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ABSTRACT 

i 

ABSTRACT 
The self-localisation problem is to determine the position and orientation of a robot within 

its current environment without any a priori information. The aims of this thesis are to 

develop a robust, accurate and repeatable self-localisation method with no, or minimal, 

environment modifications, and to use this method on a wheelchair in the two 

non-simulated environments of the SENARIO project. The SENARIO project developed 

an autonomous navigation and user interface system, and integrated them onto a 

commercial wheelchair. Due to the size of the trial environments a model matching 

artificial neural network method was required to solve the self-localisation problem, using 

a laser range finder as the primary sensor. Three networks, a Radial Basis Function (a 

taught general problem solver), an N-tuple (a taught associative memory network) and a 

Stochastic Diffusion Network (a non-taught adaptive searching network) were constructed 

and tested using three simulated environments. These networks proved inaccurate in large 

environments, and therefore the Focused Stochastic Diffusion Network (FSDN) was 

developed and implemented as a novel artificial neural network method to solve the 

self-localisation of an autonomous wheelchair in an unmodified indoor environment. In the 

FSDN, developed from the Stochastic Diffusion Network, a collection of agents, using a 

multi-resolution pyramid explore the space of possible solutions in parallel, in a 

competitive co-operative manner to focus the network resources to obtain the most likely 

location of an AGV in its environment. The network was tested in the same three simulated 

environments as the other three networks, and also in two non-simulated environments, an 

industrial building and rehabilitation centre. FSDN was less accurate (57% within 25cm) 

than other methods, but was robust to environment noise, and testing was performed in 

environments 10 times larger than other environments in previous indoor autonomous 

self-localisation studies. 



ACKNOWLEDGEMENTS 

ii 

ACKNOWLEDGEMENTS 

I would like to thank Dr Mark Bishop for supervising the work involved in this thesis and 

for his support, encouragement, and assistance throughout. 

Many thanks are due to the EU for supporting the SENARIO project and the partners 

involved in the project: Zenon SA, Microsonic GmbH, ICCS-NTUA, INSERM Unit 103. 

Particular thanks must go to Dr Nikos Katevas of Zenon, who was the coordinating partner 

for SENARIO; I very much appreciated his friendship and support during several 

otherwise lonely months in Athens. I would also like to give my thanks to Reiner Preuß for 

his interest in the self-localisation system and his considerable practical support. 

I would like to thank Margaret Beattie for her understanding and consideration when the 

pressure to finish started to build, and Andrew Beattie for his assistance with suitable 

computer power when all else had failed. 

I would like to thank David Tattersall for his valuable comments and his general wizardry 

with the English language. 

I would like to thank most of all Dr Françoise Tattersall for her extensive efforts in 

checking this thesis numerous times during its development, and for the constant 

motivation and encouragement; without her support this thesis would not have been 

completed. 



CONTENTS 

iii 

CONTENTS 

1. Introduction ----------------------------------------------------------------------------------- 1 

1.1. Localisation------------------------------------------------------------------------------- 2 
1.1.1. Methods for localisation ----------------------------------------------------------- 3 

1.1.1.1. Outdoor--------------------------------------------------------------------------- 3 
1.1.1.2. Pre-processing ------------------------------------------------------------------- 3 
1.1.1.3. Odometry------------------------------------------------------------------------- 4 
1.1.1.4. Triangulation--------------------------------------------------------------------- 5 
1.1.1.5. Model matching ----------------------------------------------------------------- 6 

1.2. Self-localisation -------------------------------------------------------------------------- 8 
1.2.1. Artificial neural networks used for self-localisation ---------------------------- 8 

1.3. Wheelchair self-localisation------------------------------------------------------------ 10 
1.3.1. Self-localisation of the SENARIO wheelchair --------------------------------- 12 

1.4. Aims and thesis structure--------------------------------------------------------------- 12 

2. Environment sensing------------------------------------------------------------------------ 14 

2.1. Introduction------------------------------------------------------------------------------ 14 

2.2. Sensors and the information they can provide---------------------------------------- 14 
2.2.1. Beacons ---------------------------------------------------------------------------- 14 

2.2.1.1. Sloping bar-code --------------------------------------------------------------- 16 
2.2.2. Laser range finders ---------------------------------------------------------------- 17 
2.2.3. Vision systems--------------------------------------------------------------------- 19 
2.2.4. Ultrasonic sensors ----------------------------------------------------------------- 21 
2.2.5. Other sensors ---------------------------------------------------------------------- 22 
2.2.6. Feature extraction ----------------------------------------------------------------- 23 

2.3. Sensor selection for self-localisation of a wheelchair in a hospital environment - 26 
2.3.1. Sensors rejected ------------------------------------------------------------------- 26 

2.3.1.1. Passive beacons----------------------------------------------------------------- 26 
2.3.1.2. Active beacons------------------------------------------------------------------ 27 
2.3.1.3. Vision systems------------------------------------------------------------------ 27 
2.3.1.4. Ultrasonics ---------------------------------------------------------------------- 27 
2.3.1.5. Others---------------------------------------------------------------------------- 27 
2.3.1.6. Feature extraction -------------------------------------------------------------- 28 

2.3.2. Sensors accepted ------------------------------------------------------------------ 28 
2.3.2.1. Laser range finders ------------------------------------------------------------- 28 
2.3.2.2. Passive beacons----------------------------------------------------------------- 30 
2.3.2.3. Odometry------------------------------------------------------------------------ 31 

2.4. Conclusions. ----------------------------------------------------------------------------- 33 

3. The SENARIO project---------------------------------------------------------------------- 34 

3.1. Introduction------------------------------------------------------------------------------ 34 
3.1.1. The Wheelchair-------------------------------------------------------------------- 35 



CONTENTS 

iv 

3.1.2. Operation--------------------------------------------------------------------------- 36 

3.2. Sub-systems------------------------------------------------------------------------------ 36 
3.2.1. Risk avoidance sub-system------------------------------------------------------- 37 
3.2.2. Sensing sub-system --------------------------------------------------------------- 38 
3.2.3. Control Panel sub-system--------------------------------------------------------- 39 
3.2.4. Power Control sub-system-------------------------------------------------------- 40 

3.3. Positioning sub-system ----------------------------------------------------------------- 40 
3.3.1. Constraints on the Positioning sub-system-------------------------------------- 41 
3.3.2. Positioning sub-system communications---------------------------------------- 42 

3.4. Installation of the Positioning sub-system -------------------------------------------- 44 
3.4.1. Sensor installation----------------------------------------------------------------- 44 

3.4.1.1. Installation problems with radio beacons ------------------------------------ 45 
3.4.2. Positioning sub-system configuration ------------------------------------------- 45 
3.4.3. Memory ---------------------------------------------------------------------------- 46 
3.4.4. Hard disk --------------------------------------------------------------------------- 47 
3.4.5. Hardware installation ------------------------------------------------------------- 48 

3.5. Summary of control systems installed ------------------------------------------------- 49 

4. Artificial neural network self-localisation ----------------------------------------------- 50 

4.1. Introduction------------------------------------------------------------------------------ 50 
4.1.1. Networks not implemented------------------------------------------------------- 52 

4.2. Test environments ----------------------------------------------------------------------- 53 

4.3. Evaluation simulator-------------------------------------------------------------------- 58 
4.3.1. Simulator operation --------------------------------------------------------------- 59 

4.3.1.1. Pre-processing for the simulator ---------------------------------------------- 60 

4.4. Trial Networks--------------------------------------------------------------------------- 62 
4.4.1. RBF--------------------------------------------------------------------------------- 62 

4.4.1.1. RBF operation ------------------------------------------------------------------ 62 
4.4.1.2. RBF applied construction------------------------------------------------------ 65 
4.4.1.3. RBF testing --------------------------------------------------------------------- 65 
4.4.1.4. RBF results---------------------------------------------------------------------- 65 

4.4.2. Associative N-tuple network ----------------------------------------------------- 66 
4.4.2.1. N-tuple operation--------------------------------------------------------------- 66 
4.4.2.2. N-tuple applied construction -------------------------------------------------- 68 

4.4.2.2.1. Rotational Invariance ----------------------------------------------------- 69 
4.4.2.3. N-tuple testing ------------------------------------------------------------------ 70 
4.4.2.4. N-tuple results ------------------------------------------------------------------ 71 

4.4.3. Stochastic Diffusion Network---------------------------------------------------- 77 
4.4.3.1. SDN operation------------------------------------------------------------------ 78 
4.4.3.2. SDN applied construction ----------------------------------------------------- 80 
4.4.3.3. SDN testing --------------------------------------------------------------------- 82 
4.4.3.4. SDN results --------------------------------------------------------------------- 83 

4.4.3.4.1. Range vector histograms-------------------------------------------------- 90 
4.4.3.4.2. Tolerance value ------------------------------------------------------------ 93 

4.5. Discussion ------------------------------------------------------------------------------- 94 
4.5.1. RBF--------------------------------------------------------------------------------- 94 



CONTENTS 

v 

4.5.2. N-tuple ----------------------------------------------------------------------------- 95 
4.5.3. SDN -------------------------------------------------------------------------------- 97 

4.6. Conclusions------------------------------------------------------------------------------ 98 

5. Focused Stochastic Diffusion Network --------------------------------------------------- 99 

5.1. Introduction------------------------------------------------------------------------------ 99 

5.2. FSDN operation------------------------------------------------------------------------- 99 
5.2.1. Regions--------------------------------------------------------------------------- 101 

5.3. Options available when applying FSDN to the self-localisation problem ------- 101 
5.3.1. Environment co-ordinate frame------------------------------------------------ 102 
5.3.2. Region sub-division------------------------------------------------------------- 102 

5.3.2.1. Fixed regions ----------------------------------------------------------------- 102 
5.3.2.2. Floating regions -------------------------------------------------------------- 105 
5.3.2.3. Concentrated regions--------------------------------------------------------- 107 

5.3.3. Rotational invariance ----------------------------------------------------------- 109 
5.3.4. Focus rate ------------------------------------------------------------------------ 109 
5.3.5. A priori information integration ----------------------------------------------- 110 
5.3.6. Simulator------------------------------------------------------------------------- 110 

5.3.6.1. Problems of position simulation -------------------------------------------- 111 

5.4. FSDN applied construction ---------------------------------------------------------- 112 
5.4.1. Initialisation---------------------------------------------------------------------- 112 
5.4.2. Testing---------------------------------------------------------------------------- 112 
5.4.3. Orientation testing--------------------------------------------------------------- 112 
5.4.4. Diffusion ------------------------------------------------------------------------- 113 
5.4.5. Final solution -------------------------------------------------------------------- 113 

5.5. FSDN testing -------------------------------------------------------------------------- 114 

5.6. Results---------------------------------------------------------------------------------- 114 
5.6.1. Accuracy ------------------------------------------------------------------------- 114 
5.6.2. Repeatability--------------------------------------------------------------------- 115 
5.6.3. Time to termination ------------------------------------------------------------- 120 
5.6.4. Comparison of FSDN with other networks tested---------------------------- 122 

5.7. Discussion ----------------------------------------------------------------------------- 128 

5.8. Conclusions---------------------------------------------------------------------------- 130 

6. Application of the Focused Stochastic Diffusion Network -------------------------- 131 

6.1. Introduction---------------------------------------------------------------------------- 131 

6.2. Implementation of FSDN on the SENARIO wheelchair --------------------------- 131 
6.2.1. Maps------------------------------------------------------------------------------ 132 
6.2.2. Scaling and averaging----------------------------------------------------------- 133 

6.3. Testing---------------------------------------------------------------------------------- 135 
6.3.1. Trial configurations and locations --------------------------------------------- 135 
6.3.2. Independent location verification ---------------------------------------------- 140 

6.4. Results---------------------------------------------------------------------------------- 140 
6.4.1. Accuracy ------------------------------------------------------------------------- 141 



CONTENTS 

vi 

6.4.1.1. Levels of accuracy ----------------------------------------------------------- 147 
6.4.2. Repeatability--------------------------------------------------------------------- 149 
6.4.3. Robustness ----------------------------------------------------------------------- 157 

6.5. Discussion ----------------------------------------------------------------------------- 159 

6.6. Conclusions---------------------------------------------------------------------------- 164 

7. General discussion------------------------------------------------------------------------- 165 

7.1. Introduction---------------------------------------------------------------------------- 165 

7.2. Is self-localisation necessary? ------------------------------------------------------- 166 

7.3. Considerations of existing network solutions--------------------------------------- 167 
7.3.1. The RBF network --------------------------------------------------------------- 167 
7.3.2. The N-tuple network ------------------------------------------------------------ 168 
7.3.3. The Stochastic Diffusion Network--------------------------------------------- 168 

7.4. Development of a Focused Stochastic Diffusion Network------------------------- 169 
7.4.1. Comparison of FSDN to Genetic Algorithms (GAs) ------------------------ 170 
7.4.2. New paradigm ------------------------------------------------------------------- 170 

7.5. Implementation problems ------------------------------------------------------------ 171 
7.5.1. Radio beacon software integration--------------------------------------------- 172 
7.5.2. The area of acceptance for good results --------------------------------------- 173 

7.6. Applications of FSDN and future work --------------------------------------------- 173 
7.6.1. Applications for FSDN --------------------------------------------------------- 173 
7.6.2. Modifications to FSDN for the self-localisation problem ------------------- 174 
7.6.3. Modifications to the wheelchair ----------------------------------------------- 174 
7.6.4. Investigation into the properties of FSDN ------------------------------------ 174 

7.7. Conclusions---------------------------------------------------------------------------- 175 

8. References ---------------------------------------------------------------------------------- 176 

9. Appendix A --------------------------------------------------------------------------------- 186 



INTRODUCTION 

1 

1. INTRODUCTION 

Before a mobile robot is able to perform any useful or interesting task it must first have 

some way of finding its position in its world (Talluri & Aggarwal, 1992); this is the 

“Where am I” problem (Durrant-Whyte, 1994; Adorni et al, 1999). Localisation is thus a 

vital component (the others being obstacle avoidance and locomotion) for navigation of 

autonomous guided vehicles (AGVs) (Holenstein et al, 1992). However, many localisation 

methods described in the literature only function if an initial, exact or approximate, 

position and orientation are provided (e.g. Durrant-Whyte, 1994; Mallet & Aubry, 1995; 

Weiß & Puttkamer, 1995; Zingaretti & Carbonaro, 1998; Lawitzky, 1999; Neira et al, 

1999; Schmitt et al, 1999).  

The term ‘self-localisation’ indicates an entirely autonomous localisation system. 

Self-localisation is necessary if the current location is not known, for example, due to re-

initialisation or an accident (Madarasz et al, 1986), and is of interest because the successful 

performance of navigational tasks depends on an accurate position and orientation estimate 

(Tarín et al, 1999). The self-localisation problem is, therefore, to determine the position 

and orientation of the AGV within its current environment without any a priori position or 

orientation information. 

This thesis describes a novel artificial neural network and its use to solve the 

self-localisation problem on a wheelchair in an industrial and a hospital environment.  
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1.1. LOCALISATION 

Localisation consists of determining the position and orientation of a vehicle, within its 

operational environment; the location can then be used for navigational purposes. The 

localisation task is dependent on the operational environment, as some are permitted to be 

modified and others are not. The environment type is usually segregated into indoor and 

outdoor. 

The localisation task can be divided into two sections: the method of localisation, and the 

selection of the sensors that provide the raw data from the perceived environment to the 

localisation method. Sometimes the raw data are pre-processed before being used by the 

localisation method. 

It is important to choose the sensor that is best suited to the environment the vehicle will 

operate within, and separately select the method for localisation. If the environment can be 

modified then a sensor able to detect these modifications would be used. If the 

environment cannot be modified, then the sensor system must be capable of perceiving 

those aspects of the environment that the selected localisation method will use. 

The method of localisation is selected by determining which environment aspects can be 

detected from the sensor data. If the sensors allow the positions of known environment 

features to be uniquely identified, then triangulation can be used. If the sensor monitors the 

incremental movement of the vehicle, then odometry can be used. In other cases a model 

matching technique is required and a description of the operational environment needs to 

be provided to the localisation system. 

This chapter focuses on methods of localisation while Chapter 2 discusses sensors for 

perceiving the vehicle’s operational environment. 
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1.1.1. METHODS FOR LOCALISATION 

Localisation requires a method of interpreting the data provided by the sensors, to 

determine the position and orientation of the vehicle. 

The data provided by individual sensors is discussed in Chapter 2. Here we are interested 

in the types of data that are available, and are not concerned with how they are obtained. 

1.1.1.1. OUTDOOR 

This thesis details the development of a self-localisation system for an indoor environment, 

and therefore concentrates on indoor localisation. However, others have designed 

self-localisation systems for outdoor environments, both with and without modifying the 

environment. 

For example, Sakagami et al (1992) have used triangulation from three radio transmitters 

to determine the location of a car within central Tokyo, with a mean positional error of 

350m. Talluri & Aggarwal (1992) used model matching of the shape of the horizon to 

determine a vehicle position, with a mean positional error of 54m. The VaMoRs-P car 

detailed by Dickmanns (1995) was able to keep a car in its lane at up to 130km/h, in 

normal French traffic, using GPS and landmark recognition from their vision systems to 

model match with internal maps of the operational area. Similarly, civil aircraft use a 

combination of GPS and radio transmitters to determine their location (pers. obs.). 

1.1.1.2. PRE-PROCESSING 

The sensors can provide data on specific points within the perceived environment or give 

an overview of what currently surrounds the vehicle. The former may be used directly by a 

localisation method, but the latter is usually, but not always, processed to determine 

information about specific points within the perceived environment. This processing 
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usually extracts environment features from the sensor data and assigns attributes to them, 

such as heading, range, type of feature, surrounding feature types, and unique identity if 

available. 

1.1.1.3. ODOMETRY 

Odometry, sometimes referred to as dead-reckoning (Mar & Leu, 1996), is used to 

determine how far an AGV has moved from a known position by measuring the rotation of 

either the AGV drive wheels or passive wheels (Holenstein & Badreddin, 1994). Many 

people have used odometry information to obtain a relative position for their AGV from a 

known starting location (Durieu et al, 1989; Cox, 1991; Freund & Dierks, 1994; Bourhis et 

al, 1994; Pampagnin et al, 1995; Neira et al, 1999).   

Despite its advantages of simplicity, cost and processing speed, there are a number of 

problems with odometry. Odometry information becomes very unreliable whenever the 

robot navigates at high speed or makes many turns (Bilgiç & Türksen, 1995). Odometry 

also fails when the vehicle has travelled over a ramp or bump, as the distance measured is 

greater than the distance travelled over the plane surface (Cox, 1991; Figueroa & Mahajan, 

1994), or overestimation occurs due to wheel distortion when carrying heavy loads, as the 

radius of the wheel is less than the calibrated value (Cox, 1991), while wheel slippage 

causes underestimates (Flynn, 1988; Cox, 1991). 

A major drawback with odometry is that it can cause total localisation failure. Any 

localisation method which relies on any form of odometry, however loosely, loses the 

ability to calculate an accurate position estimate if the odometry fails or if it does not 

receive an initial position estimate from an outside source (Drumheller, 1987; Townsend et 

al, 1994). 
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Odometry needs to be integrated with other positioning methods (Wang, 1988; Durieu et 

al, 1989; Holenstein et al, 1992; Talluri & Aggarwal, 1992; Mar & Leu, 1996), since even 

very small errors in the initial vehicle position can cause gross errors after a long enough 

path (Cox, 1991; Adorni et al, 1999). Byler et al (1995), for example, combined vision, 

beacons and odometry. 

Odometry allows a certain amount of autonomy, but vehicles must periodically be 

relocated, by comparison with some known location within the environment. Kay & Luo 

(1992) support the use of an odometry system, if paths can be planned that can 

accommodate the maximum expected location error and are mostly free of obstacles. The 

error accumulated in the odometry calculated location can be removed by an AGV arriving 

at a known location that is able to accommodate any locational error that may be present, 

such as a docking station (Neira et al, 1999). Tarín et al (1999) have improved the 

accuracy of the data that is provided by an odometry measurement system by fusing the 

data obtained from an accelerometer attached to each wheels’ encoder to remove noise 

from the encoder. 

In a safety critical localisation application such as an autonomous wheelchair, odometry 

cannot be used in isolation (Drumheller, 1987). However, it is useful to provide a 

localisation estimate update if the central localisation system should fail for any reason, 

assuming that the central system failure occurred only for a short travelled distance. 

1.1.1.4. TRIANGULATION 

A common approach to determining the location of an AGV is triangulation, using the 

heading information of known points (either specially placed identifiers or ones found in 

the un-modified environment) within the environment. 
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Triangulation has been incorporated into many different localisation methods using a 

variety of environment sensors, ranging from laser range finders (Skrzypczynski, 1998; 

Lawitzky, 1999), to vision systems (Byler et al, 1995; Stella et al, 1995; Betke & Gurvits, 

1997), to ultrasonic sensors (Figueroa & Mahajan, 1994). 

Triangulation has been used to localise a transport trolley within a hospital environment, 

using camera systems with structured light and ultrasonic sensors to detect landmarks on 

which to triangulate the robot location (Evans et al, 1992; Galles, 1993). The triangulation 

was performed only in regions with known landmarks, and wall following was used 

between these known regions. Thus, absolute position was known only in regions where 

landmarks existed. Wilkes (1994) improved on this by using a current position estimate 

from odometry to select two features from an environment model. A vision system then 

scanned the image for the two features, and when they were found, triangulation was used 

to locate the robot. Thus the robot could accurately update its location from the features 

when required, and provide an estimate from odometry at other times. 

Durieu et al (1989) used triangulation from active beacons to improve a position estimate 

obtained from odometry data. Their active beacons transmitted a coded infrared signal 

when triggered from ultrasonic transmitters on board the robot. The time-of-flight of the 

ultrasonic and infrared signals was measured to provide a distance to the beacons. The 

position estimate was improved by minimising the difference between the measured 

beacon distances and the expected beacon distances. 

