 Rationale

At the start of this chapter (§3p43), 4 reasons were mentioned for discussing

the details of selective processes. These reasons are reviewed in this section.

3.8.1 What Does SDS Resemble?

This chapter has provided a partial answer to question 1 of the roadmap

(p15). It has abstracted the operation and behaviour of several natural and

social systems to an extent that comparison with sds became possible. As

a result of the comparison, the abstract definition of sds as a population-

based algorithmic process has become more concrete: sds is now defined as

a selective process that can be characterised in terms of v+sr mechanisms.

3.8.2 Inspiration

This chapter provides a partial answer to meta-level questions C and D of the

roadmap (p18). Of the four perspectives on selective processes (§3.6.1p67),

the historical perspective is the least relevant to the study of sds. The other

three perspectives – individual, group-dynamics and problem-solving – have

corresponding perspectives in the study of sds and lead naturally to answers

to some of the questions of the roadmap: the descriptions of individual be-

haviour correspond to the level of algorithmic descriptions of sds variants.

Mechanisms of variation and selection can provide inspiration for algorithm

development, and therefore answer question 5 of the roadmap (p16). For

instance, small-variational mechanisms that fine-tune the adaptation of a

system seem common in selective processes. Introducing a similar mecha-

nism in sds could solve – in certain solution spaces – the problem observed

in Figure 2.6 (p35) and discussed in §2.2.4p36: the long periods of time that

standard sds spends examining sub-optimal solutions. An example of how

such a mechanism may operate is found in Appendix A.3 (p146).
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The stochastic process underlying sds can be analysed using models

from fields such as insect ethology, epidemiology or population genetics,

thus providing the tools for answering questions 6, 9, 10 and 11 of the

roadmap (p17). Conversely, mathematical models of sds, such as devel-

oped in (Nasuto, 1999), can be of use in these and other disciplines.

Finally, the problem-solving perspective is related to question 2 (p15): selec-

tive processes have been described as leading to adaptation, resource alloca-

tion, and decision making. This point will be addressed in the next chapter.

3.8.3 General Selection Theory and Consilience

General selection theory – a form of systemic consilience – can be used to

speculate about systems that are not yet completely understood. These

speculations lead to scientific hypotheses that can then be investigated in

a reductionist manner, in order to establish the exact nature of the v+sr

mechanisms involved (if any). The road from systemic speculations towards

reductionist research has been taken several times in the past: for instance,

an immunologist whose work confirmed the selectionist theory of clonal selec-

tion, Edelman, went on to develop a selectionist theory for brain development

and memory formation (Edelman, 1987).16 Similarly, the resemblance of phe-

nomenological properties of attention to dynamical properties of sds led to

the speculation that the neurobiological mechanisms of attention are in an

abstract sense similar to sds operation (Nasuto and Bishop, 1998; Nasuto

et al., 1999). It can now be understood that this is because both may be

the product of similar v+sr mechanisms. Although the systemic consilience

of general selection theory is not a rational argument for the validity of this

theory, it does make it a more enticing hypothesis to investigate.

16The theory is controversial and has therefore not been treated in this chapter.
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3.8.4 Why Selective Processes?

One might ask the question why selective processes reoccur at so many or-

ganisational levels. A first answer comes from Campbell himself: it seems

to be the only non-teleological explanation for teleological achievements. A

second answer is that they simply have to occur: wherever a population of in-

teracting elements exists, subjected to some form of limitedness of resources,

selective pressures arise. Finally, to answer the question why distributed

selective processes are so much more abundant than centralised directive

processes is that they are much more information-efficient: a colony of in-

teracting bees – each with limited information – achieves the same foraging

efficiency as could be achieved by a centralised control unit with unlimited

information. A distributed, capitalist economy is more effective in producing

goods and services than a centralised plan economy, because it is virtually

impossible for the central planner to obtain all necessary information.17

3.9 Conclusion

This chapter has concretised the definition of sds from ‘algorithmic process’

to ‘selective process’. Selective processes have been described in great depth,

offering inspiration for the design of sds variants and indicating how the

study of sds can cooperate with other scientific disciplines. The problem

solving perspective of selective processes featured strongly throughout the

chapter: adaptation, resource allocation and decision making were terms

frequently used. In the following chapter, the problem-solving perspective of

sds will be analysed in more detail.

17This argument should not be interpreted as justifying unregulated capitalism: eco-

nomic competition has as result the survival of companies trying to maximise their short-

term profits, and is not concerned with environmental effects or well-being of individuals.
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Chapter 4

Problem Solving and Search

The previous chapter described a number of natural and social processes, and

explained in what respects sds resembles them. From one perspective, these

processes can all be regarded as solving certain problems through the mecha-

nisms of variation, selection, and replication or retention. Alternatively, they

can be regarded as solving problems by generating candidate solutions and

testing them.1 In this interpretation, a clear correspondence exists between

the selective processes of general selection theory and the generate-and-test

or search processes of the physical symbol system hypothesis in ai, even if

some strong interpretational differences arose from the original meaning of

‘search’ in ai (§1.1.3p7). In recent years, this meaning has been expanded to

incorporate different kinds of search problems and search methods.

Section 4.1 gives an overview of these different meanings of search and de-

fines search problems in general. Section 4.2 gives examples of a few common

search methods or metaheuristics in ai, followed by a general discussion of

generic search methods and their effectiveness. Section 4.3 then discusses in

what sense sds performs search. Finally, Section 4.4 concludes the chapter.

1This is, in fact, how Plotkin (1994) and Dennett (1995) refer to these processes.
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4.1 Search

4.1.1 Different Meanings of Search

Search is such a prevalent activity in daily life that it can be easily under-

stood intuitively as the act of attempting to find or discover something. On

more formal grounds, it is possible to distinguish between different types of

search problems in several ways. For instance, Mitchell (1996) argues that in

computer science the word ‘search’ has at least three (overlapping) meanings:

1. Search for stored data (data search) requires finding a piece of data in

a larger collection of explicitly stored data. This notion encapsulates

the classical meaning of search in computer science (Knuth, 1973).

2. Search for paths to goals (path search) is the problem of finding a list

of steps that will move from a given initial state, through some in-

termediate states, to a given goal. This form of search was central to

many problem solving techniques of early symbolic ai (Winston, 1992).

Paths are not explicitly stored, but are created as the search proceeds.

3. Search for solutions (solution search) is the problem of finding a so-

lution in a large space of candidate solutions. In this case it is not

the steps leading to a solution that are important, as in path search,

but the solution itself. The solutions are not explicitly stored; rather,

candidate solutions are created as the search process proceeds.

Each of the above meanings has unique properties, and quite distinct

techniques exist for solving problems in either of the three cases. However,

they do overlap considerably. Solution search is the most general category of

the three. It subsumes path search, since every path can always be encoded

as a candidate solution. It also includes data search, since the location of

each individual piece of data in the larger collection can be interpreted as a

candidate solution to the search problem.
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Under the umbrella notion of solution search, a different criterion dis-

tinguishes between two types of search problems. Here the distinguishing

feature is whether the problem is one of existence or optimality of a solution:

1. Constraint Satisfaction Problems (csp) require finding a solution ful-

filling a set of constraints. The problem is solved when such a solution

is found, or when it is established that no solution exists.

2. Optimisation Problems require finding as good a solution as possible

within some limits on time and computation. The definition of ‘good’

is dependent on the specific problem.

4.1.2 Search Terminology

A single search problem can often be interpreted in different ways, and each

interpretation has its own importance. The following paragraphs define a

disambiguating terminology for use in this thesis, consistent with the termi-

nology used in Chapter 2. These terms do not have a universally accepted

meaning, and their definitions can differ from the ones used in other work.

Search Space, State Space and Solution Space

Search space is used to designate the large collection of data that is processed

in data search. The search space consists of a finite number of explicitly

stored data items, each item possessing one or more properties. The items

in the search space are arranged, ordered or labelled in a suitable manner

so that they can be indexed unambiguously. Often the ordering or labelling

is used to search more efficiently: for example, a sorted array of numerical

values is searched more efficiently than an unsorted one; or a hash function

can be used to find a complex entry in a database by a simple key value.
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State space describes the structure searched during path search. It is

usually a directed graph, where the possible states are nodes in the graph

and links between nodes designate potential operations leading from one

state to a successor state. During search, the state space is incrementally

constructed as a search tree: the initial state is the root node of the tree.

The goal states are leaf nodes of the tree. Often, a heuristic score function

imposes a measure on the graph in an attempt to guide the search process

towards the goal.

Solution space is the structure searched in solution search. In its most

abstract form it is a (possibly infinite) set of candidate solutions, but often

the set forms an n-dimensional, real-valued parameter space or a graph with

some “natural” neighbourhood relationship between connected nodes.

Problem and Representation

Often, a distinction exists between a problem itself and its representation that

is defined as one tries to solve it. For instance, finding the minimal value

of a continuous function over a real-valued domain is a valid problem, even

though a discrete representation is always adopted when solving it on a digital

computer. For this reason, Jones (1995) introduced a distinction between the

object space – the set of candidate solutions, independent of representation –

and the representation space – a set of candidate solutions in a representation

that can be more easily manipulated by the search process. This distinction

will not be made explicitly here. Whether a problem is described in terms

of object or representation space should be clear from context. It will also

be assumed that, if a search problem is described in terms of object space,

a conversion towards a suitable representation space can be made at solving

time. This work is not concerned with such conversions, but finding suitable

representations is one of the most important aspects of the problem solving

process: problems, unsolvable due to time constraints in one representation,

are sometimes easily solved using an alternative representation.
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Constraint Satisfaction versus Optimisation

Constraint Satisfaction Problems can be defined as (Roli and Milano, 2002):

1. a set of n variables {x1, . . . , xn};

2. a set of domain values for each variable, Di ∀i = 1, . . . , n;

3. a set of m constraints cj(Yj), Yj ⊆ {x1, . . . , xn}, ∀j = 1, . . . ,m.

When values are assigned to all variables in a constraint, it is either fulfilled

(evaluates to true or 1) or unfulfilled (evaluates to false or 0). Solving a

csp means finding an assignment for all variables so that all constraints are

fulfilled, or determining that no such assignment exists.

In what is usually designated by the term csp, the constraints are fairly sim-

ple expressions in the variables itself. However, it is possible that constraints

involve more complicated symbolic relations. For instance, the Queen of

Hearts example (§2.2.4p28) can be reformulated as a csp as follows:

Find x, with Dx = {1, 2, 3, 4, 5}, such that the constraints

(value(x) = queen) and (type(x) = hearts) are fulfilled.

In this case the functions value() and type() can only be defined through

enumeration over the entire (finite) solution space. In data search, this enu-

meration forms the explicitly stored search space itself.

All problems regarding the existence of a solution, such as finding a desired

object among a set of objects, as well as exact string and pattern matching

problems, can be written in the form of csp.

In their most general form, optimisation problems are defined by the three

properties of csp, in conjunction with a fourth property:

4. an objective function in the variables {x1, . . . , xn} to be optimised (min-

imised or maximised).
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If the domains of the variables are finite or countable sets, then the problem

is called a Combinatorial Optimisation Problem (cop); otherwise the optimi-

sation is called continuous . Although methods applicable to cop can often

be applied to continuous solution spaces, they are quite distinct flavours,

and their fields of study have diverged significantly (Papadimitriou and Stei-

glitz, 1982). Issues specific to continuous optimisation will not be discussed

in the remainder of this thesis.

A hybrid class of problems is formed by Maximum Constraint Satisfaction

Problems (maxscp). They are problems with the properties of csp, but with

the difference that they potentially lack a solution that fulfills all constraints;

they require finding a solution fulfilling as many constraints as possible. Al-

ternatively, they can be regarded as maximisation problems for which the

objective function is the number of fulfilled constraints. The Matching on

Mars example (§2.2.4p31), where the task is to find the solution maximising

the number of corresponding micro-features, can be regarded as a maxcsp.

Another hybrid is Multi-Objective Optimisation (moo). The classical

notion of ‘optimality’ becomes ambiguous when a problem has more than one

objective function: variable values optimising one of the objective functions

might not optimise the others. Therefore, the purpose in moo is to find all or

some of the Pareto-optimal solutions. A solution is called Pareto-optimal if

no other solution exists in which at least one objective function has a better

value and no objective functions have worse values.

Objective Functions and Test Scores

The notion of ‘objective function’ in optimisation problems was introduced

above. Each point in a solution space has an associated value, defined by the

objective function. The solution space is thus formally defined by the pair

(S, f), where S is the set of solutions, and f : S → Y ,Y ⊆ R the objective

function. An example of an objective function was given in Figure 2.5 (p35).

86



A related measure in the context of sds is the test score. It is the relative

frequency with which the outcome of the test procedure results in an agent

being active. It is not only dependent on the values of the objective function,

but also on the particular test procedure used. Formally, the test score forms

a mapping t : S → T , T ⊆ [0, 1]. ‘Test score’ is a most important concept

in the context of sds, since it – and not the values of the objective function

– determines the behaviour of a population of sds agents. Choosing a good

test procedure is thus almost as important as choosing a good representation.

4.2 Search Methods

4.2.1 Examples of Generic Search Methods

A large number of generic search methods (metaheuristics) for constraint

satisfaction and optimisation problems have been developed over the years.

Several of them use the selective processes of Chapter 3 as metaphor, others

have been developed in different contexts. The following sections present a

non-exhaustive overview of relevant search methods; emphasis is on those

aspects that distinguish a method from other methods.

Random Generate-and-Test and Systematic Search

One of the simplest of search methods, random generate-and-test (rgt),

generates random solutions and evaluates them, one after the other (Kennedy

et al., 2001, p71). The best solution found is returned at the end of the search.

Its deterministic variant, systematic search, generates solutions in a strict,

predefined order. This excludes the possibility that a solution is evaluated

twice. An example of systematic search is Template Matching (§2.1p21).
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Random Walk

Another simple search method is random walk (rw) (ibid.). A first solution

is generated and evaluated. Subsequent solutions are generated by modifying

a random small part of the current solution. The rw search process can be

envisaged as moving randomly and in small steps through the solution space.

Methods exploring the neighbourhood of the current solution are often called

local search methods. For example, with solutions encoded as binary strings

of length n, a common rw strategy is to randomly pick one of the bits and

flip it, moving from the current node to one of the neighbouring nodes on the

n-dimensional hypercube. For certain problems, local search requires only

partial evaluations to update the value of the objective function after a step.

For instance, in maxcsp problems, only those constraints that contain the

variable whose value has been changed need to be re-evaluated.

Hill-climbing

Hill-climbing strategies are local search methods that modify a solution and

only accept the changes if the modified solution is better than the current

solution (ibid., p72). For instance, steepest-ascent hill-climbing starts from a

randomly chosen position and always moves towards the best neighbouring

solution. The first-improving variant moves to the first evaluated solution

that is better than the current one. Gradient ascent uses information present

in the derivatives of the objective function (when computable) to decide on

the direction of the next step. The effectiveness of hill-climbing methods is

dependent on the properties of the objective function: when an objective

function contains many local optima with respect to the neighbourhood in-

vestigated by the search strategy, hill-climbing gets easily trapped in one of

the local optima. Hill-climbing is therefore often used in conjunction with

a restart strategy: if trapped in a local optimum, restart the search from a

randomly chosen position in the solution space.
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Simulated Annealing

Simulated Annealing (sa) draws on a metaphor from physics: the slow cool-

ing (annealing) of molecules into a regular crystal (Kirkpatrick, Gelatt and

Vecchi, 1983). As optimisation algorithm, it follows a strategy similar to

first-improving hill-climbing, with the main distinction that it sometimes ac-

cepts solutions that are worse than the current one. If a newly evaluated

solution is better than the current solution, it is always accepted. If a new

solution is worse than the current one, it is accepted with probability:

p(∆E) = exp (−|∆E|
T

) (4.1)

where ∆E is the difference between the current and new solution, and T acts

as a control parameter (a hypothetical temperature of the system). When

T is high poorer solutions are more easily accepted than when T is low.

The algorithm is completed with the specification of an annealing schedule, a

recipe for lowering the temperature from high values towards 0 as the search

progresses. Unlike simple hill-climbing strategies, sa can escape local optima

without the need for a restart, especially early on in the search.

Tabu Search

Tabu Search (ts) adds the concept of memory to local search methods like

rw and sa: a list of already visited but poor locations in the solution space –

the tabu list – prevents the search process from needlessly returning to these

locations (Taillard, Gambardella, Gendreau and Potvin, 2001).

GRASP

In the Greedy Randomised Adaptive Search Procedures (grasp) metaheuris-

tic, each iteration of the algorithm consists of two phases: the construction

phase in which a starting solution is constructed – as opposed to random
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selection of starting solutions – followed by a local search phase such as hill-

climbing (Resende and Ribeiro, 2003). The construction phase starts with

an empty solution. In each step of the construction phase, the current par-

tial solution is extended with a single element. The incremental costs of all

candidate elements are evaluated, and one of the extended partial solutions

is selected for the next step of the construction phase. In the greedy variant,

it is simply the best extended partial solution that is retained, but other

choice heuristics are possible. When a solution is completed, a local search

method is used to improve it. When the local search method reaches a local

optimum, the process is restarted in the construction phase.

Evolutionary Computation

The paradigm of Evolutionary Computation (ec) (Kennedy et al., 2001,

Chapter 4) is inspired by the principle of adaptation through natural selection

(§3.1p44). Most ec methods are population-based; in other words, a group

of individuals explore the solution space in parallel. The main mechanisms

of natural selection are implemented: variation, selection and reproduction;

a fitness measure determines the probability of reproduction. The metaphor

of fitness landscapes (§3.1.1p48) is useful to envisage the search process:

the population adapts by gradually moving towards regions with high fit-

ness values. Four areas developed quasi-independently: Genetic Algorithms,

Evolutionary Programming, Evolution Strategies and Genetic Programming.

Recently, those four areas have started to converge; many hybrid algorithms

have been developed, and aspects that were originally representative for one

approach have been incorporated into other approaches. The following brief

exposition describes the four areas mainly in their historical context.

Genetic Algorithms (ga) are the best known of the Evolutionary Com-

putation paradigm. They draw on the metaphor of genetic inheritance at

the level of the individual. Candidate solutions constitute an individual’s
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Initialise;

repeat

Calculate fitness for each individual;

Select individuals for next generation;

Apply crossover and mutation;

until (halting condition is met)

Table 4.1: Standard ga operation.

genetic material (the chromosome); originally, ga used only fixed-length bi-

nary encodings. These chromosomes are allowed to evolve over a number

of generations. Fitness is calculated for each chromosome from the objec-

tive function under optimisation; often, it is the raw value of the objective

function itself, or proportional to it. The operation of a standard ga is sum-

marised in Table 4.1. A typical population size is 20-200.

Selection is based on the fitness of chromosomes: the higher the fitness, the

higher the probability that a chromosome is selected for the next generation.

In roulette wheel selection, the probability of selection is proportional to the

fitness value. Elitist strategies ensure that the solutions with highest fitness

are always selected. In tournament selection, individuals have to compete

directly with one or a few other individuals to determine selection.

Variation is introduced through the mechanisms of mutation and crossover.

A common mutation strategy is to flip each bit in the chromosome with a

small probability pm; this is a small-variational mechanism, resulting in small

steps in the solution space. Crossover occurs between two randomly-paired

individuals: with a certain probability pc, the chromosomes are broken into

two or more parts; offspring is generated by combining parts from both par-

ents. Crossover can result in large variation between parents and offspring.

As the search progresses, the variational effect of crossover decreases: the

population becomes more uniform by converging on a small region of the

solution space.
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Evolutionary Programming Evolutionary Programming (ep) does not

simulate the mechanisms of genetic inheritance, but rather the adaptiveness

of behaviour. Originally, individuals were finite state machines, mainly used

to solve prediction problems. Fitness of individuals is calculated by exposing

them to the environment and evaluating their prediction performance.

ep relies on mutation to generate variation, but the probability of mutation

is typically much higher than in ga. Each parent usually produces 1 child;

children are added to the current population, and half of the population

is selected for the next iteration, either directly based on fitness ranking,

or through tournament selection: an individual is paired with a number of

other individuals and scores points with a probability based on its own fitness

relative to the fitness of its opponent.

Evolution Strategies In Evolution Strategies (es), solutions are usually

encoded as real-valued parameters. Variation is generated by mutation, as

well as by recombination (similar to crossover in ga). Parameters are mu-

tated by adding normally distributed random numbers with zero mean value

to the current values, so that individuals of the next generation explore the

area in the solution space around the solutions encoded by the parents. The

amount of mutation (controlled by the variances of the normal distribution)

itself is subjected to variation and selection, leading to self-adaptation of the

algorithm. Recombination can involve two parents (local recombination) or

the entire population (global recombination), and is implemented in one of

two ways: it is either discrete, meaning that a parameter value is selected

from only one of the parents; or intermediate, meaning that the parameter

value of the child is a linear combination of the parameter values of the par-

ents. Typically around 7 children are produced for each parent. Selection

occurs as in ga or ep through fitness-proportional or tournament strategies.
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Genetic Programming From one perspective, Genetic Programming (gp)

can be regarded a subfield of ga. gp evolves executable programs represented

as tree structures instead of the binary string representations of ga. Addi-

tionally, in gp the structures evolved are generally not of fixed length. The

fitness of individuals is calculated by executing the evolved programs and

measuring their performance in solving the problem.

Artificial Immune Systems

Artificial Immune Systems (ais) model aspects of vertebrate immune sys-

tems to solve pattern recognition and optimisation tasks (de Castro and

Timmis, 2002; de Castro and Timmis, 2003). One approach is to use the

affinity maturation concept of the clonal selection theory (§3.2.1p50). A few

differences with ec approaches are the use of ‘affinity’ to measure the qual-

ity of a solution, together with the metaphor of shape space (§3.2.1p52); the

sole reliance on mutation to generate variation; a reproduction rate that is

proportional to affinity; and a mutation rate inversely proportional to affinity.

Ant Colony Optimisation

Among a number of optimisation methods based on social insect behaviour

(Bonabeau et al., 1999), Ant Colony Optimisation (aco) is the most es-

tablished. It is based on the metaphor of trail-laying, trail-following ants

(§3.4.1p58), and has been used to solve different types of cop, of which the

Travelling Salesman Problem (tsp) is the best known. tsp consist of the

task of finding the shortest closed tour in a fully connected graph, visiting all

nodes exactly once. In aco, artificial ants construct a tour by visiting nodes.

At completion, they each lay an amount of artificial pheromone on the links

travelled, proportional to the overall quality of the tour. Links belonging to

high-quality tours thus receive on average higher amounts of pheromone than

links in poor-quality tours. During the construction process, each ant selects
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the next node based on a probability distribution reflecting the amount of

pheromone on all admissible links. Pheromone evaporates at a fixed rate,

preventing poor links from being amplified by accident. aco is a population-

based constructive metaheuristic; it is best used in conjunction with a local

search method to improve the solution found by the constructive phase.

Memetic Algorithms

Memetic Algorithms (ma) combine individual local search methods with a

population-based global search (Moscato, 1989). They are based on the

metaphors of scientific or cultural evolution: phases of individual improve-

ments to ideas or theories alternate with phases of cooperative and competi-

tive interactions on the population level. In the original formulation of ma, a

number of individuals (16 in this case) is arranged on a ring. Each individual

starts by adopting a random solution and improves it through a local search

method such as sa. Individuals then compete with neighbouring individuals

or cooperate with distant individuals. Competition results in one individual

copying the solution of its neighbour; cooperation results in exchange of in-

formation through ga-type crossover operators. The local and global search

operations are repeated until a stopping criterion is satisfied.

Particle Swarm Optimisation

Particle Swarm Optimisation (pso) is an abstraction of individual and coop-

erative problem solving in human society (§3.5p66) (Kennedy et al., 2001).

The search process is envisaged as a group of particles flying through solu-

tion space. The position and velocity of particles is updated based on prior

individual experience and the experience of other, neighbouring particles.
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Scatter Search

Scatter Search (ss) is a population-based metaheuristic that is sometimes

classified under the ec paradigm, although it originated from a different

context (Glover, Laguna and Marti, 2003). As in ga and es, new solutions

are generated by combining others, but the combination strategies are differ-

ent and more diverse. ss also contains explicit mechanisms to ensure that a

sufficient diversity in the population is maintained during the search process.

4.2.2 Search Methods: General Discussion

The previous pages presented a short overview of some well-known search

methods. This overview is far from complete: new methods and hybridisa-

tions of two or more approaches continue to appear on a daily basis. The

aim of the overview – rather than being exhaustive – is to highlight general

aspects of search methods, and to provide a catalogue of ideas that can be

used for the design of efficient search algorithms; that aim will be devel-

oped further in this section. Subsequently, some theoretical remarks on the

effectiveness of metaheuristics are discussed at the end of this section.

Properties of Search Methods

Based on their operation, the search methods of the previous section can be

divided into two broad categories:

1. Motive methods in which the search moves through the solution space

under control of a search strategy or search operator. At each position

in the solution space, the search process performs a certain amount of

work to evaluate the current solution or to decide where to go next.

Examples include rgt, local search methods and ga.
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2. Methods that construct a solution in a number of steps. In each step

an amount of work is performed to decide how to extend partial solu-

tions.2 Constructive methods are often combined with motive methods.

Examples from the previous section are grasp and aco.

Another important feature is the amount of work performed when evaluating

a solution. Most methods rely on complete evaluations of candidate solutions.

Exceptions exist for local search methods applied to certain solution spaces:

only part of the objective function needs to be re-evaluated when making a

small modification to the current solution. In some ec methods, fitness is

implicitly or explicitly based on partial knowledge of the objective function

value (e.g., Ochoa-Rodriguez, 1997; Hahn, 1997). A final exception is the

class of constructive methods, where at each step in the construction phase

only incremental costs are evaluated. Some other distinguishing properties

of search methods are:

� Individual versus population-based searches. Methods like hill-climbing

usually perform single walks through the solution space. Such indi-

vidual methods also exist in parallel forms (Eksioglu, Pardalos and

Resende, 2002), but their operation is not explicitly based on paral-

lelism. Conversely, other methods perform multiple interacting walks

through the solution space. This means that the operation of these

methods relies specifically on the interaction between individuals. Even

if these procedures are executed on single serial machines, they are still

in essence population-based, parallel methods. Examples include ga,

ma and ss.
2These constructive search methods can be regarded as a somewhat more inclusive class

than the heuristic path-search methods of symbolic ai. Similar to path-search methods,

they can be regarded as motive too: the space of all partial solutions forms a tree with

the empty solution as the root node and all complete solutions as leaf nodes; a directed

link from parent to child node exists if the child solution can be obtained by extending

the parent solution with a single element. Constructing a solution can then be envisaged

as descending the tree from the root node towards a leaf node.
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� Randomised versus deterministic. Methods can contain randomised

steps or be completely deterministic. However, determinism or ran-

domness are rarely essential features of a particular search method:

deterministic strategies can easily be randomised and randomised steps

can be replaced by deterministic ones. In practice, randomised methods

use (deterministic) pseudo random-number generators anyway.

� Unguided versus guided. rgt and rw are unguided searches: they

do not employ information from the objective function in the search

strategy. Most other metaheuristics attempt to exploit regularities and

use information from the objective function to guide the search.

� Directive versus selective. For guided methods, there is a subtle distinc-

tion between methods that perform evaluations before deciding where

to move next, and methods that generate new solutions and then se-

lect to retain some solutions after evaluation. Examples of the former

are steepest-ascent and gradient-ascent hill-climbing, examples of the

latter include ga and ais. This distinction runs parallel to the discus-

sion of blind and directed variational mechanisms in selective processes

(§3.6.2p71). Ultimately, it reduces to a distinction between methods

with explicit hill-climbing strategies, and methods with implicit hill-

climbing behaviour.

� Memoryless, implicit and explicit memory. ts maintains an explicit

history of locations that have been visited. On the other side of the

spectrum, rgt and rw methods are completely memoryless. In be-

tween are a number of metaheuristics that contain implicit memory

mechanisms: for instance, for ga and ss a history of the search process

is implied in the population; for aco, pheromones constitute the mem-

ory. This concept of memory was proposed as a unifying perspective

on metaheuristics in the framework of adaptive memory programming

(Taillard et al., 2001).

97



� Non-adaptive, adaptive and self-adaptive. For each metaheuristic, a

number of parameters affecting the search strategy need to be chosen.

Methods that have search parameters fixed for the entire search are non-

adaptive: e.g., a simple hill-climber. Methods that allow parameters to

change as search proceeds, in response to information from the search

process, are adaptive: e.g., the temperature in sa and the variable

mutation rate in ais. Methods that subject the search parameters

itself to a search are self-adaptive. An example of the last type is es,

where the mutation rate itself is subjected to mutation and selection.3

� Convergent versus non-convergent. Many population-based metaheuris-

tics are convergent: as the search proceeds the individuals of the pop-

ulation converge upon a limited region of the solution space; examples

include ga and pso. Other methods are non-convergent because they

lack interaction or because they explicitly attempt to maintain diversity

in the population; an example of this last case is ss.