1.1.1.5. MODEL MATCHING 

Model matching describes a general approach to localisation where a model of the 

operational environment is provided to the localisation algorithm, and is used to compare 

the raw or pre-processed sensor data to the model of the environment. The model does not 
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contain all the aspects of the operational environment and the algorithm needs to be able to 

accommodate discrepancies between model and the perceived environment. 

As a substitute for some or all beacons specifically placed in the environment for 

localisation, Cox (1991), Evans et al (1992), Galles (1993), Freund & Dierks (1994) and 

Townsend & Tarrasenko (1999) have all used localisation systems that have been 

dependent on environment walls: Cox (1991) and Freund & Dierks (1994) by matching 

detected wall segments to a map; Evans et al (1992) by using walls as a natural feature, 

and the distance to them to determine the current location within a hallway; Galles (1993) 

by wall following and detecting the corners of walls to determine position; Townsend & 

Tarrasenko (1999) by using the lengths of detected walls as inputs to an artificial neural 

network. The system that has been developed here (Chapters 4,5 and 6) also depends on 

the presence and detection of walls within the AGV’s environment (Beattie & Bishop, 

1997). 

Cox (1991) used a range finder and odometry on his AGV, Blanche, but provided a fairly 

accurate initial position estimate. He assumed that the robot was always near its previously 

calculated location. His method of localisation selected the nearest map line for each range. 

The location that then minimised the sum of the squared differences between the range 

point and the nearest wall was determined. The image was moved to accommodate the 

error vector, and the process was repeated until the error vector was within a tolerance 

value. The location was then deemed to be the previous location plus the sum of the error 

vectors. Freund & Dierks (1994) improved the speed of Cox’s (1991) method, by 

pre-processing the environment map, which meant that the squared error distances were 

only computed for the set of possible environment walls that could be detected from an 

odometry position estimate. 
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1.2. SELF-LOCALISATION 

The difference between localisation and self-localisation is that in self-localisation no a 

priori position or orientation information is available from which to base the vehicle 

location. As the method cannot use existing position or orientation information it has to be 

able to identify the uniqueness of the perceived environment from the information 

provided by the sensor system. The sensor system itself does not necessarily have to be 

on-board the vehicle. The methods used for self-localisation exclusively outdoors have 

been GPS and the triangulation of radio beacons, and for indoors and outdoors, model 

matching, using information provided by unique identifiable man-made features or natural 

environment features. 

The only method that has been used for autonomous indoor self-localisation is model 

matching, where a matching operation is performed between the sensor data and an 

internal model of the environment, (Drumheller, 1987; Durieu et al, 1989; Talluri & 

Aggarwal, 1992; Holenstein et al, 1992; Bilgiç & Türksen, 1995; Byler et al, 1995; Mallet 

& Aubry, 1995; Zingaretti & Carbonero, 1998; Schmitt et al, 1999). This method of 

self-localisation, however, requires that the AGV knows the environment within which it is 

to operate. 

1.2.1. ARTIFICIAL NEURAL NETWORKS USED FOR SELF-LOCALISATION 

Artificial neural networks can provide a model matching method to determine the 

correlation between input data and a predetermined map to obtain the location of a robot 

within an environment. An artificial neural network is required when triangulation is 

impractical due to the volume of data being processed, for example when the environment 

is large and the desired resolution of localisation is high. 
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Tarassenko et al (1991) and Marshall & Tarassenko (1994) used very large scale 

integration (VLSI) artificial neural network techniques to localise an AGV in a small 

environment by training their network at each of a large number of evenly distributed 

positions within the environment (they were not able to determine orientation). The system 

was impractical beyond a single room environment as all possible positions and 

orientations had to be taught to the network. 

Townsend et al (1994) and Townsend & Tarassenko (1999) used a Radial Basis Function 

(RBF) network with a range finder, to self-localise an AGV within a corridor environment. 

They did not use the range values returned directly from a range finder, but instead they 

reduced the dimensionality of the problem by extracting seven features from the data. 

These were: the shortest range; the median range; the longest range; the magnitude of the 

largest discontinuity; the magnitude of the second largest discontinuity; the magnitude of 

the returned signal; and the length of the longest wall segment. The number of corners 

detected was not chosen as an input feature, as for most positions the number of corners 

detected would not change. However, for a small number of regions a small movement 

would greatly alter the number of corners detected. By selecting features from the range 

data they provided the RBF with a rotationally invariant input. An average error of 23cm 

within an obstacle-free environment of 4.5m by 5m was obtained, but only position was 

determined, not orientation. 

Using extracted features from a sensed environment has the disadvantage that if an 

obstacle obscures a feature, localisation becomes more difficult (Skrzypczynski, 1998), in 

a similar manner to triangulation using beacons. Artificial neural networks, however, have 

the advantage of being tolerant of the faults within the provided input, and generalising 

from the training that they have received (Lippmann, 1987). 
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1.3. WHEELCHAIR SELF-LOCALISATION 

Schofield (1999) states that wheelchair users do not want self-navigating wheelchairs 

because they prize their ability to control their own motion. However, this ignores the fact 

that the requirement for mobility assistance is increasing (Bourhis et al, 1994). 

Furthermore, simple powered wheelchairs are not always capable of providing enough 

assistance as the user may not be physically or cognitively able to drive a powered 

wheelchair (Bourhis et al, 1994). Hence an autonomous wheelchair design that allows 

users to independently determine their movement to a new location is needed (Beattie, 

1995; Beattie et al, 1995; Katevas et al, 1995). The SENARIO wheelchair (Chapter 3) 

aims to provide a system that allows users to move around without having to call on the 

assistance of someone else, permitting them to independently control some of their own 

mobility to a limited extent. The development of an autonomous wheelchair, which is able 

to self-localise, was one of the goals of the SENARIO project (Chapter 3). 

The localisation of an AGV can be readily achieved in large environments using beacons 

(Byler et al, 1995) or global vision techniques (Kay & Luo, 1992). In a hospital situation, 

however, the additional problems of many rooms being sensed as the same, and of 

potentially high levels of electromagnetic interference and large movable obstacles greatly 

complicates the localisation task. For the safety critical application of an autonomous 

wheelchair carrying a human in a hospital environment, reliability is paramount and the 

wheelchair must not collide with any item unless explicitly desired by the user. For 

example, the user may want to move objects such as doors, or butt aside objects to transfer 

to them such as chairs, beds or toilets.  

Because the requirement for accurate position and orientation estimates is vital, the method 

to achieve the localisation estimate must be robust to accommodate inaccuracies between 
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the sensed environment and the modelled environment. Line-of-sight beacons cannot be 

used, as the likelihood of them being obscured, and the consequences, are too great, while 

global vision may be perceived as invasion of privacy by hospital occupants (Napper & 

Seaman, 1989). User issues are very important if the wheelchair is to be accepted, 

otherwise the whole objective of providing an autonomous wheelchair is nullified. In 

particular, the user must not fear receiving less attention due to the reduced need for 

continuous human care. However, the quality of care provided by a carer may be improved 

by them not having to do all tasks for the user (Kwee, 1995).  

The idea of producing an autonomous wheelchair, or AGV assistant, within a hospital is 

not original and many have seen it as a helpful application of general AGV designs 

(Madarasz et al, 1986; Evans et al, 1992; Bourhis et al, 1994; Kwee, 1995; Wellman et al, 

1995; Bourhis & Pino, 1996). Bourhis et al (1994) built an autonomous wheelchair, which 

had three operating modes. The first mode was a simple joystick control. The second was 

an assistive mode where wall following or obstacle avoidance could be initiated. The third 

mode of operation used ultrasonic sensors and short-range coded infrared beacons in the 

environment for localisation and navigation in and between modelled regions of the 

environment. Madarasz et al, (1986) implemented an autonomous wheelchair for an office 

environment, which was capable of using a lift to transfer between floor levels. It did not 

know its location at all times, but travelled between known rooms or corridor junctions. 

Figueroa & Mahajan (1994) improved the Helpmate system built by Evans et al (1989), 

which transported food and small pieces of equipment around a hospital environment. 

Sanders & Stott (1999) produced a simple system to assist wheelchair users to navigate 

through doorways using just two ultrasonic sensors pointing ahead of the chair. The input 

from these sensors was used to steer the wheelchair away from the door frame. 
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1.3.1. SELF-LOCALISATION OF THE SENARIO WHEELCHAIR 

The initial test environment for the SENARIO wheelchair was 1760cm x 1780cm with 720 

angles of 0.5°, which translates to (1760x1780x720) 2,255,616,000 locations. Given a 

system able to test 1000 locations per second then the system would require around 26 

days to test all locations. Due to the magnitude of the problem an artificial neural network 

approach was required. It needed to be able to handle both a large input vector and the 

large number of possible solutions. Information from beacons needed to be included, and 

these needed to provide a significant influence over the possible resultant location 

produced by the network. 

A Stochastic Diffusion Network (SDN) (Bishop & Torr, 1992) was investigated as a 

possible solution (Chapter 4). However, the time required to determine a solution was 

heavily dependent upon the size of the search space. Research by Nasuto & Bishop (1999) 

indicated that the SDN was capable of solving best fit constraint satisfaction problems with 

an efficiency dependent on the ratio of the number of neurones, or agents, employed to the 

search space size. In the case of SENARIO, as the search space was so large, a new form 

of the network was designed, Focused Stochastic Diffusion Network (FSDN), that could 

traverse a large search space efficiently, and hence be used to solve the self-localisation 

problem in realistically sized environments (Chapters 5 and 6). 

1.4. AIMS AND THESIS STRUCTURE 

The two main objectives of this thesis are: 

1. To describe the development of a robust, accurate and repeatable self-localisation method, 

with no, or minimal, environment modifications. 
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a) To assess a selection of existing artificial neural networks and test these using three 

simulated environments (Chapter 4). 

b) To develop a new artificial neural network and, using the same three simulated 

environments compare it with existing networks (Chapter 5). 

2. To use the method developed above on a wheelchair in two non-simulated environments. 

a) To integrate a self-localisation system using the artificial neural network developed 

from objective 1 onto the SENARIO wheelchair (Chapters 2 & 3). 

b) To test the self-localisation system in the industrial and rehabilitation centre 

environments of the SENARIO project (Chapter 6). 

Chapter 2 investigates the sensor options that were available and justifies the selection 

made. Chapter 3 describes the SENARIO wheelchair project onto which the 

self-localisation system was installed. In Chapter 4, three artificial neural networks (Radial 

Basis Function, N-tuple and Stochastic Diffusion Network) that could be used to solve the 

self-localisation problem using the selected sensors are tested in three simulated 

environments. In Chapter 5 the Focused Stochastic Diffusion Network (FSDN), a new 

artificial neural network method for solving the self-localisation problem, is presented in 

detail, and the results of simulated trials in three environments are presented. Chapter 6 

describes the implementation of the FSDN on the SENARIO wheelchair. The results of 

trials in two non-simulated sites are presented, and the problems associated with the 

physical installation of the self-localisation system onto the SENARIO wheelchair are 

described. Chapter 7 discusses the self-localisation problem, the advantages of the new 

artificial neural network solution and some of the problems encountered when 

implementing the FSDN on the SENARIO wheelchair. 



ENVIRONMENT SENSING 

14 

2. ENVIRONMENT SENSING 

2.1. INTRODUCTION 

To determine its location it is essential that a free ranging AGV has a selection of sensors 

capable of providing accurate environment information. Some sensors that have been and 

are being used on indoor mobile robots for either navigation (vision, Brady, 1992; odour 

sensing, Russell, 1995) or localisation (Global Vision, Kay & Luo, 1992; odometry and a 

laser range finder, Forsberg et al, 1995) are discussed below with an assessment of their 

suitability for an automated wheelchair. The sensors that were used for the AGV 

self-localisation problem on the SENARIO wheelchair are then justified. 

2.2. SENSORS AND THE INFORMATION THEY CAN PROVIDE 

This section discusses a number of sensors that can be used to gather information about the 

environment that surrounds an AGV. 

2.2.1. BEACONS 

Beacons are identifiable locations within the AGV’s environment. They can be either 

physical attributes of the environment, or added markers dedicated to providing the AGV 

with a known environment landmark. If three or more beacons are detected, the location of 

the AGV can be determined in two dimensions using triangulation. The position of the 

beacons has to be accurately determined when installed or selected, and their locations 

provided to the AGV. Beacons using light, in some form, have to be in line of sight. When 

line-of-sight beacons are used, three beacons must be visible if there is no a priori 

information. But since this cannot be guaranteed, position estimation may not always be 

possible (Cox, 1991, Skrzypczynski, 1998). The placement of beacons therefore requires 



ENVIRONMENT SENSING 

15 

careful consideration, and the environment needs to be relatively obstruction free (Kay & 

Luo, 1992). 

Beacons may be of two types: active or passive. Active beacons use power to transmit a 

signal to the AGV, which may be unique for each beacon. This type of beacon may issue a 

radio, ultrasonic or light signal. Active beacons require regular maintenance to test their 

operation, and require major installation if mains powered (Durieu et al, 1989). Durieu et 

al (1989) used active infrared beacons in an industrial environment, which provided a 

range of 15 meters. The beacons transmitted an infrared signal in response to ultrasonic 

pulses transmitted from the robot, which were also used to detect obstacles. Stella et al 

(1995) also used simple non-unique infrared beacons placed at known locations around the 

environment. 

Passive beacons do not require a power source, and hence can be more easily installed and 

maintained than active beacons. Passive beacons include plain reflectors (Uber, 1988; 

Pampagnin et al, 1995), and the retro-reflective beacon, which returns a light beam in the 

direction from which it came (Uber, 1988; Tièche et al, 1995). Such a reflector provides a 

high and uniform luminance determined by the distance of the light source from the 

reflector. 

Bar-code readers can also be used to read bar-codes located in the environment containing 

the unique identity of their accurate location (Brady & Wang, 1992). Byler et al (1995) 

used passive beacons consisting of a number of circles that could easily be identified by a 

vision system. The AGV held a map of the beacon locations and used the beacons to 

update odometry data. The beacons also contained a unique bar-code that the robot could 

use for self-localisation if it was unable to determine its location from previous positions.  
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2.2.1.1. SLOPING BAR-CODE 

A method of using beacons consisting of bar-codes was investigated for the 

self-localisation system for the SENARIO wheelchair. The commercially available 

bar-code reader obtained from Symbol Technologies Ltd had a limited minimum and 

maximum bar-code size that could be read at any particular distance. To obtain a bar-code 

that could be read over a greater distance, therefore, the reader was angled upwards, and 

the author developed the sloping bar-code. The sloping bar-code - narrower at the bottom 

and wider at the top - enabled the bar-code reader to read a narrower code when it was 

close to the bar-code, and to read a wider code when it was further away, thus keeping the 

bar-code width within the desired minimum and maximum bar-code lengths. Figure 1 

shows a bar-code that could be mounted on a wall and read by a bar-code reader over a 

larger distance range than if the bar-code were a conventional vertical linear bar-code. The 

sloping bar-code still has a maximum and minimum reading range distance dependent on 

the reader system, but this reading range for a vertical linear bar-code is extended using the 

sloping bar-code.  
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2.2.2. LASER RANGE FINDERS 

Laser range finders scan their surroundings in two dimensions, providing a range to the 

nearest object at regular angular increments. Three methods for determining range to an 

object using a laser range finder are described by Katzberg (1990). The first is 

time-of-flight, but due to the speed of light accurate detection of short ranges requires 

sophisticated electronics, which are expensive. 

The second method uses the phase shift between the transmitted signal and the returned 

signal to determine the range of the object detected (Shen et al, 1994). The faster the 

frequency of modulation the easier it is to detect the phase shift for short ranges, but this 

reduces the maximum range, due to the phase shift being uniquely identifiable only for the 

first 2π radians of phase shift. 

The third method is a frequency modulated continuous wave, where the transmitted signal 

is slowly changed in frequency. The distance to a detected object is then proportional to the 

 

Figure 1 - Sloping bar-code to allow the code to be read at increased ranges. 
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difference in the current transmitted frequency and the received frequency. Clergeot et al 

(1985) used a modulated range finder on a welding robot application. 

Laser range finders have inherent errors, measurement noise and limited measurement 

resolution (Sequeira et al, 1995). A laser beam is a cylinder, and the range measured is the 

average of the ranges produced at the intersection of the laser cylinder and the surface 

detected. The area of contact depends on the angle of intersection of the laser beam with 

the surface normal. A range error is obtained when the laser cylinder comes into contact 

with more than one object at a reading angle, distorting the edges of objects, thus making 

their detection harder. The surface reflectance of the object detected distorts the range 

reading, and brighter objects can appear closer than a darker object at the same distance. 

There are three advantages of direct range sensing techniques (Sequeira et al, 1995):  

• explicit range information is provided without any additional computational 

overheads; 

• the illumination of the scene does not affect the range data; and 

• the reflectance of the surface detected does not greatly affect the reading received 

(Shen et al, 1994). 

Laser range finders have been used for localisation in a number of diverse ways. Forsberg 

et al (1995), Tani (1996), Skrzypczynski (1998) and Lawitzky (1999) extracted features 

from the vector of ranges received, while Armstrong et al (1995) used range finders around 

the environment in a manner similar to global vision. Pampagnin et al (1995) detected 

highly reflective beacons using a range finder. 
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2.2.3. VISION SYSTEMS 

Both single camera (Wilkes, 1994) and twin camera (Brady, 1992) vision systems have 

been extensively used, and Weckesser et al (1995) used three cameras. Vision systems are 

used to extract either predetermined known (Iñigo & Torres, 1994), or self-taught features 

from the environment (McKee et al, 1994), which are then used for triangulation or for 

wall following. Once a feature has been realised from the view, orientation can be 

calculated and, with multi-camera systems or a multi-position single camera, range to 

features calculated. 

Vision-based range finding techniques can be divided into three categories: contrived 

lighting, passive image-based and multiple images (Jarvis, 1983). Evans et al (1992) used a 

structured light method by which two light beams reflected off the area in front of an AGV 

allow the images received by a camera image to be monitored for obstacles. Atiya & Hager 

(1993) used a camera system to detect vertical edges within the environment and 

determined the location of an AGV by matching the detected edges to a model of the 

environment using the least-squares technique. Similarly Schmitt et al (1999) used 

off-board processing to match the vertical edges produced by a simulator and vertical 

edges gathered by an on-board camera. An initial location accurate to ±10cm and ±5° was 

required to ensure that the vertical lines that were being matched were likely to be within 

the field of view. The method was only tested with a single 15m wall and no unmapped 

obstacles. 

Cameras placed throughout the robot’s environment is another vision technique used for 

mobile robot localisation, where the AGV’s location and navigational commands are 

determined remotely. This ‘Global Vision’ method, where position and navigational 

decisions are made centrally, allows for low cost robots to use a relatively expensive 
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localisation system, thus reducing the cost of the overall system for a multi-AGV 

application (Kay & Luo, 1992). Brady (1992) and Greenway & Deaves (1994) used global 

vision to track two radio-controlled cars, with ultrasonic and infrared sensors added to 

improve the position estimates of the cars. 

Camera systems have been used in a wide variety of other ways, often to detect specific 

features. Stella et al (1995) used a single camera system to detect passive reflective 

beacons around the environment, and then used triangulation to determine the location of 

the AGV, having been provided with a starting location. Bayer et al (1995) used a camera 

system to detect lines within their operational environments. They processed the image 

data off-board the robot and transmitted back to the robot navigational instructions to 

follow a line painted onto the floor. Asensio et al (1998) used a camera system to 

determine the location of doorways within an environment by detecting striped tape that 

had been placed around the doorframe. They then knew their local relative location, and 

could use this information to navigate towards the door. 

Zingaretti & Carbonaro (1998) used a binocular camera system to detect known natural 

landmarks within the environment, such as emergency exit signs, heating vents on walls 

and ventilation grills in the ceiling. Having been provided with a starting location they 

were able to navigate their robot around an environment consisting of corridors. 

Not everyone has been keen to use a vision system, however, not only because of the 

financial cost, but because camera systems require computationally intensive processing 

(Flynn, 1988; Bourhis & Pino, 1996). In response to the problems associated with vision 

systems, such as the need for simplified, relatively static, controlled environments and high 

performance computing, Brady (1992) designed a stereo camera system for use on an AGV 

for navigation through narrow gaps among moving obstacles. The system was capable of 
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camera movements of 530°s-1 and accelerations of 7000°s-2, and was controlled by a 

transputer for each of the four degrees of freedom, and by an additional supervisory 

transputer. 

2.2.4. ULTRASONIC SENSORS 

The time-of-flight measurement of an ultrasonic signal from a transmitter to a receiver is 

directly proportional to the distance between the transmitter and receiver. The transmitted 

sound, however, is not a single pulse but a chirp that has duration. This duration causes 

distance errors, as the first echo may not have originated from the first pulse. In the worst 

case, the first received echo is the last transmitted pulse, an error proportional to the length 

of the chirp is observed (Flynn, 1988).  

Bilgiç & Türksen (1995) found that uncontrollable false readings could come from the 

absorption and specular reflection characteristics of the material detected by the ultrasonic 

signal. Durieu et al (1989) found that in industrial environments sonar systems do not 

operate reliably for ranges greater than 2m. Due to specular reflections from obstacles 

being detected by other receivers, Curran & Kyriakopoulos (1995) poled each of 16 sets of 

ultrasonic sensors sequentially, rather than receive the data in parallel. 

Drumheller (1987) swept an ultrasonic transceiver through 360° to obtain a sonar contour 

of 100 ranges of the robot’s surroundings. However, he found that it is virtually impossible 

to obtain a useful approximation of a room outline from a single position, because usually 

only a small portion of a room is visible from a single position and range finder readings 

often contain extremely large errors due to false reflections. 

Galles (1993) used ultrasonic sensors to recognise natural landmarks from the 

environment, using 16 ultrasonic and 16 infrared sensors evenly positioned around a robot. 
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The ultrasonic data vector was shifted until the largest range was the first range in the 

vector of ranges, thus the importance of the orientation of the robot was minimised. This 

technique was investigated in section 4.4.2.2.1. 

Figueroa & Mahajan (1994) used a transmitter on the robot and receivers throughout the 

environment, in a similar manner to global vision, to determine the location of the robot. 