Exploration versus Exploitation

Search methods are characterised by a balance between a wide exploration

of the solution space, and an exploitation of regularities that the objective

function is supposed to exhibit; exploitation usually results in concentrated

efforts in parts of the solution space that are regarded as “promising” by

the search strategy. Designing a successful search method for a particular

problem means finding a strategy that – throughout the search – maintains

a good balance between exploration and exploitation for the objective func-

tion under consideration. It involves making a number of decisions of the

kind: motive versus constructive; how much work to perform in each step of

3In the present context, the notions of non-adaptive and adaptive refer to the parame-

ters of the search strategy, and not to the nature of the search method itself. A method

can be called non-adaptive in the first context, but adaptive in the context of Chapter 3:

namely, that it is a selective process leading to adaptation.
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the algorithm; individual or population-based; non-adaptive or adaptive etc.

Decisions about other details need to be made later in the design process:

movement operator, mutation rate, population size etc.

Problems, Search Methods and No Free Lunch

There are currently no established guidelines for designing good search meth-

ods for particular classes of problems. Also, there are no standardised proce-

dures to assess the performance of search methods. A common approach is

to provide results of search performance on some common benchmark prob-

lems, and compare them with the results for other types of methods.

Theoretical models predicting search performance for a particular method

are scarce, and often presented for simplified variants that are not used in

practice. There exists, however, a theoretical framework connecting search

methods with search problems in general: the No Free Lunch (nfl) theorems

(Macready and Wolpert, 1996; Wolpert and Macready, 1997). nfl states

that, when averaged over all possible search problems, all search methods

have the same performance, and no search method outperforms rgt (or sim-

ilarly, systematic search). nfl does not imply that a search method cannot

be superior on a specific class of search problems. However, if it is superior

on some problems, then there must be other problems on which it performs

worse than alternative methods.

It is still unclear what the consequences of nfl are. In practice, generic

search methods like ga and hill-climbing have proven to be at least moder-

ately effective on a wide variety of search problems. This discrepancy between

theory and practice has led to the suggestion that real-world problems be-

long to a restricted class for which efficient generic search methods do exist

(Sharpe, 1999). In response to nfl, Christensen and Oppacher (2001) inves-

tigate what makes objective functions efficiently searchable in practice. They

observe that each metaheuristic attempts to exploit certain regularities of the

objective function; most methods (e.g., local search and selective methods
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with small variational mechanisms) exploit self-similarity : nearby points in

the solution space have similar function values. One can proceed by defining

a measure that reflects the regularities, exploited by a search method, over

the space of all possible objective functions. Establishing whether a search

method is suitable for a class of search problems then reduces to evaluating

that measure for a number of problems of that class.4

4.3 Search and Optimisation with SDS

4.3.1 Problems

In §2.2p25, it was argued that standard sds searches for a target pattern

in a search space (data search) by performing optimisation of an objective

function in a solution space (solution search). §2.2.4p31 then gave an example

of an objective function consisting of the number of corresponding micro-

feature pairs. This is a problem of the maxcsp type. The test score for

this example was defined as the number of corresponding micro-features (the

value of the objective function) divided by the total number of micro-features;

since the test procedure evaluates only 1 randomly chosen micro-feature pair,

this measure gives the probability of agents being active after the test phase.

The double interpretation of sds in the pattern matching context – as

performing data and solution search – is explained by the fact that pattern

matching consists of two related subproblems: the correspondence and trans-

formation recovery problem.5 The correspondence problem involves finding

a correspondence between micro-features from target and search space; in

the transformation recovery problem, the goal is to find transformation pa-

4In fact, a similar approach has been proposed many times before in more restricted

contexts, e.g., by Jones and Forrest (1995).
5Beveridge (1993) termed these the correspondence and pose recovery problem in the

context of 3D object recognition.
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rameters for the optimal correspondence. The former gives rise to an inter-

pretation of data search, the latter to an interpretation of solution search.

The work on the steady state resource allocation of standard sds (Nasuto,

1999), which forms the basis for the convergence proof in noisy search spaces,

was formulated in the context of string matching, a form of maxcsp. How-

ever, the results are in principle valid for all maxcsp, since the results of

Nasuto (1999) are dependent on the properties of the test score, and not on

the properties of the objective function or the origin of the problem itself.

This claim will be validated in Chapter 6.

Figure 2.6 (p35) demonstrates that, when a single solution fulfilling all

constraints is present in the solution space, all agents eventually converge on

it. This indicates that sds also solves csp (as a special case of maxcsp).

However, standard sds cannot prove that an assignment fulfilling all con-

straints does not exist. The algorithm is said to be incomplete. Nasuto and

Bishop (1999) proved that the probability of not solving a soluble problem

converges to 0 as the run-time approaches infinity. This property is some-

times called Probabilistic Approximate Completeness (pac) (Hoos, 1999).6

sds performs optimisation without calculating values of the objective

function explicitly. Instead, it performs repeated partial evaluations of the

objective function. This raises a fundamental question: what type of opti-

misation problems – besides maxcsp – can be in principle solved using only

partial evaluations? Intrinsically linked to this is the question: what type of

solution spaces and objective functions is partial evaluation especially suited

for? Both these questions will be treated in Chapter 6. An example of how

an objective function other than maxcsp can be optimised solely through

partial evaluations is presented in Appendix A.4.

6This is not directly related to the concept Probably Approximately Correct Learning

(pac learning) in the context of Machine Learning.

101



4.3.2 Methods

Standard sds is a motive search method, i.e., the agents in the population

move through the solution space under control of a search strategy. Focused

variants of sds (Beattie, 2000; Hurley and Whitaker, 2002) can be regarded

as a mixture of motive and constructive: in these hierarchical searches, agents

start with testing approximate solutions in reasonably small solution spaces;

as the search proceeds, these solutions are refined until they have the com-

plexity of the desired solutions. The search process can thus be envisaged

as constructing ever more complex solutions, while simultaneously moving

around in the solution spaces defined by these approximate solutions.7

For standard sds the amount of work performed by a single agent in

a single iteration is very small: agents perform only partial evaluations of

the objective function. No single agent at any moment during the search has

access to a full function value. It is this property that most distinguishes sds:

many other methods use complete function evaluations at each point in the

solution space. Local search methods that perform only partial evaluations

to update the value of the objective function still have access to full function

values during the entire search process. Fitness-based methods like ga allow

in theory for partial evaluations, but this option has been rarely used.

Partial evaluation is the core element of the operation of sds: it is the

source of its efficiency for certain problems, its “justification” as a separate

metaheuristic. Given the conclusions of nfl, it also has to be the source of its

limitations: certain objective functions cannot be easily optimised using only

partial evaluations; this issue will be addressed in Chapter 6. Furthermore:

� sds can be classified as a population-based method: its operation de-

pends on the interaction of many individuals. Since single agents per-

7‘Approximate solution’ does not equal ‘partial solution’. A solution can be approxi-

mate because it contains a subset of all the variables xi, but also because it operates on a

subset of the domain values Di for each variable xi.
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form only small amounts of work, population sizes are typically much

larger than for ma or even ga (usually in the range of 100 to 1000).

� sds is a randomised method, although it is possible to de-randomise

the procedure (see Appendix A.2).

� Standard sds takes an intermediary position between guided and un-

guided search methods: in the beginning of the search, when most or

all agents are inactive and little diffusion of information takes place,

standard sds behaves very much like parallel rgt. Later, when good

solutions are discovered, agents guide each other towards those solu-

tions. Standard sds does not attempt to exploit any self-similarity

in the objective function; the addition of a small-variational mecha-

nism to the diffusion phase, as in Appendix A.3, does weakly exploit

self-similarity and increases the degree of guidance.

� Standard sds is certainly not directive: since agents have no access

to information about the form of the objective function, they cannot

use hill-climbing strategies.8 It is a selective search method, generating

solutions first and then retaining the promising ones. In one iteration

of sds, candidate solutions are tested only a fraction of the amount

they are tested in other selective methods such as ga. sds can thus be

regarded as operating on a different timescale from ga.

� sds maintains an implicit history of the search in the clusters of agents.

Since standard sds allocates most of its resources to the single best

solution discovered so far, the amount of information memorised in

this case is very limited. Other variants, like context-sensitive sds

(see Appendix A.1), can support more than one cluster of agents, and

therefore maintain a larger history of the search process.

8sds can easily be combined with a hill-climbing method, as in (Grech-Cini, 1995):

standard sds is used to quickly find a reasonable starting solution; this solution is then

improved using a simplex method, essentially a form of hill-climbing.

103



� Standard sds is non-adaptive, since all the search parameters are fixed;

variants like focused sds (Beattie, 2000; Hurley and Whitaker, 2002)

are adaptive, since the testing phase is altered as the search proceeds.

� Standard sds is a convergent method: agents cluster together in points

in the solution space. Convergence is an essential aspect: because single

agents have no ability to assess and compare the quality of solutions,

it is the group behaviour that indicates where good solutions are.

The meaning of ‘exploitation’ in the context of sds is somewhat special:

for sds variants without small-variational mechanisms, ‘exploitation’ refers

to the clustering of agents in single points in the solution space, whereas for

other metaheuristics it refers to concentrated efforts in regions of the solution

space. For sds variants that exploit self-similarity in the objective function,

the meaning of exploitation shifts more towards its usual meaning: instead of

considering clusters of agents in single points in the solution space, all agents

in nearby points could be considered as belonging to the same cluster.

In any case, the conflicting demands of exploration and exploitation are even

more important for sds than for other methods: since individual agents

cannot compare the quality of solutions, exploitation (clustering) is needed

to indicate that good solutions have been discovered. However, as observed

in §2.2.4p36, too much exploitation conflicts with continuing exploration, and

can possibly hinder system performance. When applying sds to a particular

problem, the prime task is thus to find a variant that combines a maximum

of continuing exploration with a level of exploitation that is sufficient to

indicate the presence of good solutions. Due to its greedy nature, standard

sds is not necessarily an optimal candidate for many problems.

The conclusions of nfl are of course valid for sds: if standard sds is

more efficient than Template Matching (a form of systematic search) on some

problems (§2.2.4p36), then it must perform worse than systematic search on

other problems. To assess what kinds of problems sds is suitable for, the
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approach as proposed in (Christensen and Oppacher, 2001) can be adopted:

define a measure that reflects the regularities the search method is trying to

exploit, and evaluate that measure for typical examples of the problem class.

A further treatment of this approach is deferred to Chapter 6.

4.4 Summary and Conclusion

4.4.1 Optimising Search Methods

nfl demonstrates that matching specific problems with suitable metaheuris-

tics is the prime task of researchers interested in problem solving. This actu-

ally has been happening on an informal “trial-and-error” basis for the last 50

years: search methods were proposed, evaluated on benchmark problems and

compared with other methods. The most successful methods were adopted

by other researchers; variations and hybridisations were proposed, evaluated

and eventually retained or rejected. The entire process is an example of how

science itself is an adaptive process operating through the mechanisms of

v+sr (§3.5p64). The work of Christensen and Oppacher (2001) is a formal-

isation of this process: specifying a measure over the space of all objective

functions, and then searching for regions where this measure predicts good

performance for a specific search method, is an optimisation problem in itself.

4.4.2 Building Blocks

The previous sections have implicitly advocated the approach that search

methods can be designed by combining “building blocks”, aspects of search

methods that attempt to speed up the search, often by exploiting regular-

ities of objective functions: memory, adaptiveness, parallelism, interaction,

randomness, search operators exploiting various kinds of self-similarity etc.
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The main contribution of sds to this collection is a new building block: the

principle of partial evaluation.

A building-block approach to search methods blurs categorical bound-

aries. One can easily imagine individual sds agents with tabu lists; phases of

sds intertwined with hill-climbing; ga, ma or pso relying on partial evalua-

tions etc. It is this approach that leads to the structure of Chapter 5: rather

than attempting to formally categorise sds variants according to their prop-

erties, a number of “dimensions of choice” are presented that will allow a

more efficient matching of search problem to search method in the future.

4.4.3 Conclusion

This chapter has translated the interpretation of sds as a problem-solving se-

lective process into the language of ai and computer science: sds solves prob-

lems by searching through a solution space. The text focused on problems

that are explicitly formulated as search problems; however, many problems

that are formulated in different contexts – such as machine learning, con-

trol, resource allocation or decision making – are essentially solved through

search. sds – or its most fundamental building block: partial evaluation –

can also play a role in all of these derived problems, even if this subject has

not been discussed. Search methods were presented with a similar rationale

as the discussion of selective processes in Chapter 3: to serve as inspiration

for the design of sds variants.

Referring back to the roadmap of questions, this chapter has mainly pro-

vided an answer to question 2 (p15): “what does sds do?” Meta-level ques-

tions C and D (p18) have also had an important influence on the content of

the chapter: inspiration from other search methods can be seen as a partial

answer to question C; sds’s main contribution to the field of metaheuristics

– the principle of partial evaluation – forms an answer to question D.
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Chapter 5

Properties of SDS

Chapter 4 advocated a building block approach to the design of metaheuris-

tics: a specific search method can be constructed from a combination of ideas

from other methods. This approach makes a strict classification of search

methods impossible: for instance, an sds variant that performs cross-over

of hypotheses during the diffusion phase can be regarded as either sds or

as a ga using partial evaluation and tournament selection. Nonetheless, for

many search methods like ga, ma, aco or sds itself, it is possible to define

“archetypical” examples. These examples are built around properties that

are considered essential to the search method. Flexible category definitions

can then be based on these essential properties.

Chapter 1 defined sds as an algorithmic process (§1.2.1p13), and stressed

the contradistinction between the algorithmic side – the mechanistic proce-

dure detailing the operation of sds agents – and the process side, more

specifically the statistical regularities on the population level. Consequently,

when discussing properties of sds, the same distinction should be made be-

tween algorithmic properties and process properties. Section 5.1 discusses

the essential algorithmic properties of sds and the process that ensues from

them. Section 5.2 then lists alternatives that can be combined to instantiate

specific sds variants, and evaluates how they affect the process dynamics.
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5.1 Essential SDS

5.1.1 Algorithmic Properties

The previous chapters have described sds as a population-based generate-

and-test method trying to reduce the computational cost of searching by

performing partial evaluation of hypotheses only. In this section, sds is

defined in more detail by listing essential algorithmic properties:

Definition 5.1. An sds algorithm consists of a population of independently

operating agents. Each agent has associated with it:

� A hypothesis about the optimal solution to the problem.

� A procedure for partial evaluation of the hypothesis, the test procedure.

� A state variable, called activity, whose value is based on the outcome

of the test procedure.

� A procedure specifying whether to retain or alter the hypothesis, the

diffusion procedure. It includes acts of direct communication with

other agents during which information about hypothesis and activity

parameters is exchanged.

An sds algorithm should also contain the following specifications (associated

to either individual agents or the population as a whole):

� A strategy for initialising hypothesis and activity parameters.

� Usually, but not necessarily, a criterion for termination.

� A strategy for extracting a solution from a population of hypotheses.

� A specification of structural properties of the population.
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Furthermore, it is assumed that agents react rationally (on average) to

information obtained during the test procedure and from other agents.

The rationality assumption excludes variants where activity values do not

correlate with the outcome of the test procedure, and variants where agents

react in nonsensical ways to information obtained from other agents. It is

unlikely that such variants can produce behaviour useful for search purposes.

5.1.2 Process Properties

When some or all of the algorithmic steps of sds are randomised, the spatial

and temporal allocation of agents in the solution space1 is governed by a

stochastic process sampling from a number of probability distributions. For

example, the test procedure can be regarded as sampling random numbers

from probability distributions whose means are given by the test score. Sim-

ilarly, the algorithmic steps of communication and information-sharing in

the diffusion procedure give rise to a sampling process whose effects can be

translated into a weak stochastic coupling between agents.

For certain combinations of sampling processes (or combinations of pa-

rameter values of the processes), the allocation pattern of agents in the solu-

tion space exhibits a strong nonlinear effect: a limited number of points or

regions in the solution space attracts a disproportionately large number of

agents, in the form of relatively stable clusters of agents. For other combina-

tions, the nonlinear effect is virtually absent, and stable clusters do not form.

The change in behaviour from nonlinear to linear occurs abruptly as parame-

ters of the sampling processes are varied. For example, the allocation pattern

of standard sds changes abruptly from nonlinear to almost linear when the

test score of the best solution approaches the critical response (§2.3.2p39).2

1Or, alternatively, the temporal distribution of hypotheses over the agents.
2Although the change is abrupt, it is not discontinuous: in a small region around the

critical response, the stability of clusters changes rapidly. (see also Nasuto, 1999)
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Given the assumption of (on average) rational agent behaviour, the points

or regions that attract clusters are expected to contain the best solutions.

It is this nonlinear aspect of the sds allocation process that is essential to

its success as an optimisation method: good solutions can be extracted from

stable clusters of agents in the solution space. This property of the sds

process is not an algorithmic property: the algorithmic description of sds

does not include or predict the formation of clusters. Conversely, algorithmic

properties are not necessarily process properties: for instance, for the process

side of sds it is quite irrelevant that the test score is the averaged result

of randomly-selected partial evaluations; the uncertainty expressed by this

distribution could equally well be the result of uncertainty in the problem

definition or some form of measurement noise. Hence, partial evaluation is

not an essential process property; it is only an essential algorithmic property.

The spatial and temporal allocation of agents reflects the dynamical bal-

ance between exploration and exploitation (§4.3.2p104). Too much explo-

ration without exploitation (clustering) means that the search is unsuccess-

ful; too much exploitation means that the search settles quickly on possibly

suboptimal solutions.3 For a given problem, the balance between exploration

and exploitation can be manipulated by selecting algorithmic properties from

a number of alternatives, some of which are discussed in the next section.

5.2 Dimensions of Choice

The current section concentrates on choices that can be made in the general

framework provided by Definition 5.1 (p108). It does not attempt to discuss

combinations of sds with other search methods, such as sds agents with

tabu lists or combinations of sds with hill-climbing. This is mainly because

it wants to emphasise on the many potential alternatives within the setting

of pure sds algorithms, and how alternatives influence process behaviour.

3This does not necessarily imply that it gets permanently stuck in these solutions.
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5.2.1 Activity

Activity is based on the outcome of the test procedure. It is usually a scalar,

but – if needed – could also be a vector: for instance, instead of storing only

the present activity level, the activity level from the previous iteration could

also be retained, resulting in a 2-tuple activity.

The original formulations of sds used binary activity levels. Alternatively,

activity levels could be chosen to span the interval [0, 1]. Activity can then

be interpreted as a probability, the belief of an agent in the quality of its

hypothesis, given evidence from the test procedure; or it could be interpreted

in the language of fuzzy-set theory and possibility theory. More generally,

activity levels can also be integer-valued or real-valued numbers.

The reason for using more complex types of activity levels is that, for

optimisation problems other than maxcsp, the output of the test procedure

contains more information than just 0 or 1. Compressing that information

to a 0 or 1 value would waste possibly valuable information. Appendix A.4.2

(p154) gives an example of this idea.

5.2.2 Diffusion

The test procedure (Chapter 6) and the structural properties of the popula-

tion (§5.2.6p118) both have a decisive influence on the behaviour of the sds

allocation process. Since the former is largely determined by the objective

function to be optimised, and the latter constrained by aspects of the physi-

cal implementation, it is in the diffusion procedure that the balance between

exploration and exploitation can be most actively manipulated.

Agents communicate directly with other agents during the diffusion phase.

They compare activity and hypotheses parameters, and then decide whether

to retain or alter their own hypothesis, possibly replacing it with the hypoth-

esis of another agent. The steps of communicating, comparing and altering
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can be combined in many different ways. The influence of these combinations

on the allocation process can best be discussed from the perspective of the

replicators – the hypotheses – in the framework of v+sr (§3.6.2p70).

Selection Mechanisms

In sds, agents choose to reject, retain or replicate a hypothesis, based on

information received from one or at most a few other agents.4 A few potential

selection strategies exist: these are based on the comparison of activity levels,

hypotheses parameters, or both. In the case where agent A contacts one agent

only – agent B – the following combinations exist for activity-based selection:

1. The activity levels of agent A and B are both low. Because it is unlikely

that either of the two agents has a good hypothesis, agent A should

reject its own hypothesis and not accept the hypothesis of agent B.

2. Agent A has a low activity level, but agent B has a high activity level.

Because it is likely that agent B has a better hypothesis, agent A should

reject its own hypothesis and accept the hypothesis of agent B instead.

3. Agent A has a high activity level, while agent B has a low activity

level. Since the hypothesis of agent B is likely to be worse, it would be

irrational of agent A to replace its hypothesis with agent B’s hypothesis.

The best strategy for agent A is to simply retain its own hypothesis.

4. Both agents A and B have high activity levels, and are therefore both

likely to maintain a good hypothesis. There are two potential strategies

here: agent A decides to retain its hypothesis; or agent A abandons its

own hypothesis to resume exploration (context-free sds).

4This is an important distinction with centralised selection mechanisms in ec (4.2.1):

fitness ranking (p92), roulette wheel and elitist selection strategies (p91). The selection

mechanisms of sds can be seen as an extreme form of tournament selection (p92).
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The first situation is biased towards exploration; the second scenario results

in exploitation; the third does not affect levels of exploration and exploita-

tion; the fourth either maintains levels, or results in exploration.

For binary activity levels, these four situations unambiguously cover all

possible scenarios. For other types of activity levels, there is a certain freedom

in deciding what constitutes high and low levels. Alternatively, selection in

this case can be based on the difference of two activity levels, rather than

on a high-low comparison. An example thereof is given in Appendix A.4.2

(p154). Selection can also be made probabilistic, dependent on the difference

between the two activity levels.

There is only one rational hypothesis-based selection strategy: when

agent A and agent B have similar hypotheses, agent A can choose to abandon

its own hypothesis, based on the idea that agent B is already advertising it.

This is the context-sensitive approach, resulting in an increased exploration.

Replication Mechanisms

A hypothesis is replicated when one agent copies it from another agent. The

hypothesis of a single agent may be copied many times by different agents,

but usually one act of copying results in one new copy of the hypothesis.

Alternatively, one act of copying could be chosen to result in multiple copies,

enhancing exploitation and thus the stability of clusters. This mechanism

results in a growing population; a context-sensitive selection mechanism can

be used to stabilise overall population size, by removing the excess active

agents from the population.

Variational Mechanisms

The original formulations of sds generate variation that is uncorrelated to

the hypotheses already present in the population: new hypotheses are cho-

sen randomly from all admissible ones. In combination with the probabilistic
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outcome of the test procedure, this mechanism ensures that sds continuously

explores the entire solution space and can never become permanently trapped

in a suboptimal solution.

Knowledge about the objective function may be incorporated to bias varia-

tion towards exploitation of certain areas of the solution space. For instance,

many objective functions based on real-world problems exhibit self-similarity

(§4.2.2p100). This means that a good location in the solution space has a

non-negligible probability of being close to even better locations. It is sensi-

ble to bias the generation of variation towards the detection of these nearby

better locations by employing small-variational mechanisms. However, if un-

correlated variational mechanisms are completely replaced by strongly biased

ones, then the ability of sds to escape local optima may become impaired.

In the original formulation of sds, new variation is generated after old

hypotheses are rejected. However, variational mechanisms can also be ap-

plied in the replication steps of the diffusion procedure: for instance, if a

small random offset is added while copying a hypothesis – as in Appendix

A.3 (p146) – then resources of large clusters are diverted to neighbouring

locations in the solution space; exploitation of one solution is exchanged for

exploitation of a few neighbouring solutions. Another option for generat-

ing variation during replication is the recombination operators known from

es and ss: for example, a hypothesis can be copied only partially ; or one

hypothesis can be replaced by a linear combination of hypotheses. Finally,

variation may also be generated when hypotheses are simply retained: an

agent remaining in the same location for some time may decide to add a

small random offset to its hypothesis parameters. This mechanism should be

implemented with care, since it could make sufficient exploitation impossible.
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5.2.3 Initialisation

In general, agents need to be initialised with a starting hypothesis. If prior

knowledge about the problem is available, then this knowledge can be used to

bias the assignment process towards certain regions or points of the solution

space. In the absence of prior knowledge, hypotheses can be sampled uni-

formly at random from the solution space. Alternatively, hypotheses could

be assigned using a low-discrepancy sequence, a pseudo-random sequence of

points that fills the sampled space more regularly than uniform random sam-

pling; or hypotheses could be assigned evenly and deterministically.

The primary reason for spacing the initial hypotheses more evenly is that

for problems with self-similarity, the optimal value may lay on a peak of non-

negligible width; the probability of missing the peak altogether in the initial

assignment is lower with evenly spaced sequences than with uniform random

sequences. In combination with a small-variational mechanism, inducing

hill-climbing behaviour, this approach can improve algorithmic performance.

5.2.4 Termination

There are several criteria for terminating the execution of an sds algorithm:

1. No stopping criterion: the algorithm continues to run until interrupted

by the user or a different process. This is the preferred setting for dy-

namically changing problems, where sds is used to track the maximum

or minimum of a dynamically changing objective function.

2. Time-based criteria: the algorithm is run for a fixed number of itera-

tions, or until a fixed amount of real computational time is elapsed.

3. Activity-based criteria: the process is terminated if the overall activity

exceeds a certain level; this level can be predefined by the user or cal-

culated from the overall activity level during the first iterations of the
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algorithm (the activity level is then the result of the background re-

sponse). Alternatively, the process can be terminated if overall activity

of the population stabilises for a number of iterations after a sudden

increase; or a combination of these two criteria can be used.

4. Cluster-based criteria: execution of the algorithm can be terminated

when the formation of stable clusters has been observed.

Activity-based and cluster-based stopping criteria introduce a serial compu-

tational bottleneck into an otherwise completely distributed algorithm. This

poses a problem for efficient distributed implementation of sds; for large

numbers of agents, it also affects computational efficiency in general.

The problem can be alleviated by implementing the termination criterion as

a random sampling process: for example, a cluster-based termination pro-

cedure may wish to monitor the hypotheses of a small proportion of the

population until it encounters the same hypothesis more than once. This

forms partial evidence that a cluster has been formed. The procedure can

then choose to increase the size of the sample taken from the population.

Such a random sampling procedure could eventually be translated into an

sds algorithm itself: a small population of stopping agents compares the hy-

potheses of pairs of the original searching agents; the activity state of these

stopping agents should be based on the similarity of the two hypotheses. A

cluster-based criterion for a large population can thus be translated into an

activity-based criterion for a much smaller population.5

The termination procedure does not need to operate in the same time frame

as the sds agents: for instance, it is possible to execute the termination

procedure only every x iterations, or every x seconds of computational time.

5In some situations these two populations can even be merged: for instance, active

context-sensitive agents already compare hypotheses. A small proportion of agents can

then simply be designated as ‘stopping agents’, and be given an extra activity state.
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5.2.5 Extraction

After termination of an sds algorithm, and also during tracking of the opti-

mum of a dynamically changing objective function, a single solution needs to

be extracted from the population of agent hypotheses. For greedy variants

such as standard sds, it is simply the most common hypothesis that is pro-

posed as the optimal solution. For variants like context-sensitive sds that

can support multiple clusters of similar size (see Appendix A.1 (p142)), it can

be necessary to do a few complete function evaluations to extract the optimal

solution from the cluster information. When small-variational mechanisms –

such as the strategy of errors in Appendix A.3 (p146) – are employed, clus-

ters often contain a few neighbouring hypotheses. If more than one of such

clusters is formed, it might be required to perform some standard clustering

analysis on the population to determine the relative size of clusters.

The problem of extracting a solution from a population of hypotheses is an

instance of the generic problem of learning from secondary data (Kearns and

Seung, 1995): a learning algorithm must combine a collection of potentially

poor hypotheses into a final hypothesis. In the more restricted population

learning model for function approximation, Kearns and Seung (1995) as-

sume that the hypotheses are statistically independent, an assumption that

certainly does not apply to sds. Nevertheless, the theoretical analysis of

population learning leads to some interesting conclusions: firstly, that there

exist combinations of problems and population learners for which the final

hypothesis is expected to be better than any of the original hypotheses; sec-

ondly, that the class of general population learners is strictly more powerful

than the class of population predictors, population learners based on voting

schemes (Nakamura, Takeuchi and Abe, 1998).6 As sds variants are applied

to new types of problems, these conclusions become potentially relevant for

the study of sds.

6Taking the most common hypothesis can be regarded as a voting scheme.
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5.2.6 Structural Properties of the Population

Guidelines for Population Size

Population size is determined by the conflicting demands of computational

efficiency versus stability of clusters: the temporal and/or spatial computa-

tional requirements for simulating the population increase with population

size; from this perspective the number of agents should be kept as low as

possible. However, from the perspective of cluster stability, a reasonable

population size is required to guarantee sufficient stability. For standard

sds, a population size of a few hundred probably provides sufficient stability

(and this irrespective of the size of the solution space). For variants such as

context-sensitive sds, population size often needs to be higher.

The number of agents used in sds is often one or even two orders of

magnitude higher than in methods like ga, ma or pso. However, in many

cases the computational cost of an sds iteration is still lower than for these

methods, due to the partial evaluation of the objective function and the cheap

selection mechanism following from direct one-to-one communication.

Temporal Mode of Operation

sds agents can operate synchronously or asynchronously. In synchronous

mode, all agents perform test and diffusion procedures as dictated by a cen-

tral clock; this is the operational mode of the original formulations of sds.

Additionally, there exist two different modes of asynchronous operation:

1. In each iteration, one agent is chosen at random to perform a specified

sequence of test and diffusion procedures. Its de-randomised counter-

part – the systematic sequential mode – updates all agents one for one

in a deterministic sequence. These two modes of operation are – like
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the synchronous mode – suitable for software implementation on se-

rial computers. For many variants, asynchronous process behaviour is

the same as for the synchronous mode, except for the time scale; how-

ever, asynchronous process behaviour is considerably easier to analyse

mathematically than the synchronous process (De Meyer, 2000).