Their system was robust, but required extensive modification of the environment and 

removed autonomy from the robot, as navigation was determined off-line. 

2.2.5. OTHER SENSORS 

The Global Positioning System (GPS) provides a latitude and longitudinal position with 

height above sea level to an accuracy of 2m. When using the position received at a known 

GPS receiver, called differential GPS (DGPS) the accuracy is improved to 1m. Mar & Leu 

(1996) used DGPS to determine a car’s position within a town environment. They 

accommodated for a loss of signal, from either the satellites or from the differential 

transmitter, by including a model matching system from an environment map and an 

odometry backup. 

Russell (1995) developed an odour sensor that was capable of detecting an odour placed on 

a floor. This allowed an odour-sensing and obstacle-avoiding robot to navigate within the 

environment without needing to learn the environment in which it was placed, without a 

map and without model matching or triangulation. 

Floreano & Mondada (1996) placed a single light source in the corner of a robot’s 

environment. The robot was able to learn to navigate towards the light when it needed to 

recharge its batteries. Bishop et al (1995; 1998) have developed a 15-element light sensor 
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connected to an N-tuple weightless artificial neural network with a similar aim of 

determining the direction required to navigate to a recharging station.  

Mataric (1990) and Stella et al (1998) used a flux gate compass to determine the 

orientation of an AGV. However, flux gate compasses are susceptible to magnetic 

interference within the operational environment (Stella et al, 1998), and are therefore 

unsuitable for a hospital environment. While Pampagnin et al (1995) used a gyroscope to 

determine the orientation of their AGV.  

2.2.6. FEATURE EXTRACTION 

Feature extraction as discussed in section 1.1.1.2 is a method of pre-processing the sensor 

data into a suitable format for the localisation method. Some of the difficulties of feature 

extraction for different sensor types are discussed here. 

 Feature extraction on visual or range data has the same restrictions as a line-of-sight 

beacon system: the features must be detectable for self-localisation to be achievable. 

Unless it can be guaranteed, at all times, that sufficient features will be detectable to 

determine the vehicle location, then feature extraction cannot be used for reliable 

self-localisation. 

The data provided by the range finders is in the form of a vector of range data, where the 

number of ranges provided by the sensor sets the size of the vector, which can be more 

conveniently termed a range vector. The features that can be extracted from this range 

vector - are internal corners, external corners and flat wall segments. An internal corner is 

detected by a steep local maximum range value (Figure 2a), while an external corner 

provides a steep local minimum range value (Figure 2b) and a straight wall section is 
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signified by a constant rate of change of range values, which will produce a local minimum 

value if the AGV is perpendicular to the wall (Figure 2c). 
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Figure 2 - Range vectors for different environment features. 
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Structured man-made environments are usually uniform in a vertical plane for a sufficient 

height for most AGV applications (Cox, 1991). Note needs to be taken of features that may 

not be detected - such as the wall above a door frame, for example - due to the height at 

which the range finder scans the environment. In the case of autonomous wheelchairs, 

which may need to drive partly under a table, the uniformity cannot be generally assumed. 

In a hospital environment other pieces of equipment, sometimes expensive, do not follow 

the vertical uniformity assumption: portable X-ray machines, or a pull-up handle mounted 

above a bed are examples. 

It should be possible to feature extract from ultrasonic data, however due to some of the 

reflection problems previously discussed in section 2.2.4 it is not possible to reliably detect 

environment features from ultrasonic range and heading data. 

2.3. SENSOR SELECTION FOR SELF-LOCALISATION OF A 

WHEELCHAIR IN A HOSPITAL ENVIRONMENT 

Sensors used on an autonomous wheelchair in a hospital environment must be capable of 

reliably locating the wheelchair and must be acceptable to the user (Napper & Seaman, 

1989). 

From the foregoing review of the literature, and from practical trials with sensors, the 

sensors chosen as the most suitable for self-localisation of a wheelchair in a hospital 

environment were a laser range finder and passive radio beacons, backed up by odometry. 

2.3.1. SENSORS REJECTED 

2.3.1.1. PASSIVE BEACONS 

A line-of-sight passive beacon system was rejected, as it could not be guaranteed that a 

minimum of three beacons would always be visible to allow triangulation. Also in a 



ENVIRONMENT SENSING 

27 

complex multi-room environment it can be difficult to accurately measure where a beacon 

has been placed. In the case of bar-code beacons, they also needed to be within the reading 

range of the reader system. 

2.3.1.2. ACTIVE BEACONS 

Due to electrical installation and regular maintenance requirements this type of beacon was 

rejected. Line-of-sight active beacons were rejected for the same reasons as those for 

passive beacons. 

2.3.1.3. VISION SYSTEMS 

In a hospital, a vision camera system mounted on the wheelchair or around the 

environment, may be perceived as an “eye” on the patients and is therefore unacceptable in 

this application. Napper & Seaman (1989) emphasise that sensor acceptance is a key 

consideration when using robots for heath care applications. On-board vision system would 

also require feature extraction, additional lighting or beacons. 

2.3.1.4. ULTRASONICS 

Ultrasonic sensors were rejected due to the variation in received value from different 

surfaces and the long range readings required from the operational environments (section 

4.1.1). 

2.3.1.5. OTHERS 

GPS localisation was rejected because it is not possible to detect satellites in an indoor 

environment (pers. obs.). Another problem with GPS is that the orientation is not 

determined until the vehicle has moved, which means that the navigation system has to 

determine a free space then move into it before the direction of movement relative to the 

environment can be determined. 
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An odour laying and following system is not suitable as the robot needs to be free ranging 

and a hospital environment is cleaned regularly. 

2.3.1.6. FEATURE EXTRACTION 

The difference between feature extraction and beacons is in the method of obtaining the 

currently visible feature set. Hence, the same problems found with line-of-sight beacons 

apply to feature extraction; at least three features must be detectable, and the locations of 

these features, within the operational environment space, able to be derived. 

2.3.2. SENSORS ACCEPTED 

The sensors that were finally selected for the self-localisation system on the SENARIO 

wheelchair were two laser range finders, each covering 180°, passive radio beacons and 

optical encoders. The range finders determined the distances from the wheelchair to the 

surrounding environment. The passive radio beacons indicated the region of the 

environment in which the wheelchair was situated. The odometry provided a location 

estimate while a location was being determined from the range finder and radio beacon 

data.  

2.3.2.1. LASER RANGE FINDERS 

The advantages of using an active range finder, rather than a passive technique like vision 

or triangulation, are that an explicit range vector is provided without any additional 

computation, the illumination of the scene does not affect the range data, and the 

reflectance of the surface detected does not greatly affect the reading received (Shen et al, 

1994).  

Jarvis (1983) stated that the problems found in some vision based range finding, such as 

occlusion and reduced accuracy with distance, are solved using laser range finders. The 

transmitted signal axis and received signal axis coincide, and range accuracy is maintained 
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while a reliable signal can be detected. Laser range finders, he states, could potentially 

eliminate the problems found with many sensors.  

Erwin Sick GmbH manufactured the chosen laser range finders. These provided the 

longest range, the highest angular resolution, and the most accurate range readings, and 

had a laser classification of 1, providing high quality data and allowing them to be used in 

a public place without causing injury from the laser beam. A comparison of alternative 

range finders that were investigated is given in Appendix A. 

The laser range finders provided 720 range readings taken at every 0.5° from the 

wheelchair. The range finders had a specified range error of ±50mm, and a maximum 

detection range of 50m. The only pre-processing that was required of the range data was to 

compensate for the separation distance between the centres of rotation of the two range 

finders. 

The range finders measure the range to the nearest object at a given angle; this may or may 

not be an expected range. The self-localisation technique used on the wheelchair needed to 

be robust to noise. It therefore needed to be able to accommodate changes in the 

environment, or differences between the expected environment and that detected by the 

range finders. These perceived differences were treated as input noise to the 

self-localisation system. 

To check the manufacturer’s specified range error, the range finders were tested by 

comparing the ranges output and the ranges measured to a smooth non-painted piece of 

wooden chip-board placed in front of the range finder. A total of 45 tests were performed 

at 8 distances between 695mm and 5224mm Table 1. 
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Position Number of trials Actual range (mm) Mean range error (mm) Standard 
deviation 

1 5 695 27.0 4.5 
2 5 2319 23.0 25.9 
3 4 2695 27.5 5.0 
4 4 2735 27.5 15.0 
5 7 3092 52.3 27.6 
6 6 3931 40.7 4.1 
7 7 4737 47.3 24.4 
8 7 5224 21.1 8.8 

Figure 3 shows the distribution 

of range errors for all 45 range 

tests and shows that over the 

test ranges the range is likely to 

be over-estimated by 40mm. 

The range readings were not 

modified to remove the mean 

error value, as error was small 

compared to the size of the 

SENARIO trial environments. 

 
2.3.2.2. PASSIVE BEACONS 

Passive radio beacons were selected to overcome room location ambiguities derived from 

the environment consisting of many rooms of the same physical dimensions. Passive radio 

beacons were chosen as they required no electrical installation or maintenance and can be 

visually obscured. The installation did not have to be accurate as they were intended only 

as room identifiers, and not as triangulation markers. 

Table 1 - Results of range tests on a range finder. 
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Figure 3 - Distribution of range errors when testing the 
range finders. 
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A hospital environment may contain many rooms of identical horizontal profile, which 

would generate the same input range vector from the range finders. The positioning system 

would be able to produce a local position only within such a room, but would be unable to 

provide an exact environment position within the map. This failure would occur 

irrespective of the method used to determine the location from the range vector. Hence, 

another system was required to determine which room the wheelchair was in when the 

current room produced the same horizontal profile as another within the wheelchair 

environment. It was not desirable to modify the environment, and the SENARIO system 

was designed to have all control systems on-board the wheelchair. 

The system used to solve this problem was a passive radio frequency beacon system 

(TIRIS from Texas Instruments). The passive radio beacons were inductively coupled 

devices that received their power via a transceiver aerial. The beacons were positioned at 

known locations around the environment, required no electrical installation, no 

maintenance and could provide a unique code, or a number of beacons could be given the 

same code, to indicate no-entry areas. The installation did not have to be accurate as the 

beacons were intended only as room identifiers, and not as triangulation markers. 

2.3.2.3. ODOMETRY 

The localisation system was made reliable by having odometry available to provide a 

location estimate if the range finder method failed, or to extrapolate from the previous 

range finder determined location, until a new location could be accurately determined.  

Odometry data was used to extrapolate a location from the estimate provided by the range 

finder data. The wheelchair navigation unit (section 3.2.1) used the extrapolated location 

when a location was not available from the localisation system. 
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Figure 4 shows how a new location could be calculated from the odometry data received 

from the two drive wheels (Holenstein & Badreddin, 1994; Wang, 1988). In Figure 4, 2d is 

the separation between the two odometry wheels, Lo is the measured distance travelled by 

the left-hand wheel and Li is the measured distance travelled by the right-hand wheel. The 

starting location of the mid-point between the two odometry wheels is given as (x,y,θ). The 

finishing location is identified as ( )θ,, yx . 

Given that the length of an arc is rθ, and hence ( )θ̂2 io rdL +=  and θ̂ii rL = , we can 

determine the length 
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Figure 4 - Odometry calculation. 
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( ) θCosdrxx i +=+ ~ˆ  and ( ) θCosdrx i +=~  so using xxxx ~)~ˆ(ˆ −+=  then the change in the 

x position is ( )( )θθ CosCosdrx i −+=ˆ . Similarly with the y co-ordinates, 

( ) θSindryy i +=+ ˆ~  and ( ) θSindry i +=~  so the change in the y co-ordinate is 

( )( )θθ SinSindry i −+=ˆ . 

2.4. CONCLUSIONS. 

The sensors chosen for the AGV were: two 180° laser range finders manufactured by 

Erwin Sick GmbH, that are now a standard sensor on AGVs (Schofield, 1999); passive 

radio beacons; and encoders (Beattie, 1995; Beattie et al, 1995; Katevas et al, 1997). The 

laser range finders were chosen as the primary environment perception sensor for their 

high angular resolution, their large range, the pre-calculated range data, and their class 1 

laser rating. The passive radio beacons were selected to differentiate between similar 

environment locations perceived by the range finders. They were chosen for their zero 

maintenance and minimal installation requirements. Encoders mounted against the main 

AGV drive wheels provided a backup method for determining the current location from the 

previous location provided by the localisation network. 

Chapter 3 details the SENARIO wheelchair and section 3.4.1 discusses how the selected 

sensors were installed. 

Chapter 4 discusses a number of artificial neural networks that attempted to solve the 

self-localisation problem using the sensors selected here, hence the networks chosen 

needed to be able to accommodate the data provided by these sensors. 
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3. THE SENARIO PROJECT 

3.1. INTRODUCTION 

This chapter discusses SENARIO, the project that the self-localisation system was tested 

on (Beattie, 1995; Beattie et al, 1995; Katevas et al, 1995; Katevas et al, 1997). The 

integration of the self-localisation system on the SENARIO wheelchair project is described 

in detail in Chapter 6. 

The SENARIO project was funded by the European Union under the Technology and 

Innovation for the Disabled and Elderly (TIDE) scheme. The project initiated the need for 

a new robust self-localisation method, and was used to evaluate, in two non-simulated 

environments, the FSDN, the novel artificial neural network self-localisation method 

introduced in Chapters 5 and 6 of this thesis. 

The objective set for SENARIO was to develop a market orientated prototype wheelchair 

that could be used by those people who want assistance to move around within a 

predefined indoor area. The project was aimed at those people who were unable to drive a 

conventional joystick controlled powered wheelchair. It was designed to be an add-on to 

existing powered wheelchairs, and as such a Meyra ‘Sprint’ model wheelchair (Figure 5) 

was used as the base. Having an add-on design allowed manufacturers to consider more 

easily the design for inclusion in their range as it could be supplied as an optional extra 

without having to modify their existing production line. 
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3.1.1. THE WHEELCHAIR 

A restriction placed on the 

SENARIO project by the TIDE 

office was that the autonomous 

navigation system must use the 

M3S bus communication 

protocol. Hence the Meyra 

wheelchair company was 

chosen, as it was possible to 

have its chairs converted to use 

the M3S bus. The M3S 

communication bus was 

developed from the Controller 

Area Network (CAN) 

automotive industry communication bus, for use on wheelchairs by a previous TIDE 

project (Van Woerden, 1993). The Meyra sprint model wheelchair (Figure 5) has 

independently driven large rear wheels and free castors at the front. This configuration was 

selected because it allows for a tighter turning circle than the Meyra Genius model 

wheelchair, which has front wheels that are driven in tandem with steering rear wheels. 

However, the free front castors on the ‘Sprint’ wheelchair caused navigation problems as 

they caused the wheelchair to deviate from the desired path of travel until the castors 

turned into a trailing orientation.  

 
Figure 5 – The Meyra wheelchair, used as the 
SENARIO chassis. 
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3.1.2. OPERATION 

The SENARIO wheelchair was designed to have two operating modes. The first mode, 

termed ‘semi-autonomous’, allowed a user to drive the chair in a desired direction while 

offering protection from collision with static or dynamic obstacles. However, the user was 

restricted to travel only at the wheelchair’s minimum speed when overriding safety limits. 

The user controlled the chair using voice commands for four directions of motion, - 

‘forward’, ‘backward’, ‘left turn’ and ‘right turn’. If obstacles could be avoided, the chair 

continued in the requested direction until stopped by the user. 

By specifying a goal location, the user controlled the second ‘fully-autonomous’ mode of 

operation. The wheelchair determined its current location and planned a global path to the 

requested location. During travel, local obstacles were avoided and progress was 

monitored by continuously recalculating the current location. 

3.2. SUB-SYSTEMS 

The wheelchair consisted of four sub-systems, which were centred around the Risk 

Avoidance sub-system, as shown in Figure 6. The Sensing and Positioning sub-systems 

connected directly to the Risk Avoidance sub-system, while the Control Panel and Power 

Control sub-systems were connected through the M3S bus. This allowed the SENARIO 

system to be constructed to control any wheelchair that has the M3S communication bus, 

and for alternative user interfaces to be attached to suit user requirements. This section 

describes the Risk Avoidance, Sensing, Control Panel and Power Control sub-systems. The 

Positioning sub-system is described in more detail in section 3.3. 
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The Risk Avoidance sub-system was developed by the SENARIO project co-ordinators, 

Zenon SA a Greek automation company; the Sensing sub-system was developed by 

MicroSonic GmbH, a German ultrasonic sensor manufacturer; the Control Panel 

sub-system was developed by the Institute of Communication and Computer Science at the 

National Technical University of Athens; the Power Control sub-system was developed by 

the French National Institute of Health and Medical Research INSERM Unit 103; and the 

Positioning sub-system was developed by the author under the guidance of Dr Mark 

Bishop of the Department of Cybernetics at the University of Reading.  

3.2.1. RISK AVOIDANCE SUB-SYSTEM 

Zenon were responsible for the Risk Avoidance sub-system, which provided overall 

control of the wheelchair. The sub-system monitored for the following external risks using 

the Sensing sub-system’s devices: obstacles, high speeds and holes; it also monitored for 

sensor, actuator or communication failures as internal risks. 

Power control  
Sub-system 

Control panel  
Sub-system 

Risk avoidance 
Sub-system - 

Positioning  
Sub-system - 

Sensing  
Sub-system 

 
Figure 6 – The SENARIO control system structure, consisting of four sub-systems 
connected to the Risk Avoidance system. 
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As overall controller, the Risk Avoidance sub-system contained the navigation unit. The 

unit consisted of two parts, a global and a local path planner. When the wheelchair was 

being operated in the ‘fully-autonomous’ mode, the global path planner received the 

current wheelchair location from the Positioning sub-system and determined a suitable 

route to the desired goal location, which was received from the user interface in the 

Control Panel sub-system. The global path planner, having selected a route to the goal 

location, produced a list of intermediate goal locations. The local path planner then 

monitored for local obstacles and determined a route between the global path intermediary 

goal location, passing the drive commands via the M3S bus and the Power Control 

sub-system to the drive motors. 

3.2.2. SENSING SUB-SYSTEM 

The Sensing sub-system developed by MicroSonic GmbH was responsible for monitoring 

the local environment for obstacles. The major sensors were ultrasonic, mounted around 

the wheelchair in the directions that it was possible for the wheelchair to manoeuvre. Three 

groups of ultrasonic units were used. The first group were two sensors at the front of the 

wheelchair pointing downwards to detect whether a floor was present in front of the 

wheelchair. These sensors detected if the wheelchair was about to attempt to drive down a 

hole or a stairway. The second group of sensors were used to detect distant obstacles 

around the wheelchair and provide information to the local navigation unit. The final group 

of ultrasonic sensors were approved for personal protection by the European authorities. 

When this final group of ultrasonic devices sensed an obstacle that was too close to the 

wheelchair they (independently from the navigation unit) stopped the wheelchair motors. 

The five personal protection ultrasonic sensors (Microsonic Sonarshultz) were mounted at 

the front and back of the chair. One at the back prevented the wheelchair from reversing 
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into any obstacle; the other four were mounted at the front of the chair, two horizontally 

and two inclined at an angle of 45°. The inclined sensors prevented the chair from colliding 

with obstacles that were not uniform in the vertical plane, such as tables. 

The six ultrasonic sensors used for navigation were mounted at the corners and sides of the 

wheelchair. The corner units were mounted at 45° with respect to the central axis of the 

wheelchair, and the side units were mounted at 75°. These angles allowed the navigation 

system to monitor for obstacles in the regions in which it may have wished to turn. 

Although it used fail-safe ultrasonic sensors to prevent the wheelchair from colliding with 

any obstacle, the system also had an additional contact bumper added to the wheelchair to 

detect any physical contact between the outermost frame of the wheelchair and an obstacle. 

3.2.3. CONTROL PANEL SUB-SYSTEM 

Developed by the National Technical University of Athens, the Control Panel sub-system 

used voice recognition and a joystick to receive user commands. Voice recognition was 

selected for control of the wheelchair as it was believed to permit the largest possible 

number of potential users to use the wheelchair. The voice recognition unit was taught to 

recognise both the semi-autonomous commands and the fully autonomous goal location 

commands of an individual user. The voice recognition unit was capable of recognising 

160 commands with the available memory, though the number of recognisable commands 

could have been increased with more storage memory. However, the time delay to respond 

to a specific command increased with the number of stored commands. 
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3.2.4. POWER CONTROL SUB-SYSTEM 

INSERM unit 103 were responsible for the Power Control sub-system. This system 

translated the drive requests from the navigation system into commands sent on the M3S 

bus to each of the drive wheels. 

3.3. POSITIONING SUB-SYSTEM 

The Positioning sub-system, which this thesis details, was responsible for providing the 

navigational unit with the current wheelchair location in terms of its position and 

orientation, allowing the progress of the wheelchair to be monitored as it travelled through 

the operational environment. As the wheelchair could be switched on at any place in the 

environment, the system had to be able to self-locate without any user input. The 

self-localisation method developed (Chapters 5 & 6) used the fixed environment walls to 

determine the wheelchair location. The two laser range finders that the system used for this 

purpose were mounted on an arch above the user, so that they were more likely to detect 

environment walls than furniture or other non-modelled items. 

The system had two modes of operation. Firstly, with information only from the range 

finders, it needed to determine the current position and orientation of the wheelchair. 

Secondly, given an initial location estimate plus the information from the range finders, it 

needed to provide an updated location estimate. In the second mode it was not necessary 

for the system to interrogate the entire environment area to determine the current location, 

rather it was necessary only to investigate a sub-section of the environment map. 

The self-localisation system that was developed had to provide the navigation unit with a 

global environment position and orientation, not a location within a current room. This task 

became difficult when the relative positions of the walls in more than one room were the 
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same, thus making it impossible to determine which room the wheelchair was occupying 

from the room’s walls alone. To solve this problem, passive radio beacons were added to 

rooms that were the same shape, to provide a unique identification to these rooms. The 

passive radio beacon system is explained in more detail in Chapter 6, where the installation 

of the self-localisation system onto the SENARIO wheelchair is described. 