2. Each agent operates in its own time. This mode of operation is specif-

ically suited towards distributed implementations, with the purpose of

implementation on parallel hardware. The process properties are likely

to be the same as for other modes of operation, except for the timescale.

Communication Structure of the Population

In the original formulations of sds, agents can communicate with all other

agents in the population. This is the best and most simple communication

structure for software implementations on single serial machines. However,

for spatially distributed types of implementation, this means that agents

either need to be connected through a shared communication channel (a

bus), or fully connected by direct one-to-one communication channels.

When neither of these possibilities is acceptable, the following alternatives

can be considered, dependent on the type of physical implementation:

1. Limit the number of agents that each agent can communicate with.

This can be achieved by arranging agents on a regular lattice and al-

lowing communication with nearby neighbours only. Although this

approach is ideally suited for implementation in parallel hardware, a

potential problem is that, for increasing lattice sizes, clusters form more

slowly and are less stable than for fully-connected variants. Empirical

evidence suggests that for small-world7 networks, process behaviour

7Small-world networks consist of a regular lattice of local connections with relatively

few long-range connections added (Watts and Strogatz, 1998).
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is much closer to the behaviour of fully-connected variants, even for a

modest number of connections, providing the optimal trade-off between

process behaviour and network complexity (De Meyer et al., 2002) –

see also Appendix A.5 (p157).

2. Agents are divided into several subpopulations that are internally fully

connected, but have no or relatively few external connections. This

approach is particulary suitable for implementation on multi-processor

machines or clusters of single-processor machines, limiting the amount

of communication taking place between processors or machines.

Compositional Properties

Populations can consist of one type of agents, or of multiple types of agents.

For instance, mixing standard and context-sensitive agents results in a popu-

lation with an allocation pattern that is somewhere in between the allocation

pattern for purely standard and purely context-sensitive populations.

5.2.7 Randomisation

Randomisation itself was not listed as an essential algorithmic property of

sds. This is because almost any of the algorithmic steps in the test and diffu-

sion procedure can be either randomised or de-randomised. An example of a

completely de-randomised version of standard sds is given in Appendix A.2

(p143): all randomised operations are replaced by operations that guarantee

a maximum amount of variation in actions undertaken by different agents.

The balance between exploration and exploitation can also be manipu-

lated by further randomising some of the algorithmic steps: for instance,

the secret optimist (Grech-Cini, 1995) only rejects a poor hypothesis with

a certain probability p < 1, shifting the balance towards more exploitation.

The hermit (ibid.) prefers generating new hypotheses rather than working
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in a team, and only attempts to communicate with other agents a certain

proportion of all iterations, shifting the balance towards more exploration.

Biasing the uniform random distributions used in the original sds vari-

ants is another way of manipulating the allocation process: examples have

already been given of bias in variational mechanisms in the diffusion and the

initialisation procedure. A further example is the choice of the contacted

agent: rather than choosing it uniformly at random, the probability can be

biased by the activity levels of other agents, resulting in more exploitation.

5.2.8 Adaptivity and Self-Adaptivity

Many algorithmic properties of sds can be made adaptive and even self-

adaptive (§4.2.2p98). Some of the diffusion mechanisms are implicitly adap-

tive, i.e., their effect is dependent on the status of the search process: for

instance, a context-sensitive mechanism has almost no effect as long as good

solutions have not been discovered; only when clusters start forming does the

probability increase that agents with the same hypothesis communicate.

However, it is also possible to introduce explicit adaptivity: for instance, fo-

cused sds variants (Beattie, 2000; Hurley and Whitaker, 2002) dynamically

alter aspects of the test procedure in response to information feedback from

the search process. Parameters of the diffusion procedure can also be made

adaptive by modifying them during the search and self-adaptive by includ-

ing them in the search itself: for instance, a secret optimist can decrease its

probability of rejecting a poor hypothesis when there is too much exploration.

The main purpose of making the diffusion procedure adaptive is to allow

the search process to adjust itself automatically to the properties of the test

score: the ideal problem for sds is one where the test scores of all unaccept-

able solutions fall below the critical response, and the test scores of acceptable

solutions are higher than the critical response. The critical response can be

changed by manipulating the diffusion procedure: for instance, for a popula-

121



tion of secret optimists with binary activity retaining a failed hypothesis on

average i iterations, the critical response is given by (Grech-Cini, 1995):

rc =
1 + irb

2 + i− rb

(5.1)

For i = 0, this equation reduces to the equation for standard sds (p39).

Making i modifiable gives control over the critical response, resulting in a

variant that still converges when standard sds would fail, and for which a

population of secret optimists with fixed i might converge too quickly.

5.3 Conclusion

By discussing properties of sds, this chapter has answered several of the

questions of the roadmap. Section 5.1 answered questions 4 and 6 (p16): the

most distinguishing essential algorithmic properties are partial evaluation

of hypotheses, and direct one-to-one communication between agents; the

latter leads to a computationally-cheap, distributed selection mechanism.

On the process side, it is the explicit reliance on the formation of clusters

that distinguishes sds from other search methods.

Section 5.2 partially answered question 5 (p16). Rather than giving a tax-

onomy of sds variants, it proposed how algorithmic properties can be chosen

from a number of alternatives. When making alterations to the original algo-

rithmic formulation, it should be carefully considered what is expected from

them: some are justified in light of an efficient physical realisation of the

algorithm; other modifications are mainly used to manipulate the balance

between exploration and exploitation, so that stable clusters can form on the

best locations in the solution space and not on unwanted solutions.

The chapter did not consider potential modifications to the test proce-

dure, since this issue is intrinsically linked to the question of what type of

objective functions can actually be optimised by partial evaluation only. This

question will receive due attention in the following chapter.
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Chapter 6

Applicability

Chapter 5 defined the essential properties of sds, and discussed potential

variations within this framework. The test procedure was defined as a “pro-

cedure for partial evaluation”, but details of its operation were not discussed.

This issue will be treated in the current chapter, as it is very much related

to the question of what can be optimised using partial evaluations only.

What can be achieved in principle with a method like sds, and how well it

works in practice are two very different questions. The nfl theorems, intro-

duced in Chapter 4, state that for every class of problems where a particular

method outperforms random search, there must be other classes where the

reverse is true. Establishing whether a particular class of problems is well-

suited for optimisation with sds is therefore a question of great importance.

Section 6.1 addresses the first of these two questions. It demonstrates

how in principle all summation functions can be optimised using standard

sds, and gives some ideas about objective functions that are not summa-

tions. Section 6.2 then concentrates on the question of practical usability: it

proposes a number of measures that can be used to judge the suitability of a

problem class for optimisation with sds, and identifies a number of problem

scenarios for which sds should or should not be attempted.
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6.1 Decomposable Functions

Partial evaluation presupposes, first and foremost, that the objective function

is decomposable into components that can be evaluated independently. For

many optimisation problems, the objective function can be expressed as a

summation, which is naturally decomposable into its individual terms:

f(x) =
n∑

i=1

fi(x) (6.1)

All summation functions can in principle be optimised using standard sds

by evaluating individual terms of the summation in the test procedure; this

is explained in more detail in Section 6.1.1. For objective functions that are

not summations, it remains an open question what can be achieved, although

some general ideas are presented in Section 6.1.2.

6.1.1 Optimising Summations

What exactly does standard SDS optimise?

The stochastic models of standard sds in (Nasuto, 1999) were formulated

in the context of string matching: dependent on the presence or absence of

a target character in the search space, the output of the test procedure is

either 1 or 0, resulting in either an active or inactive agent. These stochas-

tic models are not based on specific details of string matching, but only on

probabilities of producing active and inactive agents. Their validity is there-

fore not limited to the string matching domain. They demonstrate that –

irrespective of any objective function – the largest cluster of standard sds

agents eventually forms at the location in the solution space that has the

highest probability of producing active agents, i.e., at the maximum of the

test score t(·) (§4.1.2p87).1 Hence, standard sds can be regarded as finding:

1 Additional conditions, such as the critical response (§2.3.2p39), are not considered at

this point. These issues will be addressed further on.
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max
x∈ S

t(x) = max
x∈ S

1

n

n∑
i=1

ti(x) (6.2)

with ti(·) deterministic {0, 1}-valued test functions, and n the total number

of different test functions. For example, in the Queen of Hearts problem

(§2.2.4p28), there are two test functions: value(·) and type(·); for the Match-

ing on Mars example (§2.2.4p31), there are 800 test functions ti(·), evaluating

the presence or absence of each of the 800 micro-features. If the ti(·) functions

are themselves probabilistic, then standard sds converges to:

max
x∈ S

t(x) = max
x∈ S

1

n

n∑
i=1

E(ti(x)) (6.3)

with E(·) the expected value; E(ti(x)) is the proportion of times that ti(x)

has 1 as outcome. Equations 6.2 and 6.3 assume that all ti(·) are equally

likely to be evaluated. When this is not the case, standard sds locates the

maximum:

max
x∈ S

t(x) = max
x∈ S

1

n

n∑
i=1

wi E(ti(x)) (6.4)

where wi is the relative frequency of evaluation of ti(·) (
∑

i wi = 1).

Strictly Order-Preserving Mappings for Summation Functions

Standard sds converges to the maximum of the test score; if the process of

mapping objective function values to test score values (taking place in the

test procedure) does not change the locations of the optima, then sds can

also be said to optimise the objective function itself. A sufficient condition

to ensure this is that the operation f(·) → t(·) is strictly order-preserving :

∀ x1, x2 ∈ S
{

f(x1) = f(x2) ⇒ t(x1) = t(x2)

f(x1) < f(x2) ⇒ t(x1) < t(x2)

or
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∀ x1, x2 ∈ S
{

f(x1) = f(x2) ⇒ t(x1) = t(x2)

f(x1) < f(x2) ⇒ t(x1) > t(x2)

For several types of summation functions, individual terms of the summa-

tion fi(·) can be straightforwardly mapped to test functions ti(·) while strictly

preserving order. For instance, for objective functions of the maxcsp type:

max
x∈ S

n∑
i=1

ci(x) ci : S → {0, 1} (6.5)

the identity mapping ci(·) → ti(·) results in the case described by Equa-

tion 6.2. When not all constraints are equally important, the optimisation

problem – called weighted maxcsp – has an objective function of the form:

max
x∈ S

n∑
i=1

w̃ici(x) ci : S → {0, 1} (6.6)

Using identity mapping ci(·) → ti(·), after normalisation of importance

weights w̃i:

wi =
w̃i∑
i w̃i

(6.7)

the optimisation of Equation 6.6 is reduced to the case of Equation 6.4.

For maximisation of summation functions with [0,1]-valued components:

n∑
i=1

ui(x) ui : S → [0, 1] (6.8)

the component functions ui(·) can be mapped to probabilistic functions ti(·),
with E(ti(x)) = ui(x), ∀x ∈ S, transforming Equation 6.8 in Equation 6.3.

For minimisation of the same type of summation functions, the mapping

ui(x) → ti(x) should ensure that E(ti(x)) = 1− ui(x), ∀x ∈ S.

Summation functions in which all components have the same range Y :

n∑
i=1

fi(x) fi : S → Y , Y ⊂ R (6.9)
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can be transformed into summation functions with [0,1]-valued components,

by mapping component functions fi(·) to functions ui(·):

ui(x) =
fi(x)−minY

maxY −minY ui : S → [0, 1] (6.10)

The ui(·) can then be mapped to probabilistic ti(·) as for Equation 6.8. One

often occurring variant of this type is error minimisation; an example of

standard sds on such a problem can be found in Appendix A.4.1 (p151).

For general summation functions consisting of components with different

but known ranges Yi, functions fi(·) can be mapped to the interval [0,1] fol-

lowing Equation 6.10. However, since the different magnitudes of the ranges

can contribute differently to the overall sum, the frequency of evaluation of

a component needs to be weighted by its relative contribution:

wi =
maxYi −minYi∑n
j (maxYj −minYj)

(6.11)

With this scaling and weighting of component functions, the mapping of

fi(·) → ui(·) is guaranteed to be strictly order-preserving, because:2

fi(x) = Cwiui(x) + minYi, C =
∑n

j (maxYj −minYj) (6.12)

The optimisation of general summation functions with known component

ranges is then transformed – via a mapping of ui(·) to probabilistic func-

tions ti(·) – into Equation 6.4. An example of this type of problem is tsp

(§4.2.1p93), where for each node i its closest and its most distant neighbour

give (minYi) and (maxYi). When the bounds of the component functions

cannot be obtained exactly, a conservative estimate can often still be made.

Approximate Mappings

The requirement of a strictly order-preserving mapping between component

functions fi(·) and test functions ti(·) can sometimes be relaxed, since the

2Multiplication with constants ( 6= 0) and adding constants are strictly order-preserving.
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mapping essentially only needs to preserve the locations of the optima, and

not the complete topology of the objective function. Hence, when a priori

knowledge about the likely value of the optimum is available, it can be incor-

porated into the mapping: for instance, for error minimisation problems, it

can often be assumed that the optimal value vi for each component function

fi(·) is likely to be 0 ≤ vi ≤ c ¿ maxY . Values within the restricted interval

[0, c] can then be mapped to a test score of (0, 1], whereas values of [c, maxY ]

can be mapped to 0. An example of this principle is given in Appendix A.4.1

(p151), where – although Y = [0, 255] – for fi(x) > 50 ⇒ ti(x) = 0.

The Critical Response

To ensure the formation of stable clusters on the maxima of Equations 6.2,

6.3 or 6.4, the test score needs to fulfill an additional condition: if the signal-

to-noise ratio of the maximum test score to the test scores of the entire

solution space is too low, then the standard sds process is in its linear mode

of operation (§5.1.2p109), and only small, unstable clusters can form.

Chapter 5 proposed various modifications to the diffusion procedure that

alter the value of the critical response. However, modifications can also be

made to the test procedure; these leave the critical response unchanged,

but alter the values of the test score for the entire solution space. One

potential modification is to increase the amount of work performed in a

single test phase: instead of evaluating a single component function fi(·) in

the test phase, multiple components may be evaluated. Dependent on how

these multiple results are combined into a single activity level, values of the

single-evaluation test score are either increased or decreased: for instance,

for the Matching on Mars problem (§2.2.4p31), 2 micro-feature pairs can be

evaluated in each test phase instead of 1. If the activity level is determined

by performing the logical or operation of the two results, then the overall

test score for each solution is increased; if the activity level is determined
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with and, then the test score for each solution is decreased. In general,

any strategy for combining evaluation results may be used, provided that it

attempts to decrease the uncertainty in the estimation provided by a single

test phase (in accordance with the rationality assumption of §5.1p109).

Modifying the test procedure in this way alters the total number of test

functions: for instance, when 2 randomly-selected micro-feature pairs are

evaluated in the Matching on Mars problem, then component functions are

mapped to test functions by the substitution (ci(·), cj(·)) → tij(·), resulting

in 8002 possible test functions instead of 800. A different way of manipulating

the test score is by using different (approximate) mappings fi(·) → ti(·): for

instance, the test scores of Figure A.8 (p153) and Figure A.10 (p156) are

obtained from the same objective function, depicted in Figure A.7 (p152),

but use different mappings from fi(·) to probabilistic test functions ti(·).

6.1.2 Other Types of Decomposable Functions

For objective functions that are not simple summations, it is difficult to reach

firm conclusions about what can or cannot be achieved with partial evalu-

ations. The reason for this is that there are two strategies that potentially

make such a function optimisable with sds, and that these strategies can be

applied in a wide variety of circumstances. The first strategy is to replace the

objective function with a summation function, and then perform optimisation

of that summation instead; the second strategy is to modify the ensemble of

test and diffusion procedure in such a way that the resulting sds algorithm

does not converge to maxx∈S
∑

i ti(x), but converges to what is required by

the optimisation problem. Both strategies can have as a consequence that

what sds converges to are not the optima of the original objective function;

their effects should therefore be considered with great care. The following

pages give a few examples of how these strategies can be applied.
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Replacing General Objective Functions with Summations

Sometimes, an objective function can be replaced by a summation function

that can then be optimised by standard sds or related variants. This re-

placement function should reach its optima for the same argument values

as the original function. This condition is easily fulfilled for strictly-order

preserving replacements. For instance, if all fi(·) ≥ 0, then the function:

√√√√
n∑

i=1

fi(x) (6.13)

can be optimised by optimising Equation 6.1 instead, which reaches its op-

tima for the same arguments x ∈ S. Product functions form another example:

n∏
i=1

fi(x) (6.14)

If all fi(·) > 0, then taking the natural logarithm of the product transforms

the objective function into a summation without moving the optima:

ln
n∏

i=1

fi(x) =
n∑

i=1

ln(fi(x)) (6.15)

When a strictly order-preserving replacement cannot be found, it is often

possible to find a replacement that works well in practice. For example,

an objective function often used in Template Matching – the normalised

correlation of n-element vector a and larger vector b – is, for all starting

positions x in b, given by:

∑n
i

∑n
j (a(i)− a(j))(b(x + i)− b(x + j))

[ ∑n
i

∑n
j (a(i)− a(j))2

∑n
i

∑n
j (b(x + i)− b(x + j))2

]1/2
(6.16)

Because of the denominator, this function cannot be easily decomposed into

small component functions. However, the average of repeated evaluations

of Equation 6.16 for randomly-selected, very small subsets of points (pairs,
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triples, quadruples, . . . ) estimates the location of the maximum of the full

correlation correctly for many large-scale image matching problems.3

Modifying Test and Diffusion

If sds is used to optimise types of problems that cannot easily be reduced

to summations, then the test and diffusion procedure may be adapted so

that it performs the correct optimisation. For instance, a minimax problem

requires to find the solution x for which the worst-case fi(·) is minimal:

min
x∈S

max
i

(fi(x)) (6.17)

minimax – and the related maximin, maximax and minimin problems –

are a class of objective functions that are very distinct from summation

functions. However, if test and diffusion procedure are modified such that

an agent memorises the maximum fi(x) found so far for its hypothesis x,

bases its activity on this memory, and communicates the worst-case fi(x)

together with hypothesis x in the diffusion procedure, then it is conceivable

that clusters will form on the minimax solution.

moo problems (§4.1.2p86) can be decomposed in several ways, resulting

in different types of solutions found by sds. For instance, if single objectives

constitute the individual components, then the moo problem can be mapped

to a summation function, and from there optimised using standard sds or

one of its variants. The optimum found in that way is not guaranteed to

be Pareto-optimal. Alternatively, if the individual objectives themselves are

decomposable, then the test procedure can evaluate one or a few components

for each of the objective functions. Additional changes to the test procedure

may be necessary to ensure that sds converges to Pareto-optimal solutions.

3The evaluation of Equation 6.16 for pairs of randomly-selected points is equivalent to

the use of Minchinton Cells (Figure 2.4 (p34)).
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6.2 Practice

A more important question than what can be optimised in principle with sds

is for what types of problems it is expected to outperform other methods.

Section 6.2.1 first identifies a few measures that can be used to judge the

suitability of sds algorithms. Section 6.2.2 then uses these measures to

establish what type of objective functions are suitable for optimisation with

sds. Finally, Section 6.2.3 outlines a few problem scenarios where sds is

almost certainly outperformed by other methods.

6.2.1 NFL Measures for SDS

Christensen and Oppacher (2001) stated – in the context of the nfl theo-

rems – that a search method can be expected to outperform random search

when the objective function exhibits the regularities that the search method

attempts to exploit. For local search methods, the exploited regularity is self-

similarity in the “natural” topology of the objective function (§4.2.2p100).

For search methods using recombination operators such as ga, es and ss, or

other methods using large-variational mechanisms, it is self-similarity in the

neighbourhood structure defined by the search operator (Jones, 1995).

sds algorithms with uncorrelated variational mechanisms attempt to im-

prove search performance by exploiting a different aspect: evaluation of part

of an objective function can be predictive for the full function value, while be-

ing computationally cheaper than the complete evaluation. sds algorithms

using small-variational mechanisms, as employed in Appendix A.3 (p146),

and focused sds variants also attempt to exploit self-similarity.

The identification of the aspects that sds algorithms attempt to exploit,

namely predictive power and reduced computational cost of partial evalua-

tions, leads to concepts and measures that can be used as guidelines when
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judging the suitability of sds for concrete classes of problems. A few of these

measures are proposed in the following pages.

Component Similarity

Predictive power of partial evaluations translates into the concept of com-

ponent similarity : when component functions fi(·) have values that are on

average similar to each other, evaluation of one or a few components is pre-

dictive for the values of the entire function.4 Component similarity can for

instance be measured by the variance of the fi(·)’s:

σ2(x) =
1

n

n∑
i=1

(fi(x)− f(x))2 (6.18)

with f(x) = 1
n

∑
j fj(x) their mean.5 In general, it can be stated that a lower

component variance – especially for the optima – leads to less uncertainty

and greater predictive power of partial evaluations.

Measures on the Objective Function

Component similarity is not the only useful measure for the performance

of sds. Another requirement is that the response of acceptable solutions

needs to be high in comparison with the response of all other solutions.

Because there are limits to how the topology of the objective function can be

transformed into a test score with suitable characteristics for sds, and limits

to how the diffusion procedure can manipulate the critical response of the sds

process, a few measures on the structure of the objective function itself can

give valuable information about the suitability of sds for a given problem

class. One measure is the ratio of the maximum (or minimum) objective

4This is true for summations as well as for other types, such as minimax problems.
5For summation functions, f(x) = 1

nf(x); for other types of objective functions, such

as minimax, this is not the case; however, even in these cases σ2(·) can be calculated.
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function value to the mean of objective function, effectively a signal-to-noise

ratio:
max
x∈S

f(x)

1

|S|
∑

x

f(x)
(6.19)

The higher this measure (or lower for minimisation problems), the easier

it is to develop an sds algorithm that performs well on the problem. The

measure gives a good indication of potential search performance only if the

variance of f(x) values is low. If the variance is high, then there are po-

tentially many solutions with objective function values that are quite close

to the optimal value. In this case it is better to estimate the number of

solutions that have function values within a certain range from the optimal

value. For instance, if a solution space contains 10000 solutions within 5% of

the best objective function value, then it is more difficult to develop an sds

algorithm that performs well on finding the global optimum than if only 100

such solutions exist.

Values for these measures can be obtained by either evaluating the solu-

tion space exhaustively for some example problems of that class, or – if this

is infeasible – by sparse random sampling of the solution space.

Evaluation Gain and Test/Diffusion Ratio

The ratio of the computational cost of a full evaluation to the cost of a partial

evaluation – the evaluation gain – gives an estimate of what can be gained

by performing partial evaluations. For instance, for the Matching on Mars

example, the evaluation gain is 800. The larger this gain, the larger the

potential of sds for outperforming methods that rely on full evaluations.

The evaluation gain gives a theoretical estimate of what can be gained in

computational efficiency by using sds. The true amount of evaluation work

134



performed by an sds algorithm is of course higher than the evaluation gain

suggests, and depends also on component similarity and signal-to-noise ratio.

The computational cost of a partial function evaluation can still be large

in comparison with the computational cost of the diffusion procedure. It is

therefore also useful to define the test/diffusion ratio, the computational cost

of a single test phase relative to the cost of a single diffusion phase. For large

values of this measure, the computational cost of the diffusion procedure can

be neglected, and the overall computational cost of sds estimated from the

true amount of evaluation work performed.

6.2.2 When to Use SDS

Based on the measures developed in the previous section, a number of prob-

lem scenarios can be identified for which it seems sensible to try sds:

� Problems with costly-to-evaluate, decomposable objective functions: a

high evaluation gain means there is a large potential for improving

search performance through partial evaluation. If the evaluation gain

is not very high, but a full function evaluation is computationally very

expensive, then it may still be worthwhile to use partial evaluations.

� Problems without any form of self-similarity in the objective function:

the only possible improvement of search performance, relative to rgt

or systematic search, can come from reducing the amount of evalua-

tion work performed for each solution. sds variants without small-

variational mechanisms should be used.

� Problems with high signal-to-noise ratios: the more pronounced the

ratio of the best objective function values to the remaining values,

the easier it is to devise a test procedure that converts the objective

function values into a test score for which the sds process converges

quickly to the maximum value.
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� Problems with good component similarity, but with low signal-to-noise

ratios: a partial evaluation is predictive for the value of the full func-

tion evaluation, but the difference between the best solution and the

large number of suboptimal solutions is so small that, if the result of

the partial evaluation is compressed to a binary activity level, many

partial evaluations would have to be performed to distinguish between

suboptimal and optimal solutions. In this case, it may be better to use

a mechanism that directly compares the outcome of test procedures, as

explained in Appendix A.4.2 (p154).

6.2.3 When Not to Use SDS

A few problem scenarios for which sds is almost certainly outperformed by

other search methods can be identified:

� Problems with indecomposable objective functions: the evaluation gain

for these types equals 1. Because of the computational cost of the

diffusion procedure, even gtr is likely to outperform sds on this type.

� Problems with computationally-cheap objective functions: the evalua-

tion gain is too small to counterbalance the computational overhead of

the diffusion procedure and the requirement of convergence. Methods

performing full function evaluations are likely to outperform sds on

this type of problems.

� Problems for which it is known a priori that the ideal solution exists

in the solution space: any evaluation of a component function that

gives a result deviating from the ideal solution removes all uncertainty

regarding the status of that hypothesis. Unless there is a large degree

of self-similarity in the objective function, methods performing partial

evaluations without communication are likely to outperform sds.
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� Problems for which it is known a priori that only a single solution x has

t(x) 6= 0: any positive evaluation of a solution removes all uncertainty

regarding the status of that hypothesis. Methods performing partial

evaluations without communication can easily outperform sds.

� Problems for which local search algorithms can obtain the full objective

function value of a solution without the need for a complete function

evaluation: for problems of this type, a local search algorithm needs to

perform one complete function evaluation at the start of each run; after

each step, the new objective function value is obtained by updating the

old value at a very low computational cost. Multi-start local search

methods seem better tailored towards these problems, since they do not

need to cope with the uncertainty caused by the partial evaluations,

while performing similar amounts of evaluation work as sds algorithms.

� Problems with few local optima, or with large basins-of-attraction for

the global optimum: simple hill-climbing algorithms are likely to find

the optima more easily than sds algorithms, since the latter do not

exploit the information in the topology of the objective function.

6.3 Conclusion

The chapter has provided partial answers to questions 7 and 8 from the

roadmap (p16), namely on the usability of sds methods in principle and in

practice. It establishes procedures to convert objective functions into a for-

mat optimisable by sds, and guidelines for testing the practical suitability

of problems for optimisation with sds. These answers conclude the founda-

tional issues concerning sds. The next chapter will conclude the thesis.
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Chapter 7

Conclusions

The preface related the story of the six blind men of Indostan who went to

“see” an elephant, and left with very different perceptions. The parable –

originating from ancient Jainist or Buddhist scriptures – has been used many

times before as metaphor. To these metaphorical interpretations, the author

would like to add two more: firstly, if only these six men had cooperated, they

could have constructed a more accurate picture of reality than each of them

had individually. In this respect, the parable serves as a metaphor for the

operation of sds: a group of agents can construct an answer to a question for

which each of the agents individually would fail. Secondly, by emphasising

the many-sidedness of things, the parable serves as a metaphor for the thesis

itself: sds has subsequently been described as an algorithmic process, as a

metaphor for computation, as a selective process, as the principle of partial

evaluation, as a population-based metaheuristic using partial evaluation and

direct communication, and as a nonlinear resource allocation process.

Section 7.1 briefly summarises the thesis and highlights its contributions.

Section 7.2 discusses open questions and directions for future research. Fi-

nally, Section 7.3 addresses meta-level question E, the future of sds itself.
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7.1 Summary and Contributions

This dissertation has answered many of the foundational questions of the

roadmap. In doing so, it has brought structure to the study of sds, hope-

fully facilitating future applied research in this area. Chapter 3 has situated

sds within the wider context of selective processes, clarifying the connections

of sds with many scientific areas: for instance, the loose analogy between

resource allocation processes in sds and attentional processes in the brain

(e.g., Nasuto et al., 1999) can now be understood in the larger context of gen-

eral selection theory. Cross-fertilisation of the study of sds with other fields

is stimulated through these links: for instance, the mathematical techniques

employed in models of sds in (Nasuto, 1999) and (De Meyer, 2000) can, for

instance, be used to model the behaviour of social insect colonies. Chapter 3

also prepared the way for the problem solving perspective of the next chap-

ters: by introducing the framework of v+sr, it facilitated the discussion of

metaheuristics in Chapter 4, and the discussion of potential modifications

to the algorithmic formulation of sds in Chapter 5. Chapter 4 itself com-

pared sds with a wide variety of metaheuristics. It was argued that sds adds

an important concept to the “library of ideas” in optimisation: the princi-

ple of partial evaluation. The strong distinction between algorithmic and

process properties, made in Chapter 5, is essential to understanding what

modifications can be made to the original algorithm, and how these changes

affect the stochastic process that ensues from them. Chapter 6 significantly

enlarged the repertoire of objective functions that are known to be optimis-

able in principle through partial evaluation. It also proposed measures to

judge the suitability of particular classes of problems for optimisation with

sds. Using these measures, algorithms can be applied to problem classes in

a more structured manner, by more careful matching of problem type with

particular sds variant; this will hopefully accelerate the design of real-world

sds applications in the future, and improve their performance.
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Apart from the contributions to the study of sds itself, at least two

other levels of contributions can be discerned within the thesis: firstly, the

discussion of a wide variety of selective processes, their integration within

the common framework of general selection theory, and the detailed analysis

of analogies and differences, hopefully makes its own modest contribution

to the unification of science. Secondly, the building block approach towards

the design of metaheuristics, advocated in Chapter 4, contributes to the

unification and hybridisation of the field of metaheuristics.