3.3.1. CONSTRAINTS ON THE POSITIONING SUB-SYSTEM 

The SENARIO wheelchair was designed for use in an operational rehabilitation centre, 

where it would have been extremely inconvenient to disrupt the operation of the centre by 

installing free ranging AGV tracking systems such as global vision or active beacons. 

Because many people visited the environment, camera systems were not considered 

appropriate, as they would be perceived as monitoring devices. Maintenance of the system 

needed to be as low as possible, so an active beacon system was also unsuitable, because 

regular checking would be necessary to ensure the robust operation of the system. 

The need to use a wheelchair with the M3S communication bus installed restricted to two 

the choice of wheelchair that could be used. As a result, the wheelchair design was not 

suitable for direct mounting of sensors, and a metal framework had to be built around the 

base and above the user. The size of the sensor frame was limited to ensure that the 

wheelchair would fit through doorways, both from a height and width perspective.  

Using a wheelchair, however, provided freedoms to the system that would not be available 

on a smaller AGV. There were no restrictions, as far as the Positioning sub-system was 

concerned, on the battery supply duration when the SENARIO autonomous system was 

installed. Only one microprocessor was permitted for each of the Risk Avoidance and 

Positioning sub-systems. Due to the scale of the project, the cost allowed for sensors was 
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large, and the weight of the sensors was unrestricted due to the size of the wheelchair, and 

its capacity to pull heavy loads. 

3.3.2. POSITIONING SUB-SYSTEM COMMUNICATIONS 

The communications system used on the Positioning sub-system is shown in Figure 7 

(section 3.4.2). It consisted of a PC-104 four port serial board, with the first port connected 

to the Risk Avoidance sub-system, the second connected to the radio beacon’s controller 

module, and the third and fourth ports connected to the two range finders.  

The communication protocols between the Risk Avoidance sub-system and the Positioning 

sub-system on the wheelchair were finalised during their integration onto the wheelchair. 

To provide a fast serial communications link between the two systems, a baud rate of 

38,400 was used, without a start bit and only one stop bit. To check the integrity of the data 

transfer, even parity checking was enabled. Hardware handshaking was used, avoiding the 

need to encode and decode the data, which is required in software handshaking. A buffer 

of 1000 bytes was ample on the Positioning sub-system for the incoming data, as the 

number of bytes in each transmission was expected to be a maximum of 20. The 

Positioning sub-system used interrupts both to detect the presence of incoming data and to 

output the required data, thus providing the fastest response to the Risk Avoidance 

sub-system when requests were made, and allowing the transmission of data to be 

performed when the communication channel became available, while not preventing the 

execution of other functions while waiting for availability of the channel. 

Two messages were used with the Risk Avoidance sub-system, one at either end of the 

operation of the Positioning sub-system. One was at the end of the Positioning sub-system 

sequence, when it had determined the location of the wheelchair. The Positioning 

sub-system provided to the Risk Avoidance sub-system the new location information. The 
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other message was initiated by the Risk Avoidance sub-system, indicating that it would 

like an updated location estimate based around a location provided by the Risk Avoidance 

sub-system, this could be the location that had just been provided by the Positioning 

sub-system. 

Communications to the radio beacon controller was restricted by the maximum 

communication speed of the beacon system to a baud rate of 9600, and the protocol used 

was 8 data bits, one stop bit and no parity checking. Communications to the beacon 

system, as with the Risk Avoidance sub-system, used interrupts to control the transfer of 

the data, as this allowed the communications to be performed when the communications 

channel was available. The Positioning sub-system initiated the beacon system to monitor 

for a beacon and, if a beacon was detected, the beacon system replied with the beacon’s 

identification number. The beacon identification number was translated into a pre-

determined wheelchair position, using a small look-up table that was loaded into the 

processor memory from a text file at system initiation. The beacon position data file used a 

simple structure to contain the relevant positional information. The file began with the 

number of radio beacons that were used in the wheelchair’s environment, and then a list of 

the radio beacon identification numbers with corresponding x and y environment positions. 

Communication to the range finders also used interrupts, and were set to the range finders’ 

default baud rate of 9600 to ensure that communication could always be established when 

the range finders were switched on. The protocol used was defined by the range finders as 

8 data bits, one stop bit and even parity. Each range was received from the range finders as 

four byte reversed ASCII values. A value of 3, for example, was received as the ASCII 

value 51dec. This allowed software handshaking, because control characters were not 

confused with data values. The range value consisted of four digits, received in the order 
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2nd, 1st, 4th, 3rd. The data received then needed to be divided by the scale factor to 

correspond with the map scale. The separation between the centres of rotation of the two 

range finders needed to be taken into account when amalgamating the range data into one 

contiguous vector of ranges. 

3.4. INSTALLATION OF THE POSITIONING SUB-SYSTEM 

The Positioning sub-system was integrated onto the wheelchair. As has been described in 

Chapter 2, the Positioning sub-system consisted of the two laser range finders and the 

passive radio beacon system. In addition there was a processor unit, with hard disk, video 

card and a four port serial communications board. 

3.4.1. SENSOR INSTALLATION 

The laser range finders were mounted at a height of 192cm on a frame above the 

wheelchair. This allowed a large number of unmapped obstacles to go undetected by the 

range finders, and provided a clearer view of the environment walls, which were included 

in the operational map. This height also permitted the wheelchair to pass clearly through 

doorways. 

The passive radio beacon’s aerial was mounted on the underside of the wheelchair. This 

was intended to provide a maximum range for beacons placed on the floor. However, the 

range was diminished due to the metal construction of the wheelchair and proximity to the 

d.c. drive motors. 

The odometry sensor were installed and the odometry calculations were under the control 

Risk Avoidance sub-system, as this allowed the navigation system to be developed and 

tested independently of the Positioning sub-system. 
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3.4.1.1. INSTALLATION PROBLEMS WITH RADIO BEACONS 

Texas Instruments’ TIRIS passive radio beacon system was mounted underneath the 

wheelchair. The system consisted of an aerial and a control module that communicated to 

the Positioning sub-system using one of the serial ports. The control module was mounted 

in a protective box, beneath the wheelchair at the front, which allowed its operation to be 

easily monitored. The aerial was mounted onto a steel frame, in turn attached to the 

underside of the wheelchair. 

The radio beacons could not be tested in operation on the wheelchair for two reasons. 

Firstly, the power supplied on the wheelchair was unable to provide sufficient power to all 

the equipment on the wheelchair, so that when the radio beacon controller was switched 

on, the Risk Avoidance sub-system and Positioning sub-system processors would fail. 

Secondly, the steel mounting which attached the antenna to the underside of the wheelchair 

adversely affected the range of the beacons system when tested with only the Positioning 

sub-system processor being powered. 

3.4.2. POSITIONING SUB-SYSTEM CONFIGURATION 

The Positioning sub-system processor was situated at the left-hand end of the SENARIO 

control box, and required four back plane slots. Two slots were used for connection: one 

for the processor and one for the video display card. The video display was necessary only 

during the programming and integration phases of the project, as no display was provided 

to the user by the Positioning sub-system during normal operation. The processor, serial 

communication board and the hard disk were powered from a +5 volts and 0 volt supply. 

The video card required an additional +12 volt supply.  

Figure 7 shows the Positioning sub-system’s processor configuration. The processor board 

communicated to the Positioning sub-system’s sensors, and the navigation unit’s Risk 
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Avoidance sub-system using the four port serial card. The PCMCIA hard disk connected 

into the processor’s IDE hard disk controller port. 

 
3.4.3. MEMORY 

Originally, 8 Mbytes of memory were specified for the requirements of the Positioning 

sub-system. This was sufficient to prove the operation of the algorithm developed for 

SENARIO’s localisation requirements (Chapters 5 and 6). In order to improve the speed of 

the algorithm, however, it became necessary to pre-process the environment map (section 

4.3.1.1). Map pre-processing was used to determine which walls were visible from any 

position within the environment. Thus, rather than having to calculate measurements from 

all walls, the Positioning sub-system calculated only the measurements from the list of 

‘visible’ walls for the specified position. The size of the data structure to contain all the 

pre-processed wall information required a considerable amount of room, however, both in 

terms of disk space for the file containing the pre-processed data and RAM to hold the run 

time pre-processed data. Consideration was given to holding the data structure on the hard 

disk and not loading it into RAM; this would have greatly increased the time required to 

retrieve the pre-processed data, however, and so was rejected. The maximum amount of 

memory that could be installed onto the processor system was purchased. However during 
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Figure 7 - Positioning sub-system configuration. 
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the integration phase it became apparent that even when using the maximum amount of 

memory possible on the system (64 Mbytes) the pre-processed map data structure would 

not fit into the memory available. Thus it was necessary to scale the environment map. A 

scaling factor was used by the map pre-processor and the localisation programme to 

signify how many centimetres a unit of range represented. 

3.4.4. HARD DISK 

A removable PCMCIA hard disk was used, as a single floppy soon became insufficient 

when using large pre-processed map files. Furthermore the removable hard disk could be 

used on any standard portable computer, allowing the map pre-processing to be carried out 

off-line and later transferred to the wheelchair. The unit had the advantages of the size of a 

hard disk and the convenience of a floppy drive when transferring data to the wheelchair. 

Connecting the drive to the processor’s IDE hard disk port allowed the system to self-boot 

from the hard disk directly. 
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3.4.5. HARDWARE INSTALLATION 

Figure 8 shows the wheelchair 

with the self-localisation, 

sensing and the processor 

systems installed. The frame 

around the chair can easily be 

seen, with the laser range 

finders mounted on top and all 

but two of the ultrasonic 

transducers mounted around 

the chair, within the contact 

sensor. 

The range finders were 

mounted onto a hollow tubular, 

straight-sided steel frame over 

the wheelchair. Each range 

finder was secured at the 

bottom, using the 

manufacturer’s mounting 

holes, by three bolts onto a mounting plate welded to the top of the arch. The range finders 

were then attached to each other, again using the manufacturer’s mounting holes, on both 

sides using steel plates and four securing bolts. Each range finder used a dedicated serial 

port on the Positioning sub-system processor and shared a +24 volt power supply. 

 

Range finders 

Sonarschultz 

Bumper 

Obstacle 
detection 
ultrasonics 

 

Figure 8 - Wheelchair with the Positioning sub-system 
installed. 
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3.5. SUMMARY OF CONTROL SYSTEMS INSTALLED 

The Sensing, Control Panel, Power Control, Risk Avoidance and Positioning sub-systems 

were successfully integrated to the wheelchair. The Positioning sub-system consisting of 

two range finders and a passive radio beacon system were interfaced to the Positioning 

sub-system’s processor system, which communicated location information to the Risk 

Avoidance sub-system. 
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4. ARTIFICIAL NEURAL NETWORK 

SELF-LOCALISATION 

4.1. INTRODUCTION 

This chapter assesses the suitability of three existing artificial neural networks for solving 

the self-localisation problem on the SENARIO wheelchair described in Chapter 3. Tests 

were performed to demonstrate the accuracy and repeatability of the different networks. 

The testing environment maps and the method used to represent them to the networks are 

detailed, along with an environment simulator that was used to test the networks. Artificial 

neural networks were chosen because a model could be developed to translate the range 

vector received from the range finders into a location only in a trivial environment, without 

noise. The networks evaluated were: a radial basis function (RBF) (Moody & Darken, 

1989), an associative weightless N-tuple network (Beale & Jackson, 1990) and a stochastic 

diffusion network (SDN) (Bishop & Torr, 1992). These particular networks were chosen as 

they had been used either in solving positioning problems or for searching for patterns 

within large search spaces. The N-tuple and SDN were tested using the environment maps 

that were used to test the SENARIO wheelchair with users. The initial SENARIO test 

environment was an industrial workshop measuring 1920 × 1813cm with 720 0.5° angles 

translates to (1920 × 1813 × 720) 2,506,291,200 possible environment locations. The 

required accuracy for the SENARIO wheelchair was  

The first network considered was a set of radial basis functions. Such systems have been 

implemented for positioning by Townsend et al (1994), who pre-processed range finder 
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data into seven inputs. The implementation tested here used no data pre-processing, 

providing the network with a 720 dimensional input space, rather than a 7 dimensional 

input space as used by Townsend et al (1994). The 720 dimensional input space provided a 

large amount of redundancy, and prevented the problem that Townsend found where one 

single range value error corrupted three of the seven RBF input values (Townsend & 

Tarrassenko, 1999). To provide an output of three dimensions (x,y,θ), three separate basis 

function networks were required on for each dimension, each being presented with 

identical input data.  

The second network, an N-tuple associative weightless network, was taught a subset of 

rotationally invariant environment positions. This network was considered for its speed of 

operation and simple implementation. It required a considerable amount of memory, 

however, and could identify only the positions that it had been taught, and could not 

interpolate between them. Finally, a stochastic diffusion network was implemented, as this 

had been shown to be capable of finding a small data set within a large data set (Bishop & 

Torr, 1992). 

The search space was reduced in the N-tuple (section 4.4.2.2), and the stochastic diffusion 

network (section 4.4.3), (and the focused stochastic diffusion network introduced in 

Chapter 5), by removing the angular information from the range data provided by the range 

finders, thus dividing the search space by the angular resolution of the range finders, in our 

case, 720. Townsend et al (1994) suggested that if their RBF network was to be capable of 

determining a position in real time it was important that the input to the network be 

rotationally invariant. The operation, implementation and test of the SDN is discussed in 

detail in section 4.4.3. 
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4.1.1. NETWORKS NOT IMPLEMENTED 

A Kohonen self-organising feature map and a Multilayer Perceptron (MLP) network were 

considered, but not implemented, for the reasons detailed below.  

A Kohonen self-organising feature map is a classifier network (Beale & Jackson, 1990). It 

operates by constructing a mapping between a continuous input space and a discrete 

n-dimensional rectangular output space (Haykin, 1994; Sarle, 1997). The locations of the 

neurons within the output space are learnt by modifying the locations of a set of the closest 

current neurons towards the input vector. Implementing this network for the 

self-localisation problem is impractical for the following reasons. First, the network would 

need to be taught every single location within the operational environment, and these 

would need to be presented repeatedly to enable the network to determine output clusters. 

Second, each of the clusters that the network learnt would have to be manually identified 

as a particular environment location (Beale & Jackson, 1990). Bearing in mind that there 

are 2.5 billion locations in the Zenon environment (see section 4.1.1), training and 

labelling times would seriously limit any practical self-localisation application. Finally, the 

Kohonen network uses the full range vector as its input, and therefore any noise within 

critical parts of the input vector could cause the wrong cluster to be activated. When 

applied to the self-localisation problem, the network would be particularly intolerant of 

noise in the input space because each individual location would be very similar to that of 

its neighbour, making it hard for the network to differentiate between noise and an adjacent 

location. 

The Multilayer Perceptron network can be trained using back propagation, by presenting 

inputs and the required output to the network, and adjusting the weights of the network to 

reduce the error between the current output and the desired output (Beale & Jackson, 1990; 
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Haykin, 1994). This network was also considered impractical for the self-localisation 

problem. Firstly, the network would be very large, requiring an output for each location 

within the operational environment. Secondly, the network would take a restrictively large 

amount of time to train, again requiring multiple presentations of each environment 

location. 

Both the Kohonen self-organising map and the Multilayer Perceptron networks classify 

every possible point within the output space (environment), and so need to be taught a 

perturbed version of the input vector for every output point several times for these 

networks to learn to classify the output points (Haykin, 1994). The perturbations made to 

the input vectors need to include some that are large and applied to a sequence of adjacent 

input elements, so that the networks can learn to accept inputs representing an obstacle that 

may be near to the wheelchair, as well as noise introduced by the range finder. 

The time to train both the Kohonen self-organising map and the MLP networks would be 

considerable. For example: given that the number of locations that the networks need to 

learn to classify is 2,506,291,200 for the Zenon environment, and supposing that 25 

training patterns were required for each classification, and that it took half a second for 

each iteration, (run the simulator, perturb the input, and adjust the network weight), then 

this would take 996 years to teach the network one environment. 

4.2. TEST ENVIRONMENTS 

A building environment may be considered at two levels: either as a whole environment or 

as a collection of individual rooms and corridors. The environments were considered as a 

whole, because the range finders could detect mapped features in other rooms or corridors 
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when doors were open. This offered the advantage that only one map was necessary rather 

than a collection of maps that needed to be co-ordinated to cover the whole environment. 

The environment was represented to the networks as a data file that contained the 

environment dimensions and the number of walls. The data file then continued to detail the 

co-ordinates of the end points of each straight wall segment in the environment. Figure 9 

shows a trivial environment and the associated data file structure required.  

Figure 10, Figure 11 and Figure 12 show the three test environments that were used for the 

desktop trials performed in this chapter. 

 Data File  
300 
250 
0 
0 
5 
00 000 000 000 250 
01 000 250 300 250 
02 300 250 300 000 
03 300 000 200 000 
04 100 000 000 000 

Data File structure. 
Maximum X 
value Maximum Y 
value Minimum X 
value Minimum Y 
value Number of walls 
wall 0 (X1,Y1)(X2,Y2) 
wall 1 (X1,Y1)(X2,Y2) 
wall 2 (X1,Y1)(X2,Y2) 
wall 3 (X1,Y1)(X2,Y2) 
wall 4 (X1,Y1)(X2,Y2) 

 

Figure 9 - Environment map and associated data file. 



ARTIFICIAL NEURAL NETWORK SELF-LOCALISATION 

55 

Figure 10 shows a fictitious 55-Walled environment that contains many similar rooms and 

also two long corridors. These environment features were chosen to test how the networks 

would cope with multiple locations with similar or identical features. The origin for the 

environment is in the bottom left hand corner and increases in the x dimension to the right 

and in the y dimension upwards. The environment ranged from 0 to 280units in the x 

dimension and from 0 to 180units in the y dimension. 
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Figure 10 – The 55-Walled test environment map, with the environment walls shown in 
blue. 
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Figure 11 shows the ‘Zenon’ environment. This real environment was used to initially test 

the SENARIO wheelchair, and it was therefore used in the desktop trials to allow 

comparisons between the different networks. The environment contained 48 walls, but was 

much larger than the 55-Walled environment. The short lines and crosses within the map 

represent girders that supported the roof. The environment’s origin is in the top left hand 

corner, with the y-dimension decreasing in a downward direction, to allow compatibility 

with the navigation system on the SENARIO wheelchair. The environment range was from 

0 to 19.20m in the x dimension, and 0.37 to -17.76m in the y dimension. 
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Figure 11 – The Zenon test environment map, with the environment walls shown in blue. 
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Figure 12 shows the Rehabilitation Centre environment map, which contained 107 walls 

and was larger than the Zenon environment. This real environment consisted of one long 

corridor, three major rooms and a stairwell, but the wheelchair could not access three areas 

in the environment. The environment range was from -0.16m to 20.98m in the x dimension 

and 0 to -21.46m in the  y dimension. 

 

It was not possible for the maps used by the simulator to contain all static environment 

features. For example, the Zenon trial site contained an open slatted staircase, which was 

(inconsistently) transparent or opaque to the range finders, depending on the wheelchair’s 

location. The map contained only static obstacles, and in the case of the Zenon trial site, 

-2400

-1900

-1400

-900

-400

100

-100 400 900 1400 1900 2400

centimetres

ce
n

ti
m

e
tr

e
s

 

Figure 12 – The Rehabilitation Centre environment map, with the environment walls 
shown in blue. 
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did not contain half a car, a Puma 700 robot, or a forklift truck, nor the many visitors who 

stood around the wheelchair. 

4.3. EVALUATION SIMULATOR 

A range finder simulator was developed as part of the network system used to determine 

the location of the wheelchair. The simulator produced range values using simple wall 

segment environment maps as shown in Figure 10 to Figure 12. The simulated range 

vectors were then used to represent the range vector that would be produced by the 

wheelchair’s range finders, or it was used by some of the tested networks (section 4.4.3 

and Chapter 5) to produce simulated range vectors of possible resultant locations.  

 

 

Figure 13 – Position simulation display for an ideal square room environment. 
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The position simulation display (Figure 13) shows the range values produced by the 

simulator within a small square environment. This graph was produced from an ideal 

environment where there were no unmapped obstacles. The local maxima are the corners 

of the room and the local minima are the perpendicular distances to the four walls. The 

orientation is shown on the horizontal axis from 0° to 359.5° and the range on the vertical 

axis from 3 to just over 9 units.  

4.3.1. SIMULATOR OPERATION 

The simulator operated as follows (Table 2). A master range vector was initialised to the 

maximum possible range in the current environment. Each wall’s ranges were calculated 

and if the corresponding range values were less than those in the master range vector, then 

the master vector was overwritten with the shorter range. Thus, the master range vector 

finally contained the shortest ranges from a given (x,y) position. The orientation was fixed 

at 0° during the range calculations, but simple shifting of the range vector provided any 

desired orientation. 

Angle  Wall 1 
Range 
Vector 

Wall 2 
Range 
Vector 

Wall 3 
Range 
Vector 

Wall 4 
Range 
Vector 

Master Range 
Vector 

Master Range Vector 

Rotated by 120° 

0 5000 100 5000 300 100 70 

30 5000 90 5000 200 90 60 

60 5000 80 5000 190 80 50 

90 5000 70 5000 185 70 55 

120 20 60 5000 250 20 100 

150 40 5000 5000 300 40 90 

180 60 5000 5000 5000 60 80 

210 65 5000 80 5000 65 70 

240 5000 5000 70 5000 70 20 

270 5000 5000 60 5000 60 40 

300 5000 5000 50 5000 50 60 

330 5000 110 55 5000 55 65 

Table 2 - The simulator range vector is the shortest range calculated for each wall for 
each angle, and orientation is set by rotating the range vector. 
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The procedure to determine the ranges from the range finders’ simulated position to the 

walls given in the environment map is described below. 

1. Set the master range vector to the maximum range for the environment. 
2. For each wall: 

i. Determine the equation of the wall ( y = a + bx ). 
ii. Set the wall’s range vector to a maximum. 
iii. Determine the perpendicular distance between the wall and the simulated 

range finder position. 
iv. Determine the distance from the simulated range finder position to the start 

co-ordinates of the wall. 
v. Determine the distance from the simulated range finder position to the stop 

co-ordinates of the wall. 
vi. Determine the angle of the wall’s start position with respect to 0° at the 

simulated range finder position. 
vii. Determine the angle of the wall’s stop position with respect to 0° at the 

simulated range finder position. 
viii. Determine in which angle quadrant (0-90,90-180,180-270,270-360) the 

wall’s start position is and determine if the wall’s stop position is clockwise or 
counter-clockwise around the range finder position. This sets whether the 
ranges are calculated by incrementing or decrementing through the range 
vector array. 

ix. Determine the array element that corresponds to the angle of the wall’s start 
position angle. 

x. Determine the array element that corresponds to the angle of the wall’s stop 
position angle. 

xi. Test whether the start and stop angles of the wall are equal; if so, set the 
range to the wall at this angle equal to the lesser of the two ranges. 

xii. For each array element between the start array element and the stop array 
element, calculate the range to this wall. 

3. Over-write the final range vector with the values from each wall’s range vector if 
the value is less than the current value in the final range vector. 

 

The above method ensures that the ranges from the walls that can be ‘seen’ by the 

simulated position over-write the ranges from walls that cannot be ‘seen’ at each of the 720 

angles. 

4.3.1.1. PRE-PROCESSING FOR THE SIMULATOR 

The calculation time required to determine a range finder simulation was proportional to 

the number of walls in the environment, when using the above method. To improve the 

run-time calculation time, the map was pre-processed using a quad-tree (Kambhampati & 
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Davies, 1986) to determine which environment walls were visible from each position 

within the environment, allowing only the walls that were required to calculate the range 

vector to be used by the simulator for a particular location, rather than testing all walls for 

all locations. The environment was initially divided into four, and each position in it was 

sequentially tested: if the walls that could be seen from all positions within that quarter 

were not identical, then the area was repeatedly divided by four until all positions within 

the current quarter contained the same walls (Figure 14). As each angle was tested to 

determine which wall was visible at that angle, the maximum number of walls needed to 

calculate the final range vector was the angular resolution of the range finder. The pre-

processor thus determined which walls needed to be tested by the simulator to produce a 

range vector, preventing it from testing walls that were not visible from the position being 

simulated. 

Pre-processing of the map 

produced a large data file, which 

to improve speed was loaded 

into memory when the 

localisation network program 

was initialised. However, the 

data file was too large for the 

processor system memory 

installed on the wheelchair when 

using a 1cm resolution map, so a 

scaling factor was introduced to 

reduce the resolution of the map 

   

 

Figure 14 - Environment division using a quad-tree to 
determine which walls can be detected from every 
position. The environment walls are shown as blue 
lines and the quad-tree division lines as black. 
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and allow the pre-processed data to be loaded, further details are given in section 6.2.2. 

4.4. TRIAL NETWORKS 

Three networks were tested using simulated range data to determine if they could be 

implemented successfully on the SENARIO wheelchair: the RBF, associative N-tuple 

network and stochastic diffusion network. These were chosen to represent a radial basis 

function, an associative memory network and a search network. Their operation, 

construction and testing in simulated environments and the results of these trials are 

described below. 

4.4.1. RBF 

The RBF network was chosen because Townsend et al (1994) had previously shown that it 

could return the position of a mobile robot within an indoor environment. They taught their 

RBF network to classify a set of features obtained from range vector data. In our case 

(discussed further in section 4.4.1.2) we wanted to retain the in-built redundancy within the 

range vector, and therefore used the range vector directly and taught the network to create 

clusters for the x output space dimension, which then provided a single x dimension output 

value. 

4.4.1.1. RBF OPERATION 

The learning process for an RBF requires only a single iteration to determine the weight 

coefficients required to generalise the network output for a particular topology of basis 

functions. However, considerable time is required for the system to test and compare 

different configurations and to determine the optimum topology (Haykin, 1994). 

The network structure consists of an input sensing layer, a second layer of hidden units of a 

suitably large number, and an output layer providing the desired result to the input layer. 
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The transformation between the input and hidden layer is non-linear, while the 

transformation between the hidden layer and the output layer is linear. Over’s theorem 

states that a non-linear mapping can be used to transform a non-linearly separable 

classification problem into a linearly separable one (Haykin, 1994). Two phases of 

operation are then required. The training phase in which, given a set of input to output 

patterns, a fitting procedure is implemented that produces a surface in the hidden layer’s 

high dimensional space. The second phase is the generalisation phase, in which 

interpolation is performed between the data points and the surface produced in the first 

phase (Haykin, 1994). 

An RBF network attempts to determine the function that simultaneously transforms a set of 

N input vectors to their corresponding outputs. Given that Xi are the input vectors and di 

are their corresponding outputs, then the interpolation condition is the function F that 

satisfies the condition: 

F(Xi) = di  , where  i = 1,2,3,...,N. 

The RBF technique specifies that the function should take the following form: 

( )�
=

−=
N

i

iiw
1

)F( xxx ϕ
 

 

The individual radial basis functions,  

( ){ }Nii ,...,2,1=− xxϕ ,  

are a set of N arbitrary non-linear functions where the norm is generally the Euclidean and 

the known input vectors are the centre of the functions. The weight vector wi is the linear 

factor of the interpolation, and the xi are the centres of the radial basis functions (Haykin, 

1994). 
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The centres may be placed throughout the multi-dimensional hidden layer space using a 

number of methods. They may be placed randomly, uniformly or using the k-means 

method, which places the centres at the most significant points in the search space. The k-

means algorithm minimises the sum of squared errors of each of the randomly or uniformly 

placed k clusters. 

The RBF network is divided into two stages, learning and operating: 

In the learning stage the network learns the required output by selecting the position of the 

radial basis function centres and by determining the weights required to sum the radial 

basis function results to produce the network outputs. The centres are positioned using the 

k-means algorithm, which takes some time, as the number of centres used is user selected. 

Hence the learning process tests an increasing number of centres and tests the network 

using a set of sample inputs and outputs to determine which number of centres gives the 

minimum output error. The weights used in the summation of the radial basis functions to 

produce the output are determined by having several input and output values and using 

simultaneous equations to solve the output equation, 

( )ii xFwA =   

In the operating stage the network is initially loaded with the input data. The centre co-

ordinates from the learning process are then used to configure the network. The linear 

output weights are then loaded, and final output values calculated. The first step calculates 

the output of the hidden layer, which always contains a radial basis that operates on the 

norm between the centre and the input. Hence the norm value is always calculated and 

passed to the b-splines radial basis function. The outputs from the hidden layer nodes are  

( ) �
=

=
N

i
ii ddxF

0

2 ln  
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where N is the number of centres and d is the Euclidean distance between the origin and 

the point specified by the input vector. The M hidden layer outputs are then multiplied by a 

weight factor and summed to produce the final output. 

( )�
=

=
M

j
jj xFwA

0

 
 

4.4.1.2. RBF APPLIED CONSTRUCTION 

A single RBF was constructed using the 720 range values received from the simulation of 

the range finders as the input vector, with the output being the x axis co-ordinate. It would 

have been necessary to construct an additional two structures for the y and θ co-ordinates 

to use RBFs to fully locate the wheelchair. 

To produce the least error, using sample data from every 5cm across the environment, 240 

centres were required. Five centimetres was chosen as a compromise resolution (reducing 

the time and data that would be needed for one centimetre resolution).  

4.4.1.3. RBF TESTING 

The RBF network was tested using a simple 4-walled, square, 100cm by 100cm 

environment, and the positional results in the x dimension were tested for an accuracy 

greater than ± 1cm. Only a small environment and one dimension were used, as the 

memory and time required to determine the number of centres was prohibitive. The 

maximum number of centres which gave the best performance when determining the 

number of centres using the least squares algorithm was 245. 

4.4.1.4. RBF RESULTS 

Figure 15 shows that as the number of centres within the RBF that were used to locate the 

x dimension increased, the mean positional error and the standard deviation decreased. 
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4.4.2. ASSOCIATIVE N-TUPLE NETWORK 

The N-tuple artificial neural network is very simple in its operation and hence is 

comparatively fast compared with the large RBF network. The N-tuple network is 

designed to be very fast to teach and to operate, requiring only a single pass to test each 

taught position, but is capable only of giving a probability that the input is one that has 

been taught, and is not easily able to interpolate between taught positions (Beale & 

Jackson, 1990). One N-tuple class/position discriminator can be trained to recognise one 

position in an environment. Thus to determine the position of a wheelchair a set of such 

discriminators must be mapped over the operational environment. 

4.4.2.1. N-TUPLE OPERATION 

The range vector input was connected to the address lines of a number of simulated 

Random Access Memories (RAMs). The number of address inputs to each RAM 

determined the sensitivity of the network to noise. The more RAMs that were used, the 

fewer address lines were required on each RAM to cover the input area. The fewer RAMs 

that were used, the more sensitive the network was to noise. RAMs operate using binary 

inputs; hence the range values were not immediately compatible and needed to be 
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Figure 15 - Variation in error with the number of centres used in the RBF. 
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converted to binary values by passing them through Minchinton cells (Bishop et al, 1991). 

Minchinton cells are two value comparators that produce a binary TRUE value if input a is 

greater than input b; and in all other cases a FALSE value is produced. 

The range values were selected for comparison by the Minchinton cell from a repeatable 

random sequence before being presented as binary inputs to the RAMs. The sequence of 

random range values was retained, as the same sequence was required when running the 

network. To ensure that all elements were selected, an array containing all the index values 

was used and elements randomly swapped in pairs to produce a random ordered array of 

all the index values. The array was then used sequentially. 

Each RAM was presented with an input onto its address lines generated from the output of 

the Minchinton cells. During the learning phase the selected address was activated and a 

TRUE value stored there. As long as the network was not saturated during learning it is 

unlikely that all possible addresses will be presented to each RAM. Another set of RAMs 

was then taught a new input pattern. This continued until the whole input was suitably 

covered with discrete taught positions (Figure 16). 
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The larger the tuple size the more testing points were connected to each RAM and hence 

the fewer RAMs were necessary to entirely cover the area to be tested. Thus the larger the 

tuple size the more accurate the input must be for a match to be found, so the less noise the 

network can accommodate, but the fewer false positive results will be found.  

4.4.2.2. N-TUPLE APPLIED CONSTRUCTION 

An N-tuple network was constructed with a tuple size of four, as this allowed for a 

reasonable amount of tolerance to noise while not requiring too much memory (memory 

use increases as the tuple size increases).  

The software implementation of the network was built around a three-dimensional array, in 

which the first two dimensions were the number of discrete x and y positions required to 

 RAM 

RAM 

RAM 

RAM 

Minch 
Cell 

Minch 
Cell 

 

Figure 16 - Random connection of Minchinton cells to the input data, which are then 
connected to a RAM. Only one RAM’s connections are shown for clarity. 
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cover the environment map. The third dimension was the number of RAMs used for each 

position discrimination. The value held at each location in the array was the address value 

presented to the RAM. 

In operation the network presented the RAMs with address inputs that had been passed 

through Minchinton cells. The data contents of the selected address of each RAM were 

tested. The number of RAMs that contained an active address was an indication of the 

probability that the input pattern matched the taught patterns for these RAMs. The RAMs 

for all the different taught positions were tested and the position that had the most active 

RAMs was the position with the greatest probability of being correct. 

4.4.2.2.1. ROTATIONAL INVARIANCE 

In the self-localisation application the output of the network was the discrete taught 

positions, rather than any interpolation between taught positions being provided. The 

network treated a rotation of a position as a new position and hence would need to be 

taught each desired angle, which would make the number of taught positions very large. To 

reduce the locations that were required to be taught to the network the system was made 

rotationally invariant to the wheelchair location. However, this also meant that it could not 

estimate the orientation. 

The technique that was tried on the N-tuple network used the largest range as reference. 

This ‘largest range’ technique required that a simulated range vector be produced for the 

position determined by the network. The input and the simulated vectors were then rotated 

until the largest range elements in each vector were first. The largest element was used 

because the shortest range detected by the wheelchair would probably be an obstacle. The 

search then provided the (x,y) position and the angle was the simulated vector shift minus 
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the input vector shift. This worked well with noise free data but if the longest vector was 

obscured then the (x,y) position would not be found, and the search would fail. 

The second approach that was investigated was termed the ‘range histogram’ technique. 

This method created a frequency histogram of the ranges obtained from the range finders, 

by taking a count of a number of adjacent range values. The number of range columns 

within the range histogram was fixed at 200. Thus the width of each column, or the spread 

of range values counted by each column, was determined by dividing the maximum range 

that could be obtained within an environment by the number of columns (200). This gave 

column widths of 5cm for 55-Walled, 30cm for Zenon and 35cm for the Rehabilitation 

Centre environments. An example range histogram is shown in Figure 22. 

The longest range technique was used for the N-tuple network as calculation was very fast 

and accurate when using simulated range vectors for range finder input. 

4.4.2.3. N-TUPLE TESTING 

The N-tuple network was tested using three maps: the fictitious 55-Walled test map and the 

two SENARIO test environment maps of Zenon and the Rehabilitation Centre. The test 

positions used were generated using the simulator (section 4.3). Thus, the input data was 

ideal, and all environment features were effectively included in the model and the 

environment was noise free. 

The tests on the three environments consisted of 84 trials each. Each trial tested 30 

different locations, with six of these locations being tested ten times. The trials were 

undertaken to demonstrate how well each network performed in terms of the accuracy of 

the resultant location, to ± 1cm and 1°, and the repeatability of the location determined. 
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The 55-Walled map used a maximum range of 340cm, a histogram width of 5cm and a 

tuple size of 4. The number of learnt positions was on a grid, where the map was divided 

by 100 on both the x and y axes, with the x axis ranged from 0 to 280cm and the y axis 

ranged from 0 to 180cm. 

The Zenon environment, being larger, required a maximum range of 2640cm, with a 

histogram width of 30cm. The x axis range was from 0 to 1920cm, the y axis range was 

from 37 to –1776cm, and the tuple size was 4. The learnt positions were the grid of points 

found by dividing the x and x axes by 200. 

The Rehabilitation Centre environment, being even larger, required a maximum range of 

3000cm and a histogram width of 35cm. The x axis range was from –16cm to 2098cm and 

the y axis range was from 0 to –2146cm, with a tuple size of 4. As with the Zenon map the 

learnt positions were determined by dividing the environment by 200 in the x and y axes. 

The histogram column width and the maximum number of divisions in the x and y 

dimensions affected the amount of memory required, and these values were set to the 

highest resolution that would fit within the 80 Mbytes of memory available on the desktop 

computer. 

4.4.2.4. N-TUPLE RESULTS 

Figure 17, Figure 18 and Figure 19 show the individual positional results of the N-tuple 

network in the three test environments. The standard deviation (SD) results that are given 

below are for the repeated test locations that were used to determine if the network was 

repeatable. 
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Figure 17 shows the N-tuple results using the 55-Walled map. The mean (x,y) Euclidean 

error was 75.9 ± SD 69.5cm, while the mean (x,y,θ) Euclidean error was 271.0 ± SD 

174.6cm° (Figure 20 and Figure 21). In this environment the results for the (x,y) and 

(x,y,θ) trials, used to test the repeatability of the network, had a standard deviation of 0, 

that is they were perfectly repeatable. 
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Figure 17 – N-tuple location results using the 55-Walled environment map. The (�) 
represent the positions being tested and the (▲) show the position calculated using the 
N-tuple network. The (─) show the (x,y) Euclidean error between the test and derived 
positions. The named locations refer to the repeated test positions. 
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Figure 18 shows the N-tuple results using the ‘Zenon’ map. The mean (x,y) Euclidean 

error was 92.1 ± SD 296.2cm, while the mean (x,y,θ) Euclidean error was 345.4 ± SD 

320.7cm° (Figure 20 and Figure 21). Again the results for the (x,y) and the (x,y,θ) trials, 

used to test the repeatability of the network, had a standard deviation of 0. 
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Figure 18 - N-tuple location results using the Zenon environment map. The (�) represent 
the positions being tested and the (▲) show the position calculated using the N-tuple 
network. The (─) show the (x,y) Euclidean error between the test and derived positions. 
The named locations refer to the repeated test positions. 
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Figure 19 shows the N-tuple results when using the Rehabilitation Centre environment 

map. The mean (x,y) Euclidean error was 268.9 ± SD 393.2cm, while the mean (x,y,θ) 

Euclidean error was 455.3 ± SD 343.7cm° (Figure 20 and Figure 21). Again the results for 

the (x,y) and the (x,y,θ) trials, used to test the repeatability of the network, had a standard 

deviation of 0. 

In all environments the mean (x,y) Euclidean error was always less than or equal to the 

mean (x,y,θ) Euclidean error, as the orientation error was always greater than or equal to 
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Figure 19 - N-tuple results using the Rehabilitation Centre environment map. The (�) 
represent the positions being tested and the (▲) show the position calculated using the 
N-tuple network. The (─) show the (x,y) Euclidean error between the test and calculated 
positions. The named locations refer to the repeated test positions. 
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zero. The Euclidean errors were largest in the Rehabilitation Centre environment, because 

the best fit solutions were a large distance, compared to the other environments, from the 

desired position, even if the location was very similar (Figure 20). The mean (x,y) 

Euclidean errors for all test locations were mostly small, with one and three particular 

exceptions in the Zenon and Rehabilitation centre environments respectively. The network 

was perfectly repeatable with zero standard deviations for all repeated test location trials 

using the N-tuple network (Figure 21). 
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Figure 20 – The N-tuple mean [(x,y) top and (x,y,θ) bottom] Euclidean errors for all 
trials. 
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4.4.3. STOCHASTIC DIFFUSION NETWORK 

The Stochastic Diffusion Network (SDN) can be used to locate a predefined data pattern 

within a given search space (Bishop & Torr, 1992). It is a global best-fit search technique 

and as such will not converge to a local minima (Bishop, 1989; Nasuto & Bishop, 1999). 
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Figure 21 – The N-tuple mean [(x,y) top and (x,y,θ) bottom] Euclidean errors with 
standard deviations for the repeated test locations. 
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4.4.3.1. SDN OPERATION 

When the term position is used within this section it refers to a data element within the 

search space and not the (x,y) position of a wheelchair within an environment. 

The SDN operates in parallel using a pre-defined number of elements called agents, each 

characterised by its activity (firing or not-firing), and a pointer to a position in the search 

space (Bishop & Torr, 1992). The network can be considered as a competitive co-operative 

process in which all agents independently seek solutions. Once an agent finds a solution, it 

competes for a greater allocation of network resources. A solution with a better fit to the 

data model has a higher chance of attracting more agents than other solutions. In this way 

competition transforms smoothly into co-operation, as more and more agents are attracted 

to explore a potential fit to the data model. This competition for co-operation ensures that 

all potential positions of the object within the search space will be examined independently 

with the most promising one, over a number of iterations, attracting most of the 

computational resources. Thus the correct position of the best fit to the data model will 

emerge from independent, parallel exploitation of different potential positions in the search 

space, by gradually disregarding less accurate matches. From this principle it follows that 

agents will cluster over interesting positions in the search space as soon as the first agents 

pointing to these positions spread information to others (Nasuto & Bishop, 1999). 

The network operation involves several stages and can be summarised in the form of the 

following algorithm (Beattie & Bishop, 1997; Beattie & Bishop, 1998): 

INITIALISATION PHASE 
WHILE NOT TERMINATION 

TESTING PHASE 
DIFFUSION PHASE 
TEST TERMINATION CONDITIONS 

END WHILE 
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Assigning random positions or mappings to the agents in the search space performs the 

initialisation phase. 

During the testing phase, positions pointed to by agents are evaluated by comparison of a 

randomly chosen subset of system inputs produced by a simulator. If the comparison is 

successful the agent becomes ‘active’; otherwise it remains ‘inactive’. 

During the diffusion phase, positions of active agents can cross to inactive agents. Each 

‘inactive’ agent randomly selects another agent in the network and copies its search space 

mapping if active, or simply re-selects a location at random if not. Hence, the mapping 

contained by active agents defines possible solutions. This may or may not, however, be 

the globally correct solution. The probability that an agent's solution is correct, rather than 

a false positive, increases with each iteration that the agent remains active. The longer that 

an agent remains active the higher the probability that inactive agents will select it and 

acquire its mapping. It has been shown that without noise the solution will rapidly diffuse 

to all agents (Nasuto & Bishop, 1999). 

The process iterates until termination conditions are fulfilled. Bishop & Torr (1992) 

proposed the following equilibrium-based termination condition: if the number of agents 

pointing to the same position within the search space exceeds a given threshold and 

remains constant within specified bounds over a number of iterations, then the network 

may be said to have reached equilibrium and the solution is the mapping selected by these 

agents. 

Where all agents are randomly selecting a position within the search space and mappings 

are not being diffused from successful agents, the probability of SDN selecting the correct 

solution in the first iteration of the network can be determined by: 
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( )pnqP n 11 −−=   

Where  

P = the probability of selecting the correct location,  

n = the number of agents,  

p = 1 / number of locations,  

q = 1 - p. 

4.4.3.2. SDN APPLIED CONSTRUCTION 

A SDN was constructed in which agent mappings were initially uniformly randomly 

selected from the (x,y,θ) environment search space. The simulator produced a range vector 

for the system location that the agent had defined, and by comparing a number of these 

simulated ranges with the current input ranges from the range finders, the agent mappings 

were tested. It was not necessary to test all the elements of the range vector due to the 

redundancy of the input data (Townsend et al, 1994). An agent was defined as ‘active’ if 

all the differences between the input and agent ranges were within a predetermined fixed 

tolerance (20cm). 

To increase the speed of the network, the task of determining the location was split in two: 

first, to determine the position using rotationally invariant inputs; and second, to determine 

the orientation. Once the position had been determined, all agents were set to test the same 

position at randomly chosen orientations. Thus, the simulator needed to be run only once to 

produce the range values and the agents rotated the vector to obtain the orientation they 

had each selected. The range histogram approach for rotational invariance (section 

4.4.2.2.1) was used. 
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To test each agent’s position solution, a comparison was made between the histogram 

produced from the agent’s range vector simulator and the histogram produced from the 

input range vector. An example of an input range vector histogram is shown in Figure 22. 