7.2 Directions for Future Research

The foundational work does not end here. Although answers were given

to many important questions, some remain unanswered or only partially

answered. Many interpretations of sds or useful frameworks for its study

were not treated: sds as a multi-agent system, a self-organising system, an

unconventional neural network, a random sampling algorithm, a Bayesian

method – all answers to question 3 of the roadmap – did not find a natural

place within the thesis. Multi-agent systems (Ferber, 1999; Weiss, 1999) in

particular seem to form a useful practical framework for sds, especially in

the context of the recent multi-agent metaheuristics architecture, developed

by Roli and Milano (2002) in order to unify the study of metaheuristics under

the umbrella of multi-agent systems.

The answer to question 6 of the roadmap, while attempting to be rigourous

about what can be changed within the algorithmic formulation of sds, will

undoubtedly have missed a great number of potential modifications. Ques-

tion 8, concerning decomposable functions, has left the issue of how non-

summation functions can be decomposed largely unanswered. The measures

that were developed in answer to question 9 only provide an informal start to

the characterisation of search problems. More work is needed to turn these

ideas into a formal protocol for algorithm design.
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The remaining questions of the roadmap, regarding analysis, applications

and implementations, have not been treated. However, future work in this

area will also benefit from the ideas developed here: for instance, on the

analysis side, it may be possible to express the existing mathematical models

of sds in function of the measures for characterisation of search problems

that were proposed in Chapter 6. This could eventually lead to a formalised

design methodology for real-world applications and implementations.

7.3 The Future of SDS

When sds was introduced in (Bishop, 1989a), it was as an “anarchic tech-

nique for pattern classification”. Since then, it has proven to be more than

a pattern classification technique, but it is still as anarchic as ever. In the

coming era of grid and quantum computing, a decentralised technique such

as sds may just be what is needed to make these systems operate efficiently.

There is something very elegant about the completely distributed and con-

current way that sds performs computations. As our understanding grows of

how algorithmic properties are best tuned towards problems will its underly-

ing stochastic process become easier to handle. And as it becomes easier to

handle, the algorithm will be more frequently adopted as a problem solving

method, eventually spreading itself through the scientific and technological

community. This diffusive process has already started; hopefully this work

will speed up its acceptance, and contribute to a wider dissemination of its

principles.
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Appendix A

Examples

The following pages present examples of sds variants on different types of

objective functions. They are offered as support for arguments of the main

text; each example exhibits multiple salient features that are explained in the

accompanying description. A particular feature can often be demonstrated

in more than one way, and the decision to report one variant does not exclude

the potential usefulness of other variants. Results show “typical runs” of an

algorithm; formal analysis or comparison across variants is rarely performed.

All problems are based on the two image matching problems of Figure 2.3

(p33); if a particular figure consists of two graphs, then the left corresponds

to the left part of Figure 2.3, and the right graph to the right hand problem.

A.1 Context-Sensitive SDS

Principles A.1. Context-sensitive sds has a more balanced pattern of re-

source allocation than standard sds. Multiple clusters can coexist in the so-

lution space; these clusters are not necessarily located in neighbouring points.

Context-sensitive sds was first proposed by Nasuto (1999). The sole

difference with the standard sds algorithm can be found in the diffusion
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phase for active agents: each active agent selects one agent at random; if the

selected agent is active and supports the same hypothesis, then the selecting

agent becomes inactive and picks a new random hypothesis. The context-

sensitive mechanism counteracts the formation of large clusters, since the

probability that an active agent contacts an agent with the same hypothesis

increases with relative cluster size. The mechanism thus adds a component of

negative selection or a negative feedback loop from clusters onto themselves.

Figure A.1 shows the search behaviour of context-sensitive sds for the

Matching on Mars problem (§2.2.4p31). Context-sensitive sds divides its

resources more evenly than standard sds, resulting in multiple stable clusters

in a number of good hypotheses, even when a perfect solution exists. In this

example, the clusters are located in neighbouring points in the solution space,

but they do not need to be in each other’s vicinity. In the left graph, the

fourth best hypothesis manages to attract a small cluster as long as the

optimal solution has not been discovered, but cannot maintain it once the

optimal solution has been found. In the right graph, all four hypotheses are

of comparable quality and maintain clusters of similar size.

A.2 Deterministic Diffusion Search

Principles A.2. A de-randomised version of standard sds exhibits largely

the same behaviour as standard sds.

When de-randomising standard sds, one important condition needs to

be fulfilled: for any hypothesis, each component should have the potential of

being evaluated. Furthermore, a deterministic procedure needs to generate

enough variation to exhibit behaviour qualitatively similar to sds. For the

Matching on Mars example (§2.2.4p31), dds is obtained by replacing all

randomised steps of standard sds with the following deterministic steps:
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1. Micro-features are numbered 1 to m; each agent is initialised with a

micro-feature number f . During the test phase of iteration t, an agent

evaluates micro-feature ((f + t) mod m).

2. Agents are numbered 1 to N ; each agent is initialised with an agent

number a. In the diffusion phase of iteration t, an inactive agent con-

tacts agent ((a + t) mod N).

3. Candidate solutions are numbered 1 to M ; each agent is initialised

with a solution number s. When an inactive agent needs to pick a

new hypothesis at the end of the diffusion phase, he chooses hypothesis

((s + t) mod M), with t the number of the current iteration.

4. Micro-feature numbers f are initialised as follows: the sequence 1 to m

is deterministically permuted and the numbers assigned to agents 1 to

m; if m < N , then this procedure is repeated until all agents have a

micro-feature. Agent numbers a are initialised by deterministically per-

muting the sequence 1 to N , and assigning the numbers of this sequence

to agents 1 to N . Solution numbers s are initialised by distributing the

agents at regular intervals throughout the solution space.

At first sight, this procedure seems more complicated than standard sds.

However, in some circumstances, de-randomising at least some of the steps

may be useful: for instance, distributing agents evenly across the solution

space during initialisation or distributing contact agents evenly across all

agents can have positive consequences for particular problems (remembering

nfl, it can also have negative consequences). Furthermore, de-randomisation

can reduce the computational cost of a single iteration for software imple-

mentations, since adding numbers is more computationally efficient than

generating random numbers. In case of implementation in hardware, de-

randomisation reduces circuit complexity. For the current example, Figure

A.2 shows that dds is indistinguishable from a typical run of standard sds.
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Figure A.1: Search behaviour of a population of 1000 context-sensitive agents

for 1000 iterations on the objective functions of Figure 2.5 (p35). Depicted

are the total agent activity and the number of agents supporting the best 4

hypotheses. During each test phase, agents compare a single micro-feature

from the target with the corresponding micro-feature from the search space.
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Figure A.2: Search behaviour of a population of 1000 deterministic agents

for 1000 iterations on the objective functions of Figure 2.5 (p35). Depicted

are the total agent activity and the number of agents supporting the optimal

hypothesis. During each test phase, agents compare a single micro-feature

from the target with the corresponding micro-feature from the search space.
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A.3 A Strategy of Errors

Principles A.3. An sds variant with small-variational mechanism exhibits

hill-climbing behaviour, and can therefore converge faster on self-similar ob-

jective functions. Clusters are spread out over a few neighbouring locations.

A small-variational mechanism can be added to standard sds in several

ways; one possibility is to slightly disturb the copying of hypotheses in the

diffusion phase. For the Matching on Mars example (§2.2.4p31), this can be

achieved by adding a random integer-valued offset during copying. The fifth

line of the standard sds diffusion phase in Table 2.3 (p27) is replaced by:

agent.hypothesis = agent2.hypothesis + offset;

For this particular example, the offset is generated as
[

r
s

]
, [ ] denotes the

operation of rounding to the nearest integer, r is a random 2-tuple sampled

from a normal distribution with mean 0 and standard deviation 1, and s is

a parameter controlling the accuracy of the copying process.1 The effect of

parameter s on accuracy can be seen for three different values in Figure A.3.

Figure A.4 demonstrates the effect of this mechanism on the behaviour of

standard sds. When a solution succeeds in attracting agents, the random-

offset mechanism distributes part of the agents over neighbouring locations

in the solution space. When one of those neighbouring solutions is better

than the first, it attracts more agents, while spreading agents evenly around

its own location. This effect accelerates the discovery of better solutions in

the vicinity of already discovered solutions. The cluster of agents follows an

uphill trajectory as time progresses. This hill-climbing behaviour benefits

convergence times on self-similar objective functions; more specifically, it

1s actually controls the standard deviation of the normal distribution. For instance,

for s = 4, the standard deviation of the sampled normal distribution is 1
4 .
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Figure A.3: Relative frequencies of integer-valued offsets generated by
[

r
s

]

for three different s-values: s = 4 (right), s = 2 (left) and s = 1 (bottom).

In each figure, point (0, 0) corresponds to faultless copying of the hypothesis.

For s = 4, approximately 91% of all hypotheses are copied accurately; for

s = 2 and s = 1, the numbers are 47% and 15% respectively. Smaller s-values

result on average in larger offset values, and thus less accurate copying.
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reduces the long periods of sub-optimal behaviour observed in standard sds

(§2.2.4p36). The large-variational mechanisms of standard sds meanwhile

ensure that the search cannot get permanently stuck in a local optimum.
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Figure A.4: Search behaviour of a population of 1000 sds agents for 1000

iterations on the left and right objective functions of Figure 2.5 (p35). A

random-offset mechanism during copying is used with s = 4. Depicted are

the total agent activity and the number of agents supporting the optimal

hypothesis. During each test phase, agents compare a single micro-feature

from the target with the corresponding micro-feature from the search space.

How a strategy of errors affects convergence is demonstrated in Figure

A.5. It reports a cumulative distribution of convergence times for standard

sds with and without the random-offset mechanism. Adding random offsets

greatly reduces the mean and variance of convergence times: with random

offsets, all runs converge in less than 200 iterations; without offset mechanism,

5% of the runs has even failed to converge after 1000 iterations.

The righthand graph of Figure A.4 shows that the average cluster size for

the optimal solution is smaller than without strategy of errors. However, if

no perfect solution exists, then the cluster remains spread out over a region

of the solution space. The principle is demonstrated in Figure A.6. At

the end of the search, good solutions that are close to the optimal solution

148



100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iterations 

R
un

s

No Offset
Offset s=4

Figure A.5: Comparison of convergence times for standard sds with and

without a strategy of errors. 5000 runs of standard sds without and with

offset mechanism (s = 4) were performed on the left objective function of

Figure 2.5, where a perfect solution exists in the solution space. The conver-

gence time for this example is the number of iterations until all agents are

active. Depicted are the cumulative distributions of convergence times.
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have also attracted sizeable clusters. These are not isolated, as in the case of

context-sensitive sds, but mutually support each other: the offset mechanism

diverts agents from one cluster to a neighbouring cluster, and does so in both

directions. The spread-out population of agents can therefore be regarded as

a multiple-hypothesis cluster consisting of several single-hypothesis clusters.

Figure A.6: The distribution of agents around the location of the optimal

solution at the end of the experiment depicted in the right graph of Figure

A.4. Point (0, 0) contains the optimal solution, s = 4.
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A.4 Error Minimisation

The next two examples demonstrate how minimisation of an error function

can be achieved through partial evaluation only. The problem is the Match-

ing on Mars example of §2.2.4p31, but with a different objective function:

instead of maximising the number of corresponding micro-features, the aim is

to find the (x, y) location in the solution space with the minimal Manhattan

distance between target and underlying part of the image:

min
x,y

∑
i,j

|T (i, j)− I(x + i, y + j)| (A.1)

where T (·) and I(·) are pixel grey scale values of template and image respec-

tively. The objective function is decomposable: each term of the summation

can be evaluated independently. All terms of the summation function are ex-

pressed on a common scale: the absolute value of the difference of two grey

scale values varies between 0 and 255. For a perfect solution, each individual

term of summation A.1 equals 0; deviation from 0 for an individual term

thus forms a partial indication of the quality of a match. Figure A.7 shows

the average manhattan distance for each (x, y) location in the solution space,

i.e., the summation A.1 divided by the number of pixels in the template.

A.4.1 Error Minimisation with Standard SDS

Principles A.4. Mapping an integer-valued objective function to {0, 1} ac-

tivity, using a non-linear mapping to [0, 1] and probabilistic test functions.

Standard sds can be used to perform optimisation of a general summa-

tion function by modifying the test procedure so that it maps values of the

individual terms of the summation to {0, 1} activity levels. To achieve this,

the test procedure calculates, for hypothesis (x, y) and a randomly-selected

pixel of the template (i, j):

uij(x, y) = 1− |T (i, j)− I(x + i, y + j)|
C

(A.2)
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Figure A.7: Average Manhattan distance for the left and right image match-

ing problems of Figure 2.3 (p33). Note that the z-axis of the graphs has been

reversed. The minima of the objective functions correspond to the single

well-defined peaks; these indicate the location of the correct solution.

with C the cutoff value; in this example, C = 50. Activity is then determined

as follows: for uij(x, y) ≤ 0, activity of the agent is set to 0; for uij(x, y) > 0,

activity of the agent is 1 with probability uij(x, y). This can be achieved by

drawing a uniform random random number r ∈ [0, 1]; if r < uij(x, y), then

activity is set to 1, otherwise it is set to 0. The resulting test score averaged

over all pixels – the expected proportion of times an agent’s activity level

equals 1 after testing hypothesis (x, y) – can be seen in Figure A.8.

The search behaviour of a population of standard sds agents using this

test procedure is reported in Figure A.9. Since the test scores are quite like

the test scores from Figure 2.5 (p35), and the diffusion phase is exactly the

same, the convergence and quasi-equilibrium behaviour of this experiment

are very similar to the results of Figure 2.6 (p35).
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Figure A.8: Test scores derived from the objective function in Figure A.7.

The values of the individual terms of Equation A.1 are mapped to the in-

terval [0, 1] via the scaling specified by the small top-level graph. For each

hypothesis, these values are then averaged over all terms of the summation.

Note that this non-linear mapping is not strictly order-preserving.
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Figure A.9: Search behaviour of 1000 standard sds agents for 1000 iterations

for the left and right test scores of Figure A.8. Depicted are the total agent

activity and the number of agents supporting the optimal hypothesis. During

each test phase, agents calculate Equation A.2, with C = 50.

153



A.4.2 Activity as Belief

Principles A.5. Using [0, 1] activity levels; a modified selection mechanism

in the diffusion phase radically alters resource allocation. Convergence be-

haviour on self-similar objective functions is improved by a small-variational

mechanism. Clusters are spread out over regions in the solution space.