Not all columns within the histograms were tested; the more columns that were tested the 

harder the overall test became, and the more likely the test was to correctly fail incorrect 

positions. The columns that were tested at each iteration were chosen randomly each time 

for all agents. If the frequency within the same columns of the two graphs was within a 

tolerance value for all columns that were being compared, then the test was successful, and 

the agent was set to active. The maximum range detectable by the range finder, and the 

tolerance required, determined the number of columns used in the histograms. As with the 

N-tuple version, each column represented the frequency of a group of range values from 

the range vector. For each column there was a lower and upper range value, Figure 22 

shows a range vector histogram from the Zenon environment where the column width was 
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Figure 22 - An example range histogram from an input range vector. 
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30cm. If a low resolution was required then each column contained a wide range of range 

values. To obtain a higher resolution a narrower range of values was covered by each 

column. When a lower resolution was used, any changes in range were smoothed out, so 

the more likely the test was to pass incorrect locations.  

Orientation testing compared six individual range values from the input and agent range 

vectors, and the agent was set to active if they were within 20cms of each other. The angles 

that were tested were randomly chosen each time for each agent. 

4.4.3.3. SDN TESTING 

A 1000-agent SDN was used to test the three environments: 55-Walled, Zenon and the 

Rehabilitation Centre. Three parameters caused the network to terminate its searching: the 

number of iterations, the minimum number of active agents, and the change in the number 

of active agents. The number of iterations before termination was set to 10,000, at which 

point the network was assumed not to have been able to determine a solution. For 

comparison, the mean number of iterations for the 55-Walled, Zenon and Rehabilitation 

Centre was 44, 329 and 185 respectively, suggesting that this termination condition was 

suitable. The minimum number of active agents was greater than 100 to prevent the 

network terminating due to the number of active agents not changing while the network 

was attempting to find initial correct solutions. To ensure that the network had settled to a 

reasonably stable state at termination, the number of active agents must not have changed 

by more than 20 in the last four iterations. 

The test positions discussed were all simulated. Thus, the input data were ideal, and all 

environment features were effectively included in the model and the environment was 

noise free. 
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The tests on the three environments were the same as the N-tuple network tests: 84 trials 

performed using 30 different locations, with six of these locations tested ten times. Again 

the trials aimed to demonstrate the network’s performance in terms of accuracy, to ± 1cm 

and 1°, and the repeatability.  

During the testing phase of the SDN a tolerance was permitted between the ranges 

calculated by the agent’s location being tested and the input range vector from the range 

finders’ simulated range. A trial was performed to determine the effect of varying this 

tolerance value. Fifty trials were performed at the same location within the 55-Walled 

simulated environment for four different tolerance values, (18,15,13 and 11cm) using 1000 

agents. The trials recorded the Euclidean positional and locational errors, the number of 

iterations taken until convergence upon a solution, and the number of active agents at 

convergence.  

4.4.3.4. SDN RESULTS 

This section details the results obtained when testing the network in the three different 

simulated test environments at the same locations as the previous network trial, and the 

results obtained from varying the acceptance tolerance. 
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The results for the 55-Walled environment were very poor (Figure 23). However, 

consideration needs to be given to the size or resolution of the environment, which was 

only 280 by 180cm compared with the 2000 by 2000cm (approximately) environments of 

Zenon and the Rehabilitation Centre, and the fixed tolerance value of 20cm for the three 

environments. The effects of environment size are discussed further in section 4.4.3.4.1. 
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Figure 23 - SDN results using the 55-Walled test environment map with simulated 
test positions (�) and their results (▲), joined by Euclidean errors (─). The named 
locations refer to the repeated test positions. 
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Figure 24 shows the results for the Zenon test environment. It can be seen that the network 

accurately located 7 out of 15 of the test positions. The individual results of the other 8 test 

positions have either selected the correct position or a similar environment location. It can 

clearly be seen that for the unsuccessful positions the network has selected positions that 

are at symmetrically similar environment positions, as the majority of the Euclidean error 

lines pass through the centre of the environment. The two lines that do not go through the 

centre of the environment have selected similar positions within a sub-region of the 

environment. 
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Figure 24 - SDN results using the Zenon test environment map with simulated test 
positions (�) and their results (▲), joined by Euclidean errors (─). The named locations 
refer to the repeated test positions. 
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The Rehabilitation Centre environment had many more similar environment locations than 

the Zenon environment, and so it was harder for the network to select the correct result for 

this environment (Figure 25). In the few positions that were unique a good result were 

given - e.g. (600,-1300) and (400,-900). Clearly the test locations at the top left-hand side 

of the Rehabilitation Centre environment (200,-200) and at the right-hand end of the long 

corridor (2000,-700) contain many alternative locations, even some that are not physically 

accessible [e.g. (400,-1150) and (400,-1500)]. 
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Figure 25 - SDN results using the Rehabilitation Centre test environment map with 
simulated test positions (�) and their results (▲), joined by Euclidean errors (⎯). The 
named locations refer to the repeated test positions. 
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Figure 26 shows the (x,y) and the (x,y,θ) Euclidean errors using the SDN on the three test 

environments. The mean (x,y,θ) Euclidean error was larger than the mean (x,y) Euclidean 

error, as the orientation error was greater than or equal to zero. The mean (x,y) and (x,y,θ) 

Euclidean errors for only the repeated test locations (Figure 27) had a larger standard 

deviation when the error was larger, showing that when the network was not good at 

determining a result it was not as repeatable. 
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Figure 26 – The SDN mean [(x,y) top and (x,y,θ) bottom] Euclidean errors for all trials. 
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Figure 27 – The SDN mean [(x,y) top and (x,y,θ) bottom] Euclidean error with standard 
deviations for the repeated test locations for the three trial environments. 
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4.4.3.4.1. RANGE VECTOR HISTOGRAMS 

The poor performance of the SDN in the 55-Walled environment (Figure 23) can be 

explained by examining typical SDN range vector histograms (4.4.2.2.1) from each of the 

environments (Figure 28). These typical range vectors from the three trial environments 

show that for the 55-Walled and the Rehabilitation Centre environments the utilised ranges 

were generally shorter than for the Zenon environment, where the ranges had a more even 

distribution of short and long ranges.  
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Figure 28 – Typical range histograms for the three trial environments. 
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Figure 29 shows that the locational Euclidean errors for all SDN trials within all three test 

environments were affected by the distribution of the ranges across the range vector 

histograms. With the exception of position [Zenon (1600,-100)], when the area of the range 

vector histogram greater than 50 was more than 100 then the locational Euclidean error 

increased. 

 

A value of 50 was chosen as the threshold for measuring the area above the threshold, as 

from the examples in Figure 28 the majority of columns are less than this threshold. The 

network developed in Chapter 5 attempted to overcome this problem by dynamically 

changing the number of columns within in the range vector histogram during the 

evaluation of a location. 
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Figure 29 – The (x,y,θ) Euclidean error versus the number of range vector histogram 
columns with a frequency greater than 50 in each trial range vector histogram. 
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4.4.3.4.2. TOLERANCE VALUE 

To test the effect of changing 

the tolerance value, a small test 

environment was constructed 

consisting of a square room 

inside a square room 

(Figure 30). The effects of 

varying the tolerance value can 

be seen in Figure 31 and 

Figure 32. The data points 

shown are for the number of correct agents, the number of iterations and the Euclidean 

errors, for four different tolerance values (18, 15, 13 and 11). Figure 31 shows that the 

number of active agents at termination decreased as the tolerance value decreased, whilst 

the number of iterations required until termination is achieved increased. The error bars 

indicate the standard deviation of the sample of 50 trials, and show that the number of 

active agents at termination became more constant as the tolerance value decreased. The 

standard deviation error bars show that the number of iterations required to obtain a 

solution varied more as the tolerance value decreased. This is dependent on how few 

iterations were required for the search to obtain the first correct solution that can then be 

diffused to the other agents. Figure 32 shows that the resultant positional and locational 

Euclidean errors decreased as the testing tolerance value decreased. 

 

 

Figure 30 - Tolerance value test environment. 
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4.5. DISCUSSION 

4.5.1. RBF 

As the system took four days to determine that 245 centres produced results with the least 

mean error and the standard deviations with ± 0.5cm, for one dimension in a very small 

environment, the network was considered impractical for use on the SENARIO 
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Figure 31 - Number of active agents at termination and the number of iterations until 
termination when using different tolerance values when testing agents. 
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Figure 32 - Positional and locational Euclidean errors when using different tolerance 
values when testing agents. 



ARTIFICIAL NEURAL NETWORK SELF-LOCALISATION 

95 

wheelchair. It is noted that Townsend & Tarassenko (1999) used off-board processing, a 

4.5m by 5m obstacle free environment and derived a two-dimensional result from their 

RBF network. 

The RBF network was too large to be implemented using a 720 dimensional input vector, 

and a reduced input such as Townsend et al’s (1994) would be required to enable the 

network to fit within the available memory. However, we wanted to retain the inherent 

redundancy available within the raw range vector, to allow the system to be able to operate 

when the input range vector differed from the ideal range vector due to obstacles. 

4.5.2. N-TUPLE 

Comparison of the range vectors produced by the simulator for test and resultant locations 

in the 55-Walled environment show that the N-tuple network often selected similar 

environment locations as result locations. For example in Figure 17 the test location at 

(220,60) was near the right-hand end of the corridor, while the result selected by the 

network was at (60,60), towards the left-hand end of the corridor, giving an (x,y) Euclidean 

error of 160. Figure 33 shows that these two simulated range vectors are very similar 

except for rotation. 
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Figure 33 - Graphs of the simulated range finder data at the test position (220,60), and the 
simulated range data from the resultant position (60,60) in the 55-Walled environment. 
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The N-tuple network was able to provide a result to a resolution dependent on the size of 

the environment and the number of sample points in each dimension. In the case of the x 

dimension in the Zenon environment, then the resolution was only 10.49cm (2098/200), 

while the Risk Avoidance sub-system on the SENARIO wheelchair specified a resolution 

of 1cm; and so the network was rejected.  

The N-tuple and stochastic diffusion networks showed similar results: they both performed 

poorly in the small 55-Walled environment, with the SDN not able to determine any of the 

trial locations. Both the N-tuple and the SDN performed quite well in the Zenon and 

Rehabilitation Centre environments. It is noticeable that there is no random element in the 

N-tuple network and that the results, with ideal inputs, have consequently not varied. In a 

non-simulated environment with noise, variation would be expected. 

4.5.3. SDN 

The SDN was able to determine the test positions accurately in the Zenon environment, but 

not accurately in the 55-Walled and the Rehabilitation Centre environments, which had 

many more environment positions that contained similar subsets of range vectors to that of 

the position being tested. The positional results shown in Figure 23 appear particularly 

poor as the width of each column in the range histogram graph was very small, and the 

frequency of the ranges in the range vector was very low, making the comparison of 

different range values always within the relatively large tolerance value. This is discussed 

further in section 4.4.3.4.1. 

The number of active agents that the network contained at termination decreased and 

became less variable as the testing tolerance value decreased. This was due to the test 

being harder and the number of false positive selected locations decreasing. The number of 

iterations required until termination increased as the tolerance value decreased, due to only 
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a few agents containing correct solutions, and the diffusion of these few correct solutions 

requiring more iterations until a minimum number of agents were active.  

Position and location Euclidean errors reduced as the testing tolerance value decreased. 

Standard deviation also decreased with a decreasing tolerance value, signifying that the 

results became more repeatable as well as more accurate. To translate this into an 

operational system, however, would mean that the time required to obtain a result will 

increase, but will be more precise. It may therefore be suitable to have a large tolerance 

value at the early stages to ensure that the system has selected the correct area within the 

environment, and then to reduce the tolerance value to refine the result. This is the basis of 

the Focused Stochastic Diffusion Network introduced in Chapter 5. 

4.6. CONCLUSIONS 

The networks that were tested were the RBF, the N-tuple and the SDN. The RBF required 

a very large network and took a very long time to determine the optimum location of the 

centres, but its results in a small environment in one dimension were very accurate. The 

N-tuple network took several hours to be taught a subset of the environment positions. Due 

to memory limitations only a subset of the environment positions could be taught to the 

network, and the determination of the orientation was limited. The SDN was accurate in 

environments without many similar locations. 

Once the Stochastic Diffusion Network had been demonstrated to have had some success 

in the simulated environments that the SENARIO wheelchair would operate, the 

adaptations presented in Chapter 5 were made to improve the speed of the network by 

making it focus towards the correct solution. 
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5. FOCUSED STOCHASTIC DIFFUSION 

NETWORK 

5.1. INTRODUCTION 

This chapter introduces the Focused Stochastic Diffusion Network (FSDN) (Beattie & 

Bishop, 1997; Katevas et al, 1997; Beattie & Bishop, 1998) as a novel method to solve the 

self-localisation problem on an autonomous AGV in a large environment. The FSDN is an 

extension of the Stochastic Diffusion Network (SDN) described in Chapter 4. In the FSDN 

the space of possible solutions is explored in parallel using a multi-resolution pyramid by a 

collection of agents searching in a competitive co-operative manner for the most likely 

location of an AGV in its environment. As with N-tuple and SDN (Chapter 4) the results 

are presented for three simulated environments (Chapter 6 shows results from two non-

simulated environments where the FSDN was applied to the SENARIO wheelchair). The 

structure and operation of the FSDN is described, then its application to solving the 

self-localisation problem, the method used to reduce the search space size, and the results 

of trials on the three simulated environments. Finally a comparison is made between the 

N-tuple, SDN and FSDN networks. 

5.2. FSDN OPERATION 

To understand the operation of the FSDN, an understanding of the operation of its 

predecessor, the SDN, is essential. This is dealt with in detail in Chapter 4, and so is only 

briefly described here. 
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The SDN consists of a number of agents that randomly select locations within the current 

search space. Firstly, in the testing phase, each agent in turn requests a simulated input for 

the search space location that it has selected. Using a fixed tolerance, the agent compares a 

fixed number of randomly selected columns from its range histogram (section 4.4.2.2.1) to 

compare against the same columns from the network input range histogram. If all the 

selected columns are within tolerance then the agent is termed ‘active’, as the location it 

has selected has passed the position testing phase. The agents then determine the 

orientation by all agents testing the same position. Once all agents have performed the 

testing phase, each agent in turn performs the diffusion phase. This phase allows the 

‘inactive’ agents to randomly select another agent. If the randomly selected agent is also 

‘inactive’ then an entirely new random search space location is selected. However, if the 

randomly selected agent is ‘active’ then the ‘inactive’ agent acquires its location. This 

process allows the successful agents to propagate their success to other agents. 

Unlike the SDN, the FSDN does not attempt to select the correct solution immediately. 

Rather, it tries to find the area of the search space that contains the correct solution, and 

then narrows in on the correct solution to produce a final solution. 

The FSDN extends the SDN in three ways: 

1. Each FSDN agent randomly selects a region rather than an exact location (the 

different types of regions that can be used are discussed in 5.2.1); 

2. The FSDN agents compare a variable number of input elements during the testing 

phase; 

3. The FSDN agents use a variable tolerance when testing input elements between 

those of the agent’s selected location and those produced from the network input. 
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To control the variable tolerance value and the number of elements that are to be tested, a 

count called the ‘focus level’ represents how successful an agent has been within its 

current region. The simplest method of controlling the operation of the agent using the 

focus level value is to decrease the tolerance value and increase the number of ranges 

tested as the focus level increases. Other methods of controlling the tolerance and number 

of test angles are discussed later in this chapter. 

5.2.1. REGIONS 

The FSDN does not attempt to find 

the exact solution. Instead it seeks a 

region of the search space that 

contains the solution. The regions 

initially cover a large area of the 

network search space, and then are 

sub-divided as the agent focuses on a 

correct solution. The search 

progresses by using ever-decreasing 

region sizes, and reducing the 

comparison tolerance (Figure 34) between the network input and the input provided by the 

simulator for the agents.  

5.3. OPTIONS AVAILABLE WHEN APPLYING FSDN TO THE 

SELF-LOCALISATION PROBLEM 

A variety of alternative means of configuring FSDN were available. Among the features 

that could be changed to best suit the self-localisation problem were; the sub-division of 

the search space, the rate of focusing and the simulator operation. 

 

 

Figure 34 - Regions sub-division. 
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5.3.1. ENVIRONMENT CO-ORDINATE FRAME 

The locations provided by the 

self-localisation system to the 

navigation system of the wheelchair 

had to be provided in Cartesian co-

ordinate form, although the locations 

could be represented in any manner 

within the FSDN. To emphasise this 

point, the polar co-ordinate system 

was considered, with the bottom left 

of the search space as the origin. The 

search space was then divided along 

the x-axis and through 90° into sub-regions (Figure 35). This meant that the physical area 

covered by a sub-region became larger farther away from the origin. This method was 

rejected for this application, as the probability of a region containing the correct solution 

was non-uniform and biased towards positions further from the origin. A simple linear 

division of the environment in the x and y dimensions was therefore used. 

5.3.2. REGION SUB-DIVISION 

The placement and subsequent sub-division of regions could be varied, so three 

alternatives were investigated, ‘fixed regions’, ‘floating regions’ and ‘concentrated 

regions’. 

5.3.2.1. FIXED REGIONS 

The fixed regions method of region selection divided the entire search space by a 

pre-determined amount, thus enabling the agents to be set to test each area of the search 

 

 

Figure 35 - Polar co-ordinate method of 
determining environment regions. 
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space, if there were sufficient within the network. However, this method sometimes failed 

to find the correct solution (5.3.6.1). The operation of the fixed regions method of 

environment division is shown in Figure 36, which uses solid lines for the current region 

boundary, and dashed lines for the previous region boundaries. The central dot is the 

position used by the simulator to produce a range vector for the current region (this applies 

also to Figure 37 and Figure 38). The fixed regions method began by placing regions 

evenly over the entire operational environment map without overlapping (red lines in 

Figure 36a). For each region the central position (Figure 36b) of the region was used to 

produce a range vector for the testing phase of the FSDN operation. If the testing phase 

was successful then the testing position was retained, the tolerance value decreased and the 

agent was promoted to focusing level 2 (Figure 36c). If the level 2 testing failed then the 

entire region was evenly divided into four (Figure 36d) and one sub-region was randomly 

selected for testing (Figure 36e). If the sub-region testing failed then the region was set to 

‘inactive’ and another fixed region position was selected randomly, or an active region was 

selected. If the level 2 testing was successful, then the selected sub-region testing position 

was retained and the tolerance value was reduced again, or if it failed the sub-region was 

again divided into four (Figure 36f) and the testing continued. The sub-division of the 

region continued until the maximum number of specified focus levels was reached. 
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a. The environment is superimposed with an   b. The simulated position is at the 
evenly distributed set of regions.   centre of the highest focus level region. 
 

  

 

 
c. If the testing phase is successful then the   d. If the figure c test then fails one of  
same position is tested using a smaller tolerance. the four regions shown here is selected. 

   

 

 

 
e. The sub-region is randomly chosen and tested f. If the test fails, a sub-region is          
If the test is successful then the location is  selected 
retained and the tolerance decreased. 

Figure 36 - The fixed regions operation. 
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5.3.2.2. FLOATING REGIONS 

The floating regions method of region selection randomly selected any position for the 

placement of regions (shown as red lines in Figure 37a), which could overlap with any 

other region within the search space (as with the SDN), and kept this position as the agent 

focused. As with the fixed regions method, the central position of the region (Figure 37b) 

was used as the position that the simulator would use to produce a range vector that the 

agent used for testing a possible solution. If the testing at this initial focus level was 

successful, then the same test position was used (Figure 37c) with a reduced tolerance 

value, and the agent was set to focus level 2. If the testing at this second focus level was 

not successful then a random test position was selected from within the region 

(Figure 37d), and the agent testing phase was repeated using focus level 2 tolerance values. 

As with the fixed region method, if testing at the focus level 2 testing was successful then 

the test position was retained, the tolerance value was decreased, and the agent set to level 

3 focus testing (Figure 37e). The method then continued either reducing the tolerance 

values or randomly selecting another position within the current sub-region space until the 

maximum focus level was reached. 
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a. The environment is superimposed with a   b. The simulated position is at the 
randomly positioned set of regions.   centre of  the highest focus level. 
 

  

 

 
c. If the testing phase is successful then the   d. If the test fails a random position is 
test continues using a higher tolerance.   selected within the region for testing. 
 

  
e. The sub-region is randomly chosen and tested. 
If the test is successful then the location is  
retained and the tolerance decreased. 

Figure 37 - The floating regions operation. 
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5.3.2.3. CONCENTRATED REGIONS 

The concentrated regions method of region selection combined the advantages of both 

fixed and floating regions. A random initial location was tested with the largest tolerance 

value. If the test result failed, then the agent was deactivated; if the test was passed, then 

the location was retained and at the next test iteration the tolerance value was reduced. If 

the agent passed this test iteration, the location was retained and the tolerance value further 

reduced. If, however, the test failed at the second iteration then the current region was 

sub-divided, as the previous testing had indicated that the larger region of the search space 

contained a correct solution. Hence, the current search space region was divided into a 

number of sub-regions and the agent randomly selected one of these regions. If the next 

test iteration passed, then the correct sub-region was selected, but if the test failed, then a 

re-test of the previous larger region was performed to ensure that this previous location still 

contained a correct solution. If the test was passed, a new sub-region was randomly 

selected and tested. 

Figure 38 shows how a randomly selected region from a two-dimensional search space was 

sub-divided using concentrated regions. Figure 38a shows the environment covered with 

overlapping randomly placed regions. Figure 38b shows the highest focus level region. The 

successful testing and subsequent reduction of region size is shown in Figure 38c. 

Figure 38d shows the sub-regions that could be chosen for testing when the previous test 

phase failed. Figure 38e shows how the selected position that was tested has now moved 

away from the initial upper region test position. Figure 38f shows the subdivision of the 

lower region due to a failure at the testing phase. 
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a. The environment is superimposed with a   b. The simulated position is at the 
randomly positioned set of regions.   centre of the highest focus level region. 
 