The sds variant described in this section is quite unlike any other vari-

ant used before. It does not rely on binary activity levels, but on activity

levels in the interval [0, 1]; activity can thus be interpreted as the belief of

an agent in the correctness of its hypothesis. The more fine-grained type

of activity implies a different diffusion phase: an agent compares its activ-

ity with the activity from another agent, and based on the magnitude of

the difference, decides whether to retain its own hypothesis, copy the other

agent’s hypothesis, or randomly adopt a new one. This mechanism radically

alters the resource allocation: its behaviour is not dependent on a fixed crit-

ical response; since the process consists of comparing activity levels, it is the

relative difference between the peak values and the background level that de-

termine the resource allocation pattern. Conversely, the mechanism requires

a good component similarity; if component similarity is low, then additional

measures need to be taken to ensure proper convergence to the optima.

This mechanism is applied to the Matching on Mars example. In the test

procedure, agents calculate Equation A.2; if the value of uij(x, y) < 0, then

activity is set to 0, otherwise activity is set to the value of uij(x, y). In this

diffusion procedure, all agents select a random agent for communication. If

the selected agent has a lower activity, then the selecting agent does nothing.

If the selected agent has a higher activity, and the difference between the two

activity levels is larger than a constant d, then the hypothesis is copied with

addition of a random offset. If the difference in activity levels is smaller than

d, then the selecting agent picks a new random hypothesis. The diffusion

procedure is outlined in pseudo-code in Table A.1.
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for agent = 1 to All Agents

agent2 = Pick-Random-Agent(Agents);

if (agent2.activity > agent.activity)

if (agent2.activity − agent.activity > d)

agent.hypothesis = agent2.hypothesis + offset;

else

agent.hypothesis = Pick-Random-Hyp();

end

end

end

Table A.1: Activity-as-belief diffusion phase.

In each diffusion phase, roughly half of all agents will either copy a hy-

pothesis or adopt a new one at random (unless a perfect solution exists).

The proportion of these two actions is controlled by diffusion parameter

d: the smaller d, the lower the proportion of newly generated hypotheses.

For not-too-high values of d, the diffusion procedure somewhat resembles a

context-free diffusion: when all agents have low activity levels, the proportion

of newly generated hypotheses will be relatively high; if an agent has a hy-

pothesis that results in activity levels that are on average more than d units

higher than the activity levels of the surrounding agents, then this hypothesis

will be copied by other agents and spread through the population. As the

proportion of agents with this better hypothesis grows, the average difference

levels in activity will gradually drop below d, stabilising the cluster size in

a context-free manner. This diffusion mechanism is in theory not strictly

order-preserving. However, the circumstances in which it does not preserve

order are rarely encountered in practice. By not using a fixed parameter d,

but by making the decision to retain, copy or randomly select hypotheses

probabilistically dependent on the magnitude of the difference of the two

activity levels, the diffusion procedure can be made strictly order-preserving.
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Figure A.11: Search behaviour of a population of 1000 agents for 1000 iter-

ations for the left and right average activity levels of Figure A.8. Depicted

are the overall agent activity and the number of agents supporting the opti-

mal hypothesis. During each test phase, agents calculate Equation A.2 with

C = 128. Diffusion parameter d = 0.1, and random-offset parameter s = 2.
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Figure A.10 reports the average activity levels calculated in the test pro-

cedure. Figure A.11 shows the search behaviour of a population of agents,

using the above outlined test and diffusion procedure, and a strategy-of-

errors. The final multiple-hypothesis cluster is shown in Figure A.12.

Figure A.12: The distribution of agents around the location of the optimal

solution at the end of the experiment depicted in the right graph of Figure

A.11. Point (0, 0) contains the optimal solution, s = 2.

A.5 Lattice Stochastic Diffusion Search
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Abstract. Stochastic Diffusion Search is an efficient probabilistic best-
fit search technique, capable of transformation invariant pattern match-
ing. Although inherently parallel in operation it is difficult to implement
efficiently in hardware as it requires full inter-agent connectivity. This
paper describes a lattice implementation, which, while qualitatively re-
taining the properties of the original algorithm, restricts connectivity,
enabling simpler implementation on parallel hardware. Diffusion times
are examined for different network topologies, ranging from ordered lat-
tices, over small-world networks to random graphs.

1 Introduction

Stochastic Diffusion Search (SDS), first introduced in [1], is a population-based
best-fit pattern matching algorithm. It shares many similarities with e.g. Evolu-
tionary Algorithms, Memetic Algorithms and Ant Algorithms [2]. During oper-
ation, simple computational units or agents collectively construct a solution by
performing independent searches followed by diffusion through the population of
potentially relevant information. Positive feedback promotes better solutions by
allocating more agents for their investigation. Limited resources induce strong
competition from which a large population of agents corresponding to the best-fit
solution rapidly emerges.

SDS has been successfully applied to a variety of real-world problems: lo-
cating eyes in images of human faces [3]; lip tracking in video films [4]; self-
localisation of an autonomous wheelchair [5]. Furthermore, a neural network
model of SDS using Spiking Neurons has been proposed [6]. Emergent synchro-
nisation across a large population of neurons in this network can be interpreted
as a mechanism of attentional amplification [7]; the formation of dynamic clusters
can be interpreted as a mode of dynamic knowledge representation [8].

The analysis of SDS includes the proven convergence to the globally optimal
solution [9] and linear time complexity [10]. Recently it has been extended to
the characterisation of its steady state resource allocation [11].

As search is applied to ever more complex problems with larger search spaces,
even the most efficient algorithms begin to require some form of dedicated hard-
ware to meet real-world performance demands. The standard formulation of
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SDS is parallel in nature and thus implementing it on parallel hardware seems
straightforward. However, the requirement for efficient communication links be-
tween all agents means that it is difficult to implement efficiently, both on ded-
icated hardware (e.g. FPGA’s) or general purpose parallel computers.

This paper describes the effects of restricting communication between agents.
In particular, the effects of the number of connections and the topology of the
underlying connection graph on search performance are investigated empirically.
It will be shown that, even for a modest number of connections, the performance
of randomly connected networks of agents is close to the performance of stan-
dard SDS, and much better than performance of ordered lattices with the same
average number of connections. However, small-world networks [12], based on
regular lattices with a few long-range connections, perform almost as good as
random networks. Two important conclusions can be drawn from the results:

1. Inter-agent communication in SDS can be significantly restricted without
decreasing the performance of the algorithm too much, given that either
a random or small-world network topology is used. However, the limited
number of long-range connections in small-world networks facilitates the
layout of the connections, making them the preferred network topology for
hardware implementation.

2. Independent from the actual search process of SDS, the paper seems to con-
firm results in several epidemiological models using the small-world network
topology, e.g. [13, 14]: namely that information or disease spreads much eas-
ier on small-world networks and random graphs than on ordered lattices.

2 Stochastic Diffusion Search

SDS utilises a population of agents to process information from the search space
in order to find the best fit to a specified target pattern, the model. Both the
search space and model are composed of micro-features from a pre-defined set.
For instance, in a string matching problem, both the search space and model are
composed of a one-dimensional list of characters.

In operation each agent maintains a hypothesis about the location and possi-
ble transformations (the mapping) of the model in the search space. It evaluates
this hypothesis by testing how a randomly selected micro-feature of the model,
when mapped into the search space, compares to the corresponding micro-feature
of the search space. This part of the algorithm is called the testing phase. Based
on the outcome of this test, agents are divided into two modes of operation: ac-
tive and inactive. An active agent has successfully located a micro-feature from
the model in the search space; an inactive agent has not.

During the diffusion phase the information about potential solutions may
spread through the entire population. This is because each inactive agent chooses
at random another agent for communication. If the selected agent is active, the
selecting agent copies its hypothesis: diffusion of information. Conversely, if the
selected agent is also inactive, then there is no information flow between agents;
instead, the selecting agent adopts a new random hypothesis.
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By iterating through test and diffusion phases agents will stochastically ex-
plore the whole search space. However, since tests will succeed more often in
regions having a large overlap with the model than in regions with irrelevant
information, an individual agent will spend more time examining ‘good’ regions,
at the same time attracting other agents, which in turn attract even more agents.
Potential matches to the model are thus identified by concentrations of a sub-
stantial population of agents.

Two important performance criteria for SDS are convergence time and steady-
state resource allocation. Convergence time can in general be defined as the num-
ber of iterations until a stable population of active agents is formed and is very
clearly defined when a single, perfect match of the model is present in the search
space: it is then simply the number of iterations until all agents become active.
Resource allocation is a measure for robustness in the case of imperfect matches
and presence of noise: it is defined as the average number of active agents during
steady-state behaviour, and is dependent on the quality of the match.

Examples of search behaviour, resource allocation and a more detailed de-
scription of the algorithm can be found in [11, 15].

3 Lattice Stochastic Diffusion Search

SDS gains its power from the emergent behaviour of a population of communicat-
ing agents and as such is inherently a parallel algorithm - notionally each agent
is independent and its behaviour can be computed by an independent processor.
However, a fundamental difficulty in implementing standard SDS efficiently on
either a parallel computer or dedicated hardware is its requirement that each
agent is able to directly communicate with all others. An obvious alteration to
the algorithm is thus to restrict agent communication to a smaller number of
agents. In the resulting algorithm, Lattice Stochastic Diffusion Search (LSDS),
agents are assigned to spatial locations (e.g. on a 2D square grid) and connec-
tions between agents are specified. During the diffusion phase, agents will only
communicate with agents they are connected to. Regular, local connections lead
to an ordered lattice; or connections can be specified at random, thus effectively
constituting a random graph.

An important question is how the performance and robustness of LSDS com-
pares to standard SDS. The performance of standard SDS has previously been
extensively analysed using Markov chain theory [9–11]. However, in LSDS the
probability distribution determining communication between agents defines a
neighbourhood structure over the entire set of agents. Analysis of this kind of
process as a Markov chain is extremely complex: the process is not characterised
by a simple integer denoting the number of active agents, but by the exact topo-
logical location of both active and inactive agents. These types of Markov pro-
cesses are also known as Markov random fields. Work on a mathematical model
incorporating the effects of restricted connectivity is ongoing, but at present
performance measures for LSDS are investigated through simulations.
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k = 4 k = 8 k = 12 k = 24 k = N
random lattice random lattice random lattice random lattice

N = 64 15.5 15.7 11.5 13.4 10.9 11.8 10.3 10.4 10.2
N = 256 21.3 29.5 15.0 23.8 13.9 20.1 13.1 16.3 12.5
N = 1024 25.8 55.5 18.1 44.1 16.7 36.0 15.6 27.3 14.8
N = 4096 32.3 106.9 21.1 83.4 19.5 66.9 18.1 49.3 17.1

Table 1. Td in iterations for 4 different populations sizes N . Results are reported
for random graphs with a mean number of connections per agent k; and for regu-
lar 2-dimensional square lattices with k-nearest neighbours connections and periodic
boundary conditions. The case where k = N corresponds to standard SDS. All results
are averaged over 1000 runs, and for random graphs over 10 different graphs each.

4 Experimental Results

4.1 Convergence Time

[16] introduced the terms ‘time to hit’ (Th) and ‘diffusion time’ (Td) in the
analysis of convergence time (Tc) of standard SDS. Th is the number of iterations
before at least one agent of the entire population ‘guesses’ the correct mapping
and becomes active. Td is the time it takes for this mapping to spread across
the population of agents. It is clear that Th is independent of the connectivity
of the population and only depends on search space size M and number of
agents N . Td, on the other hand, is very much dependent on the connectivity
within the population and on population size N , but independent of M . To focus
attention on the effect of connectivity, experimental results for Td are reported.
It could be argued that for complex, high-dimensional problems Th À Td, and
thus that the effect of Td on Tc can be neglected with respect to Th. However, Td

should not just be regarded as a measure for rate of convergence, but more as a
measure for ‘ease of information spread’. As such, it is also indirectly a measure
for robustness: experiments indicate that the more freely information spreads
through the network, the more robust the algorithm is in the case of imperfect
matches or noise [15].
Td is studied by initialising one randomly chosen agent with the correct mapping
and recording the number of iterations until this mapping has spread to all other
agents. Results are reported in Table 1. Td for regular lattices does not scale
very well with population size for a fixed number of connections k. For random
graphs, Td scales much better with population size and performance remains
close to performance of standard SDS, even for a small number of connections
and large population sizes.

4.2 Small-Worlds: Between Order and Randomness

Regular lattices have poorer Td than random graphs, but are easier implemented
in hardware, since connections are local and thus shorter, and regular. However,
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Fig. 1. Td in iterations for N = 1024 and variable number of random extra connections
x. Small-world networks are constructed starting from an ordered lattice with k = 8
and with x extra connections added at random. Note that for x = 2048, the last
measurement, the mean connectivity in the network is k = 12. All results are averaged
over 1000 runs, and over 10 different networks each.

diffusion of information in a population of searching agents shows an obvious
correspondence with epidemiological models. Such models of disease or infor-
mation spread have recently received much attention, due to the interest in the
so called ‘small-world effect’. It was shown in e.g. [12, 17] that only a limited
amount of long-range connections is necessary to turn a lattice with k-nearest
neighbour connections into a small-world network, in which spreading of dis-
ease or information behaves much more like spreading on random graphs. To
test whether the same is true for LSDS, small-world networks were generated
as described in [18]: a number of random links is added to an ordered lattice,
and no connections are removed. Td is recorded for various numbers of random
connections; the results can be seen in Fig. 1. Randomly adding connections
decreases Td more or less exponential for a wide interval of parameter x, leading
to an almost linear curve in the semilog plot. The benefits of adding relatively
few long range connections seem obvious: a small-world network with only 256
extra connections (mean connectivity k = 8.5) outperforms a regular lattice with
k = 24; a small-world network with 512 extra connections (thus k = 9) diffuses
information twice as fast as the underlying regular lattice with k = 8, and is
only 1.5 times slower in diffusing than fully connected SDS. Note that, even
when adding much more connections, Td will never become less than the value
for standard SDS, in this case 14.8 (see Table 1).

5 Conclusions

The effect of mean number of connections and connection topology on diffusion
time Td was investigated empirically. Td is an important performance parameter,

162



not just because of its effect on Tc, but more importantly because it is also an
indicator for resource allocation stability [15].

The good performance of ‘small-world’ LSDS has wider implications than
just implementation in hardware. It has been suggested (e.g. in [12]) that bio-
logical neural structures can show small-world connectivity. The neural network
architecture implementing standard SDS [6] uses biologically inspired neurons
operating as filters on the information encoded in the temporal structure of
the spike trains. Relaxing the requirements of full connectivity in these networks
leads to a more plausible architecture, while still allowing for self-synchronisation
across a large population of neurons [7] to occur.
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