  

 

 
c. If the testing phase is successful then the   d. If the figure c test then fails one of  
same position is tested using a smaller tolerance. the four regions shown here is selected. 

   

 

 

 
e. The sub-region is randomly chosen and tested f. If the test fails, a sub-region is          
If the test is successful then the location is  selected 
retained and the tolerance decreased. 

Figure 38 - The concentrated regions operation. 
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5.3.3. ROTATIONAL INVARIANCE 

Using the ‘range histogram’ rotational invariant technique introduced in section 4.4.2.2.1, a 

frequency histogram of range values was produced, with the width of each column 

determining the resolution of how many range values were included within each column. 

The number of columns in the histogram was increased (the column width reduced) as the 

agent focused on a solution, making the testing more precise. When the position had been 

determined using the rotationally invariant histogram data, all network agents were loaded 

with the resultant position, and the orientation for each agent was set randomly. The 

network then focused in on the orientation separately. 

The balance between the number of columns and the column width was delicate, as the 

testing phase needed to allow all wheelchair locations within the current region of the 

search space to pass the test, while rejecting all those outside the region, but allowing for 

corruption of the input range vector due to obstacles. As the number of ranges within each 

column was reduced as the agent focused on a possible solution, the likelihood of selecting 

only correct solutions increased. 

5.3.4. FOCUS RATE 

The focusing rate defined the rate of change of the tolerance value with each of the agent’s 

successful testing phases. The slower the rate of focus the more slowly the agents migrated 

towards a correct solution, and the larger the number of focusing levels required to obtain 

the same final resolution. The faster the focusing rate the more like a Stochastic Diffusion 

Network the network became - if there were only two levels then the first level was a very 

coarse test and the next test was at the highest accuracy. When there were too many levels 

the agents became stuck in a region as it was easy to enter, but they did not reach the 
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highest focus level, and never left as the testing was easier as they returned up the focus 

levels. 

The tolerance value that was used to compare the frequency of the input and agent’s 

histogram data was also varied as the agent focused on a solution, making the tests harder; 

this worked in conjunction with the number of columns used in the histogram. 

5.3.5. A PRIORI INFORMATION INTEGRATION 

To integrate a priori information, any positional information can be used to prime the 

network by setting a number of agents to a known location. The agents will then test this 

location and focus towards a result. Thus the a priori location does not need to be exact, as 

the network will examine the region that the agent has been set to. Depending on the 

confidence of the information, more or less agents can be primed with this location. 

In SENARIO’s case, any information from the passive radio beacons or the location 

derived from a previous iteration of the network could be used to set a number of FSDN 

agents to an initial location with the top focus level, in order to prime the search.  

5.3.6. SIMULATOR 

The simulator and pre-processor detailed in Chapter 4 were used to produce range vectors 

that represented the range vectors produced by the range finders on the wheelchair if it was 

in an ideal environment. The simulator was used to produce all range vectors selected by 

agents, and for all trials in this chapter the simulator produced the network input vector. 

The network input vector in trials in non-simulated environment trials (Chapter 6) came 

directly from the range finders mounted on the wheelchair. 
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5.3.6.1. PROBLEMS OF POSITION SIMULATION 

The SDN compared an 

agent’s range vector, 

produced from a 

particular location, 

with the range vector 

produced by the range 

finder simulator. With 

the FSDN, the 

simulator needed to 

produce range vectors 

for the region that was 

within the agent’s 

tolerance value. The 

simulator, therefore, 

needed to select a suitable position within the agent’s region that would produce a range 

vector that would represent the entire region. This was not always possible, however. 

Figure 39 shows a square environment map divided into 16 sub-regions with a single wall 

projecting up within the second bottom right region. The ● marks the position of the 

wheelchair while ● marks the two positions that were considered for selection as the 

simulation position for regions, bottom left and centre. The bottom left position within a 

region was simpler to calculate as the agent changed focus levels, but the centre position 

provided the fewest incorrect rejections of correct answers. Using the central position of 

the region as the exact location for the simulator still caused correct solutions to be 

rejected, as shown in Figure 39, where at an angle of 45° the range finder detected the wall, 

   

 

Figure 39 - Simulated positions indicated by ● fail to match the 
real position indicated by ● when comparing the 45° range 
values, shown by arrows. Environment walls are shown in blue 
and region boundaries shown as dotted lines. 
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while both simulated positions missed the wall. Thus, a correct region could be rejected. 

No solution has yet been found for this problem. 

5.4. FSDN APPLIED CONSTRUCTION 

5.4.1. INITIALISATION 

The network was configured to use concentrated regions (section 5.3.2.3), and no a priori 

positional or orientational cues were used, so each agent was initialised with a random 

mapping into the search space. 

5.4.2. TESTING 

Positional information from each agent was used to generate artificial range data by 

seeding the simulator with a map position. The data derived from the agent’s location 

could be compared with data derived from the test location. The tolerance value that was 

used for comparison between the two sets of range values depended upon the level of 

focusing currently achieved by the agent. An agent was termed ‘active’ as soon as it had 

passed the first focus level. 

5.4.3. ORIENTATION TESTING 

As the FSDN used the ‘range histogram’ rotational invariance technique to simplify 

determining the position of the wheelchair, a technique was required to determine the 

orientation of the wheelchair once the position had been determined. 

The orientation was tested by averaging a number of consecutive range readings from the 

agent’s range vector and comparing this to the same range elements from the network input 

range vector. The orientation was successful if these average ranges were within tolerance. 
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The number of ranges within each group of ranges, or sector, was reduced as the agent’s 

focus level increased. The larger the number of averaged ranges within a sector, the more 

inaccurate comparisons were able to pass the testing phase. The tolerance value used to 

compare the averages of the sector group was also reduced as the agent focused in on a 

solution, making the test harder. 

5.4.4. DIFFUSION 

Diffusion occurred in the FSDN as in the SDN, where ‘inactive’ agents randomly selected 

another agent and acquired its mapping if it was ‘active’, or selected a new location 

mapping from the environment if it was inactive. A unique feature of the FSDN, however, 

was that inaccurately matched mappings could be prevented from diffusing to another 

agent by setting a focus level that had to be attained by an agent before its mapping could 

be selected by an ‘inactive’ agent. When a mapping was transferred, only the mapping was 

transferred, and the agent requesting the mapping began its focusing centred around this 

location at focus level 1. 

5.4.5. FINAL SOLUTION 

The result of the FSDN was determined in a similar manner to that of the SDN: a preset 

number of agents needed to be ‘active’, or a number of iterations of the network needed to 

have occurred and the number of active agents needed to have stabilised. In the FSDN, 

however, an agent contained a correct solution only when it had focused by the maximum 

amount. Termination occurred when the number of agents that had focused to the 

maximum focus level reached a threshold, or the number of iterations completed by the 

network reached a threshold. 
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5.5. FSDN TESTING 

The trial environments and locations that were tested on the N-tuple and the SDN networks 

in Chapter 4 were used in the FSDN trials here. The network contained 1000 agents using 

concentrated region selection. The network was tested using a worst-case situation, where 

no a priori information was provided. Termination occurred when at least 20% of agents 

had focused to the maximum level not varied by more then 10 for 7 iterations, and have 

completed at least 30 iterations. 

As before (Chapter 4) the trials tested the network at 30 different locations, six of which 

were tested ten times. In each of the three trial environments (55-Walled, Zenon and 

Rehabilitation Centre) the network was tested for accuracy, to ± 1cm and 1°, using all the 

results obtained, and for its repeatability using the locations that were repeatedly tested. 

5.6. RESULTS 

The results are divided into four sections looking at the accuracy, the repeatability, the time 

to termination and then a comparison of the different networks. 

5.6.1. ACCURACY 

Figure 40 shows that the locational error in all three trial environments was larger than the 

positional error. This was expected, as the orientation errors were greater than or equal to 

zero. The error within the 55-Walled trial environment was small, due to the small 

environment size. The standard deviation that can be seen in the Zenon and Rehabilitation 

Centre results show that the FSDN produced a wide range of error values. 
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5.6.2. REPEATABILITY 

The two graphs in Figure 41 show the mean positional and locational errors for the 

locations that were tested for repeatability. A small standard deviation indicates that the 

results were repeatable. These show that for the 55-Walled environment the errors were 

small, and that location E gave the largest error of the repeated locations and produced the 

largest standard deviation, and so was the least repeatable of the repeated trial locations. In 

the Zenon environment, even though the position error was large for three of the test 

locations, the very small standard deviations for these positions indicate that in this 
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Figure 40 - The FSDN mean [(x,y) top and (x,y,θ) bottom] Euclidean errors with standard 
deviations for all environments. 
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environment the FSDN was very repeatable. The Rehabilitation Centre repeatability results 

show that apart from trial location C, the network was not very repeatable within this 

environment. This was because several rooms subdivided the environment. 
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Figure 41 - The FSDN mean [(x,y) top and (x,y,θ) bottom] Euclidean errors with standard 
deviations for the repeated locations within all environments. 
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Figure 42, Figure 43 and Figure 44 show the individual positional results for the trials in 

55-Walled, Zenon and Rehabilitation Centre environments respectively. The test positions 

are indicated by a � and the resultant position is indicated by a ▲, the (x,y) Euclidean 

error between the test position and the FSDN calculated position are shown by a ⎯. The 

shorter the Euclidean error lines the better the positional result for the trial location. These 

figures do not show the trial or resultant orientations, as each trial position was used to test 

two orientations. 

 

Figure 42 shows that in the 55-Walled test environment the majority of the resultant 

positions selected by the FSDN were very close to the trial locations except one 
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Figure 42 - FSDN results for the 55-Walled test environment map with simulated test 
positions (�) and their results (▲), joined by Euclidean errors (⎯). The named 
locations are those that were used for the repeated trials. 
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(location E) where the resultant positions that were selected by the FSDN were in similar 

environment positions. Similar environment locations are those that provide range vectors 

that cannot easily be distinguished from each other; these locations can often occur due to 

the symmetry of a room. In a perfectly square room without obstacles, four locations will 

always produce identical range vectors. The issue of similar positions is discussed further 

in Chapter 7. 

The Zenon environment was considerably larger than the 55-Walled environment and 

contained very few internal walls. Thus larger positional errors were expected. 
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Figure 43 - FSDN results for the Zenon test environment map with simulated test 
positions (�) and their results (▲), joined by Euclidean errors (⎯). The named locations 
are those that were used for the repeated trials. 
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Figure 43 shows that for six of the trial positions at Zenon the positional errors were very 

small, while for nine of the trial positions the resultant positions were similar environment 

positions. 

The Rehabilitation Centre environment was also considerably larger than the 55-Walled 

environment, but unlike the Zenon environment contained a number of rooms and a long 

corridor. Unlike the other trial environments, the Rehabilitation Centre environment had 

regions that could not physically be reached by the wheelchair but were within the 

environment map.  

Figure 44 shows that the Rehabilitation Centre environment was the most difficult 

environment for the FSDN to determine an accurate positional result, and only one trial 

location produced reasonable positional results (400,-900). The trial positions (50,-950) 

and (200,-1100) failed even to find mirror image or opposite environment positions. 

Several of the other test positions found similar environment positions, e.g. (1200,-1200) 

and (100,-1800). Position (2000,-700) is interesting as it found a very similar environment 

position that was not physically accessible. 
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5.6.3. TIME TO TERMINATION 

Figure 45 shows the time taken for each trial location to achieve the termination condition. 

The positive gradient of the linear regression line and the R2 values of 0.67 and 0.63 

respectively in the Zenon and Rehabilitation Centre graphs shows that the time to obtain a 

result increased as the locational error increased. This was not the case in the 55-Walled 

environment. The linear regression line on the 55-Walled graph has a very slight negative 

gradient (R2 = 0.01) due to four relatively large mean locational errors, compared to the 

large number of very small locational errors. 
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Figure 44 - FSDN results for the Rehabilitation Centre test environment map with 
simulated test positions (�) and their results (▲), joined by Euclidean errors (⎯). The 
named locations are those that were used for the repeated trials. 
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Figure 45 - The FSDN mean (x,y,θ) Euclidean error versus the time until termination. 
The top graphs sows the 55-Walled, the middle the Zenon and the bottom the 
Rehabilitation Centre environments. 
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5.6.4. COMPARISON OF FSDN WITH OTHER NETWORKS TESTED 

Figure 46 shows the mean position (x,y) and location (x,y,θ) Euclidean errors with 

standard deviations for the three test networks in the three simulated trial environments. It 

shows that the FSDN produced the most accurate and most repeatable positional and 

locational results in the 55-Walled environment, while the N-tuple network produced the 

most accurate and repeatable positional results in the Zenon and Rehabilitation Centre 

environments. However, for the locational results in the Zenon and Rehabilitation Centre 

environments the SDN produced the most accurate results while the N-tuple produced the 

most repeatable. It is noticeable how much the N-tuple error increased when the orientation 

was included, remembering that the N-tuple network used the largest range technique to 

determine the orientation while the SDN and FSDN set all agents to test the same range 

vector. 

Figure 47 show the mean positional Euclidean errors with standard deviations for the six 

repeated test locations within each of the three simulated trial environments for the three 

test networks. In the 55-Walled environment it can clearly be seen that the FSDN produced 

the most accurate results, and was perfectly repeatable in five out of the six test positions. 

Due to the lack of randomness in the N-tuple network it produced the most repeatable 

results in the three environments, which can be seen by the standard deviation bars of zero 

length. In the Zenon environment the FSDN was extremely repeatable, even if the result 

was not always accurate, which indicates that it had at least selected a similar environment 

position. In the Rehabilitation Centre environment the SDN had a large standard deviation 

when the positional error was large, indicating that when the network found a good result it 

was able to consistently find a good result, but when the result was poor then it found 

many alternative locations. 
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Figure 46 – The mean [(x,y) top and (x,y,θ) bottom] Euclidean errors with standard 
deviations for all networks in all the environments. 
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Figure 47 - The mean (x,y) Euclidean errors with standard deviations for the repeated 
locations, using the three trial networks. The top graph shows the 55-Walled, the middle 
the Zenon and the bottom the Rehabilitation Centre environments. 
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Figure 48 shows the mean locational Euclidean errors for the repeated test locations in the 

three simulated trial environments for the three test networks. In the 55-Walled 

environment it can be seen that all the locational Euclidean errors are larger than those in 

Figure 47, with SDN and N-tuple performing particularly poorly. It is worth noting that at 

locations that produced an accurate positional result, the locational result was usually also 

accurate. However the FSDN result for location F, in the 55-Walled environment produced 

a perfectly repeatable positional result, but the locational results were not as accurate or 

repeatable. The mean locational Euclidean errors in the Zenon environment were similar to 

the mean positional Euclidean errors, with FSDN producing very repeatable results, while 

the N-tuple accuracy clearly decreased. In the Rehabilitation Centre environment the 

results were again very similar to the positional results, with only the N-tuple error 

increasing at locations A and F. 
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Figure 48 – The mean (x,y,θ) Euclidean errors with standard deviations for the repeated 
locations, using the three trial networks. The top graph shows the 55-Walled, the middle 
the Zenon and the bottom the Rehabilitation Centre environments. 
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All previous results have shown the means of the results of the trials. Figure 49 however 

shows the percentage of the individual results that have produced a positional (x,y) and a 

locational (x,y,θ) Euclidean error of less than one. As the networks are using simulated 

range data produced from the same map that they were taught with or use when operating 

then the results should be accurate, because there was no noise in the input vector. From 

Figure 49 it can be seen that the SDN did not produce any accurate results in any of the 

simulated trial environments, while 30% of the N-tuple positional results were accurate in 

the 55-Walled environment. The FSDN accuracy was very high in the 55-Walled 

environment and it produced some accurate results in the Zenon and Rehabilitation Centre 

environments. Only the FSDN produced any accurate locational results and in the Zenon 

and Rehabilitation Centre environments these were not smaller than the positional results. 

This means that where an accurate positional result was obtained, an accurate locational 

result was also obtained. The results shown in Figure 49 may not show a high percentage 

of accurate results, but Figure 49 does clearly show that only the FSDN was able to 

produce any locational results of the required accuracy using a simulated range vector. 
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5.7. DISCUSSION 

The chapter has described FSDN, a novel artificial neural network, and its application to 

the self-localisation problem. The FSDN was developed from the SDN (Chapter 4) and it 
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Figure 49 – The percentage of locations with a [(x,y) top (x,y,θ) bottom] Euclidean error 
less than or equal to 1, for the three networks in the three environments. 
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has clearly performed more accurately then the SDN (Figure 49). FSDN was very accurate 

in the 55-Walled trial environment, and with only one test position giving multiple 

answers, it was also very repeatable. This was a small, but complex environment, so either 

in a small environment or when using a large resolution, the FSDN worked well. In the two 

larger environments, Zenon and the Rehabilitation Centre, FSDN was less accurate. 

Although accuracy for the FSDN, measured as a mean Euclidean error, was less in the 

Zenon than in the Rehabilitation Centre environment, Zenon was far more repeatable. 

However, when the results were mapped on the environment (Figure 43 and Figure 44) 

they suggested that Zenon was in fact more accurate. In the Rehabilitation Centre there 

was only one position that had any success. However, the accuracy, measured as 

percentage of trials that produced a Euclidean error less than one, shows that only the 

FSDN was able to produce any accurate results, and these, in the Zenon and Rehabilitation 

Centre environments, did not alter between the positional and locational results. 

The problem that FSDN encountered with finding similar locations in the Zenon 

environment could have been overcome by using a coarse positional input, such as passive 

radio beacons, whereas the poor repeatability and poor accuracy in the Rehabilitation 

Centre environment would be much harder to overcome, because even the positions close 

to the trial position were wrong. 

The time to determine a result could be used as a termination factor. From Figure 45, the 

results are liable to be inaccurate after 10,000 seconds. In the 55-Walled environment, 

which was very accurate, none of the results took more than 10,000 seconds to obtain. This 

figure of 10,000 seconds should be considered as a relative value, as these trials were 

performed on an Intel DX4/100 Mhz processor, with 1Ghz processors now becoming 
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available. While a termination time can be used, it needs to be set for each machine and 

each network configuration. 

All the parameters that can be modified in the FSDN, such as the number of focus levels, 

the number of agents, the initial region size, can be and should be changed for every 

application of the FSDN and for every instance of it within an application type. In these 

three environment trials the parameters were kept constant between the environments, so 

that the differences between the environments could be seen. 

5.8. CONCLUSIONS 

The FSDN has shown itself capable of producing accurate positional and locational results, 

particularly within a small environment. In a simple large environment the FSDN was also 

able to produce accurate results. However in a complex large environment it was less 

successful. 

This chapter has shown that the FSDN is capable of determining the location of a 

wheelchair within a simulated environment and therefore should be capable of determining 

the location of a wheelchair in a non-simulated environment. Chapter 6 deals with the 

practical application of the FSDN on the SENARIO wheelchair in the non-simulated 

Zenon and Rehabilitation Centre environments. 
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6. APPLICATION OF THE FOCUSED 

STOCHASTIC DIFFUSION NETWORK 

6.1. INTRODUCTION 

The objective of this chapter is to test the suitability of the FSDN self-localisation method 

(described in Chapter 5) for practical application: the self-localisation of the SENARIO 

autonomous wheelchair (Chapter 3; Beattie et al, 1995; Katevas et al, 1997; Beattie & 

Bishop, 1998). In Chapter 5 the FSDN was tested in three environments using noise-free 

simulated range vector inputs. This chapter describes the problems found when the FSDN 

self-localisation method was implemented on the SENARIO wheelchair in two non-

simulated test environments in Athens, the large, open Zenon development area, and the 

complex environment of the Rehabilitation Centre. These were the same environments 

used in the simulated trials of Chapters 4 and 5. As in Chapters 4 and 5, trials were 

performed in the two test environments at known locations to test accuracy and 

repeatability. Additionally, because the environments were not simulated, the robustness of 

the FSDN to environment noise was also tested. The results obtained from these two test 

environments are presented and discussed, together with the compromises that were 

required to construct the self-localisation system on a limited platform. 

6.2. IMPLEMENTATION OF FSDN ON THE SENARIO 

WHEELCHAIR 

In applying the FSDN self-localisation component to the SENARIO wheelchair 

Positioning sub-system described in Chapter 3, it was necessary to scale the environment 
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map and to establish communications with sensors and the navigation sub-systems (section 

3.3). Scaling factors of 4 and 7 centimetres were used (4cm was the limit of the detail that 

could be contained in the environment map, given the available PC memory, and 7cm was 

evaluated as it appeared that it would provided accurate results more quickly, and allowed 

some reserves of system resources). A completely independent method of measuring the 

position and orientation of the wheelchair was required to verify the results obtained from 

the FSDN self-localisation system. This is detailed in section 6.3.2. 

6.2.1. MAPS 

Part of the Zenon environment is shown in Figure 50, from which it can be seen that it was 

impossible to map all features of the environment fully, as not all environment features 

were visible to the range finders at all times and many objects were non-permanent. This 

was also found to be the case in the Rehabilitation Centre environment. Hence, both 

provided suitable environments to test the robustness of the FSDN self-localisation 

method. 

Due to the difficulty of determining the relative orientation of the wheelchair in a room 

with symmetry, discussed further in Chapter 7, the doors were left off the environment 

maps to allow the doorframes to be used to break the room symmetry and permit the 

wheelchair to orientate itself within a room. 
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6.2.2. SCALING AND AVERAGING 

The environment map initially consisted of the major environment walls with gaps for 

doorways, because the processor memory was insufficient to hold a more detailed map. 

When the map was scaled, however, it was possible to enter more detail. The final version 

of the map contained the major walls, structural pillars, door recess, permanent heater 

units, internal walls and a large access door (Figure 51). 

 Puma 
robot 

½ a car Open 
staircase 

 

Figure 50 - View of the Zenon trial environment. Note the unmapped car, open staircase 
and puma robot. 
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To improve the accuracy of the result to a resolution of 1cm, it was assumed that the 

positions determined by the agents in the network at an accuracy of 7cm would surround 

the 1cm accuracy test position in a uniform pattern. The accuracy of the solution was 

improved by taking the average position of the agents’ solutions. Thus, for example, if the 

1cm accuracy solution lay exactly in the middle of a 7cm resolution square then that square 

would be immediately surrounded by an evenly distributed number of agents at the 7cm 

resolution points. 
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Figure 51 - Zenon environment map: the blue lines represent the environment walls with 
dimensions in cm. 
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Figure 52 shows a 

collection of the 

solutions with the 

number of agents 

selecting a position 

shown by the thickness 

of the circle. To remove 

the influence of the few 

incorrect positions, 

following Betke & 

Gurvits (1997), an 

iterative process of 

selecting only the agents 

that contained positions 

within an ever-decreasing radius around the average position was chosen to calculate a 

new average. The final position was determined after 10 iterations or when the number of 

agents used for the next average would be zero. 

6.3. TESTING 

6.3.1. TRIAL CONFIGURATIONS AND LOCATIONS 

The network was configured identically to that used in the simulated trials of Chapter 5. 

The network contained 1000 agents using concentrated region selection. The network was 

tested using a worst-case situation, where no a priori information was provided. 

Termination occurred when at least 20% of agents had focused to the maximum level, not 

varied by more than 10 agents for 7 iterations, and had completed at least 30 iterations. 

 

 

Figure 52 - The positions selected by agents on the 7cm 
resolution grid, with the average position within the dotted 
circle shown by the cross. The number of solutions selected at 
each 7cm position is shown by the circle thickness. 
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The range finders could be set to take measurements at 0.5° or 2°, and using the two 

scaling factors discussed above the three configurations of 7cm by 0.5°, 7cm by 2° and 

4cm by 2° were used in trials. 

Figure 53 shows the positions that were tested using three different configurations at the 

Zenon site. Figure 54 shows the test positions for the Rehabilitation Centre. These were 

limited, due to restricted availability of the operational site. The tests concentrated on the 

performance of the network in determining the location in corridors, as this has been 

reported as a difficult type of location to determine due to the longitudinal nature of the 

local environment (Cox, 1991), and was also found to be difficult in the simulated 

Rehabilitation Centre environment. 
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Zenon trial locations for 7cm by 2°. 
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Zenon trial locations for 7cm by 0.5°. 
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Zenon trial locations for 4cm by 2°. 

Figure 53 - Zenon testing locations. The blue lines represent the environment walls and 
the ▲ represent the trial positions. 
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Rehabilitation Centre locations for 7cm by 2°. 
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Rehabilitation Centre locations for 7cm by 0.5°. 

Figure 54 - Rehabilitation Centre testing locations. The blue lines represent the 
environment walls and the ▲ represent the trial positions. 
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The accuracy was determined by examining the mean (x,y) and (x,y,θ) Euclidean errors of 

20 trials at each of the known test locations. Twenty trials were performed to increase the 

data available to determine the repeatability of the self-localisation system, as the 

environment was dynamic, unlike the simulated environments. 

To assess repeatability, the standard deviation of the mean positional (x,y) Euclidean errors 

of the 20 trials at each location was examined. A large standard deviation was taken to 

indicate poor repeatability. To examine the relationship between accuracy and repeatability 

a correlation was made between the mean Euclidean error and the standard deviation of 

this error.  

To assess the robustness of the FSDN a correlation was made between the mean locational 

(x,y,θ) Euclidean error and the environmental noise, where environment noise was 

measured by the Euclidean error between the sensed environment and the environment 

programmed into the environment map.  
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6.3.2. INDEPENDENT LOCATION VERIFICATION 

Each trial required the 

wheelchair to be placed at 

a known position and 

orientation. To 

independently and 

accurately position the 

wheelchair, measuring 

tapes were placed around 

the walls of the test 

environments and four 

visible light lasers were 

mounted at 0°, 90°, 180° 

and 270° on top of the wheelchair. The spots of light projected by the lasers onto the walls 

were used to align the wheelchair on the x and y axis and the orientation could be set at 

one of the four right angles, by ensuring that opposite light spots were at the same distance 

from the origin. The lasers were mounted on a machined jig that fitted onto the top of the 

front range finder and were centred around the centre of rotation of the revolving mirror 

inside the range finder, ensuring that the two systems’ reference points aligned. Figure 55 

shows how a rule with an in-built spirit level was used to align the spots of light that were 

projected onto the walls with the rulers placed around the environment walls. 

6.4. RESULTS 

This section presents the results for the accuracy, repeatability and robustness for each 

configuration in the two test environments. The figures present three graphs for the Zenon 

 

 

Figure 55 - View of the independent method for measuring 
the wheelchair location. 
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environment, where more time was available, and two graphs for the Rehabilitation Centre 

environment. The trials at 7cm linear resolution and 2° angular resolution are presented 

first, as the preferred standard. These are followed by the results of trials at 7cm linear 

resolution and 0.5° angular resolution, which is the highest angular resolution that the 

range finders could provide. The third set of trials at Zenon were at 4cm linear resolution 

and 2° angular resolution. The Rehabilitation Centre trials were both at 7cm linear 

resolution, one at 2° and the other at 0.5° angular resolution. 

6.4.1. ACCURACY 

Figure 56 to Figure 58 show the test positions (�) and the positions determined by the 

FSDN (▲), separated by the (x,y) Euclidean error (⎯), on the SENARIO wheelchair when 

tested in the non-simulated Zenon trial environment using three different configurations. 
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Figure 56 shows 54 test positions with 20 trials performed at each test location, using a 

7cm by 2° configuration. It can be seen that many of the positions selected by the FSDN 

are in similar environment positions to the test positions. 
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Figure 56 – Individual results (▲) for positions tested (�) joined by Euclidean errors 
(─), in the non-simulated Zenon environment using the 7cm by 2° configuration. 
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Figure 57 shows 18 test positions, with 20 trials performed at each location, using a 7cm 

by 0.5° configuration. Fewer trials were performed, as the network took longer to 

determine a result. It can be seen that most of the results are grouped around the test 

positions, while the tests performed around (1150,-1300) were variable. 
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Figure 57 – Individual results (▲) for positions tested (�) joined by Euclidean errors 
(─), in the non-simulated Zenon environment using the 7cm by 0.5° configuration. 
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Figure 58 shows 26 test positions with 20 trials performed at each test location using a 4cm 

by 2° configuration; the results were clearly less repeatable. 

-2000

-1500

-1000

-500

0

-100 400 900 1400 1900

centimetres

ce
n

ti
m

e
tr

e
s

 

Figure 58 – Individual results (▲) for positions tested (�) joined by Euclidean errors 
(─), in the non-simulated Zenon environment using the 4cm by 2° configuration. 
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Figure 59 and Figure 60 show the test positions (�) and the FSDN results (▲), with the 

Euclidean errors (⎯) for the non-simulated Rehabilitation Centre trial environment using 

two configurations. 

Figure 59 shows 9 test positions with 20 trials performed at each location using a 7cm by 

2° configuration; it shows that some of the results are at similar environment positions, 

while others were unable to accurately determine a position, giving a wide spread of results 

within an environment area. 
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Figure 59 – Individual results (▲) for positions tested (�) joined by Euclidean errors 
(─), in the non-simulated Rehabilitation Centre environment using the 7cm by 2° 
configuration. 
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Figure 60 shows only 6 test positions with 20 trials performed at each location using a 7cm 

by 0.5° configuration. Fewer trials were performed as the time taken to obtain the results 

was longer than the 2° configuration, and the time available within the test environment 

was restricted. The tests were performed exclusively within the corridor region of the 

environment to determine the accuracy within this type of environment region. Some of the 

results were accurate, and as with the 2° configuration it sometimes selected a spread of 

results. 
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Figure 60 – Individual results (▲) for positions tested (�) joined by Euclidean errors 
(─), in the non-simulated Rehabilitation Centre environment using the 7cm by 0.5° 
configuration. 
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To determine which of the trial configurations was the most accurate, the mean of the 

mean (x,y) and (x,y,θ) Euclidean errors was calculated (Table 3). The Zenon trial, using 

7cm by 0.5°, provided the lowest overall mean errors and was therefore the most accurate. 

However, a higher angular resolution increased the time required to determine a result. 

Due to the time for each evaluation the 7cm by 2° configuration was considered more 

applicable to an operational system, where the speed of response is critical. 

 Mean of the mean 
(x,y) Euclidean error 

Mean of the mean (x,y,θ) 
Euclidean error 

Mean of the mean 
time to termination 
(seconds) 

Zenon 7cm by 2° 256.5 262.5 48.2 

Zenon 7cm by 0.5° 121.1 122.9 123.7 

Zenon 4cm by 2° 460.3 467.5 79.9 

Rehabilitation 
Centre 7cm by 2° 

523.7 533.7 128.3 

Rehabilitation 
Centre 7cm by 0.5° 

830.3 833.8 769.4 

 
6.4.1.1. LEVELS OF ACCURACY 

The accuracy threshold of 25cm was equivalent to half the width of the wheelchair. 

However, as an internal map resolution of 7cm was usually used, and the desired resolution 

was 1cm, a comparison of the percentage of accurate results for each of these resolutions 

for each of the trial configurations was made using the results from all individual trials 

(Figure 61). It can be seen that for both position (x,y) and location (x,y,θ) results the most 

accurate was the 7cm by 2° configuration; and by comparing the two graphs it is noticeable 

that the effect of the orientation error was small.  

Table 3 - Mean of the mean (x,y) and (x,y,θ) Euclidean error and the mean time to 
termination for the different environment trial configurations. 
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Figure 61 – Percentage of results within 3 accuracy values for the five trial 
configurations. 
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A higher map resolution increased the number of test positions within the environment 

map. As these positions were closer together the range vectors produced were similar, thus 

the network produced more false positive results. When attempting to determine the 

current location given a starting location, or the previous location, the network was able to 

greatly reduce the size of the search space agents select test locations from. 

6.4.2. REPEATABILITY 

To test the repeatability of the FSDN, the network was run 20 times at each trial location. 

Figure 62 shows the mean (x,y) Euclidean errors for the three Zenon test configurations, 

and Figure 64 shows the mean (x,y) Euclidean errors for the Rehabilitation Centre 

configurations. Figure 63 and Figure 65 show the mean (x,y,θ) Euclidean error for the 

same trials for all configurations in the two test environments. 

For Figure 62 to Figure 65 the standard deviations for the mean (x,y) and (x,y,θ) location 

Euclidean errors can be seen as vertical error bars. A large standard deviation shows that 

the Euclidean errors from the 20 trials for a particular location varied widely, while a small 

standard deviation shows that the errors were all very similar. Due to changes in the 

environment between trials, and the stochastic nature of the FSDN, the results were not 

perfectly repeatable. The results are given separately for position (x,y) and location (x,y,θ), 

showing how little influence any orientation error had on the location error. This had been 

expected from the trials detailed in Chapter 5, where the differences between the positional 

results of the repeated position of the FSDN, in the three simulated test environments 

(Figure 47) and the locational results (Figure 48) are mostly unnoticeable. 

In Figure 62 it is clear that when the positional results have been good the repeatability has 

also been good, with a few exceptions (7cm by 2°, trial 53; 7cm by 0.5°, trial 6 and 4cm by 

2°, trial 11). 
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Figure 62 – The Zenon mean (x,y) Euclidean errors with standard deviations for each test 
location for the three test configurations. 
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Figure 63 shows the mean positional error with standard deviations for the trials performed 

using the two configurations tested in the Rehabilitation Centre environment. These 

results, similarly to the Zenon environment results, show that when the network was 

accurate it was repeatable. 

Figure 64 and Figure 65 show the locational errors for the three Zenon and the two 

Rehabilitation Centre trial configurations with standard deviations. These two figures 

compared to Figure 62 and Figure 63, show that in these 2,260 individual trials the 

orientational error had minimal effect on the locational error. 
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Figure 63 – The Rehabilitation Centre mean (x,y) Euclidean errors with standard 
deviations for each test location for the two test configurations. 
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Figure 64 – The Zenon mean (x,y,θ) Euclidean error with standard deviations for each test 
location using the three test configurations. 
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Figure 65 – The Rehabilitation Centre mean (x,y,θ) Euclidean errors with standard 
deviations for each test location for the two test configurations. 
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Euclidean locational error increases, and the low R2 values in Figure 66 and Figure 67 

indicate that this is also true in the non-simulated trials in the Zenon and Rehabilitation 

Centre environment trials. 
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Figure 66 – The relationship between the accuracy and the repeatability in the Zenon 
environment for the three trial configurations. The SD of the mean (x,y,θ) Euclidean 
errors versus the mean (x,y,θ) Euclidean errors. 
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Figure 67 - The relationship between the accuracy and the repeatability in the 
Rehabilitation Centre environment for the three trial configurations. The SD of the mean 
(x,y,θ) Euclidean errors versus the mean (x,y,θ) Euclidean errors. 
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6.4.3. ROBUSTNESS 

The robustness of the network could only be tested in the non-simulated environment trials 

as the input range vector contained unmapped objects and sensor noise, which were all 

considered by the network as range vector input noise. The range vector input noise was 

measured as the Euclidean distance, in the 720 or 180 dimensional range vector space, 

between the range finder input range vector and the ideal input range vector produced by 

the simulator for the same location that the wheelchair had been located at. In Figure 68 

and Figure 69 the low R2 values, and the change in gradient in the Zenon 7cm by 0.5° 

trials, show that the environment noise had no effect on the results produced by the 

network. 
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Figure 68 - The mean (x,y,θ) Euclidean errors versus the environment noise for the Zenon 
environment trial configurations. 
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Figure 69 - The mean (x,y,θ) Euclidean errors versus the environment noise for the 
Rehabilitation Centre trial configurations. 
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practical configuration was at 7cm by 2°. This allowed the pre-processed map to fit within 

the computer system memory and reduced a possible 720-element input vector to a 

180-element input vector, improving the speed of operation of the network as it only had to 

process ¼ of the range data. 

The effects of the parameters of the system became apparent when configuring the FSDN 

for the Zenon environment. They can be considered as altering a cone of acceptance for the 

results selected by the network. Figure 70 shows the curve of acceptance for one range 

vector angle, so the curve needs to be rotated around the y axis to represent the 360° cone 

of acceptance. The cone can be very wide, allowing a large collection area over the 

environment space. When at the maximum focus level the network used the highest 

resolution, and tested the largest number of range angles. The depth of the acceptance cone 

determined the number of focus levels, while the rate of change of the histogram frequency 

tolerance set the shape of the sides of the cone. If the histogram frequency tolerance 

changed linearly with the focus level, the cone had straight sides (Figure 70a). However, 

the cone could be made to have a convex slope, requiring that the results initially selected 

quickly improved or they would be rejected, as they were not able to travel through many 

focus layers (Figure 70b). Alternatively, the sides of the cone could be made concave 

allowing initially accurate results to travel quickly through many focus layers, so that they 

would be unlikely to be completely rejected (Figure 70c). 
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a) Linear change in the tolerance value with focus level. 
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b) Convex change in the tolerance value with focus level. 
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c) Concave change in the tolerance value with focus level. 

Figure 70 - Graphs showing how the tolerance value could be changed with the number of 
focus levels. 



APPLICATION OF THE FOCUSED STOCHASTIC DIFFUSION NETWORK 

162 

The network produced a number of accurate results (Figure 64 and Figure 65) but not all, 

and some had large standard deviations. Given a suitably fast processor system (current 

processor speeds are 5 times faster than what it was possible to use on SENARIO), a 

number of iterations of the network could be performed and used to determine an improved 

result. 

If the standard deviation is large it may be that only a few of the network solutions at the 

selected location are incorrect and that a majority decision should be taken. Figure 71 

shows that in the Zenon environment, using the 7cm by 2° configuration, trials 7 and 15 

produced a majority of results at a mirror image location while one result in each trial 

produced a completely incorrect result, which increased the standard deviation results. 

Thus a majority decision would have produced a result that was at least in a similar 

environment location. 
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Individual results for Zenon 7cm by 2° trial 7. 
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Individual results for Zenon 7cm by 2° trial 15. 

Figure 71 – Individual results for two sets of trial locations in Zenon using the 7cm by 2° 
configuration. The test positions are shown as a �, the individual results as ▲, and the 
individual (x,y) Euclidean errors as ─. 
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In the Rehabilitation Centre environment, using the 7cm by 2° resolution configuration 

trial 2 produced a mean (x,y,θ) Euclidean error of greater than 25cm, due to a small 

number of individual trials selecting a similar environment location, while the majority 

selected the correct location. However, this alternative location was within a lift shaft. The 

lift shaft or similar impossible location could be ignored if the area on the map used by the 

FSDN is filled with a number of walls that would prevent any environment location from 

appearing like the area occupied by the lift. 

It was expected that the network would perform correspondingly less accurately as the 

environment noise increased. This was not the case, however, and the environmental noise 

had no effect on the performance of the network. This was due to the high redundancy 

within the input range vector, which was specifically removed by Townsend et al (1994) 

and Townsend & Tarassenko (1999). 

6.6. CONCLUSIONS 

The Positioning sub-system used FSDN, was installed onto the SENARIO wheelchair and 

was operational. Results presented in section 6.4 show that the location estimates provided 

by the FSDN were within 25cm 57.4% of the time and the system was robust to 

environment noise. The time to determine a location without any a priori information was 

tolerable, while the subsequent locations could be determined quickly, by priming the 

network with the previous location result. 
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7. GENERAL DISCUSSION 

7.1. INTRODUCTION 

This chapter discusses the general problems of self-localisation and the specific practical 

problems encountered when implementing a self-localisation system onto the SENARIO 

wheelchair for trials in an industrial and a rehabilitation centre environment. 

The two main objectives of this thesis were: 

1. To describe the development of a robust, accurate and repeatable self-localisation method, 

with no, or minimal, environment modifications. 

a) To assess a selection of existing artificial neural networks and test these using three 

simulated environments (Chapter 4). 

b) To develop a new artificial neural network and, using the same three simulated 

environments compare it with existing networks (Chapter 5). 

2. To use the method developed above on a wheelchair in two non-simulated environments. 

a) To integrate a self-localisation system using the artificial neural network developed 

from objective 1 onto the SENARIO wheelchair (Chapters 2 & 3). 

b) To test the self-localisation system in the industrial and rehabilitation centre 

environments of the SENARIO project (Chapter 6). 

Accuracy was defined as the inverse of the error between the self-localisation system’s 

estimate of the location and the actual location under test. Repeatability was the ability of 

the self-localisation method to provide the same location estimate when presented with the 

same input, or for non-simulated trials, the input data taken from the same location. 
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Robustness was defined as the ability of the self-localisation method to provide a result in 

the presence of noise between the ideal environment and the actual environment.  

Objective 1 was achieved, as a self-localisation method was developed that was robust to 

environment noise, could be accurate and could be repeatable, without any environment 

modifications. Objective 1a was completed and the different networks tested had different 

merits in terms of accuracy and time to obtain a result, which is discussed further below. 

Objective 1b was achieved by the Focused Stochastic Search Network (FSDN), which was 

tested and compared with other networks under consideration using simulated input data. 

Objective 2 was achieved as the developed FSDN was tested on the SENARIO wheelchair 

in the SENARIO non-simulated test sites. Objective 2a was achieved as the FSDN was 

integrated with the selected sensors into the self-localisation system on the SENARIO 

wheelchair. Objective 2b was achieved and the FSDN self-localisation system was tested 

on the SENARIO wheelchair in the Zenon industrial workshop, and the Rehabilitation 

Centre non-simulated environments. 

7.2. IS SELF-LOCALISATION NECESSARY? 

This thesis has tried to solve the indoor AGV self-localisation problem, which is the 

problem of determining the position and orientation of a free-ranging mobile robot without 

any a priori information within the current indoor environment. 

First, however, one needs to ask: "Is self-localisation necessary?" The answer to this 

question depends entirely on the application. Self-localisation is not always necessary and 

is not always the most appropriate method of determining the location of an AGV within 

an environment. When the application requires a fully autonomous free-ranging AGV, 

however, then the question can be modified to: "Is self-localisation necessary for a fully 
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autonomous and free-ranging AGV?" The author believes the answer is yes, due to the 

following argument, which Meng & Kak (1993) have also made.  

When travelling from one place to another, are we or any creature or a robot really 

interested in exactly where we are in relation to our environment, or are we more interested 

in simply getting to a new location as efficiently as possible? If we are more interested in 

getting to a new location, then we simply need a set of features that we will be able to track 

during the journey to monitor the progress and detect any deviation from the planned route. 

This requires that the features be extracted from our environment representation. We also 

need to know which set of features need to be tracked as we travel to our new location, so 

we need to be able to determine our current unique feature set, or to be able to locate 

ourselves within the feature set, or more simply be able to self-locate. For a fully 

autonomous free-ranging AGV to be able to travel from one place to another, therefore, it 

must be able to self-locate. 

7.3. CONSIDERATIONS OF EXISTING NETWORK SOLUTIONS 

The first objective of this thesis was to develop a robust, reliable and repeatable 

self-localisation method, with no or minimal environment modifications. Tests 

demonstrated that existing methods were problematic for the selected test environments 

(Chapter 4) and that a novel method was required. 

7.3.1. THE RBF NETWORK 

The RBF network (Chapter 4) was capable of producing very accurate results. However, 

the network was too large to fit within the memory available on the wheelchair. Townsend 

& Tarassenko (1999) used an RBF network with an umbilical cord to a robot, but 

SENARIO required that all components should enable the wheelchair to be autonomous. 
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7.3.2. THE N-TUPLE NETWORK 

The N-tuple network (Chapter 4) consisted of a simulation of RAM units that were taught 

a set of simulated range vector inputs from an evenly distributed selection of locations 

within each of the three test environments. The N-tuple network was able to produce 

results very quickly compared to the other networks. The network needed to be taught each 

angle separately for each position selected to be taught to the network, and could provide 

results only from the taught locations. The N-tuple network took a day to train for the 

Zenon and the Rehabilitation Centre simulated environments, and several hours for the 

55-Walled environment. The N-tuple was poor at determining the orientation of the test 

location, as it used the ‘largest range’ method, which is unlikely to determine the correct 

result if the position is not correct. The results from the N-tuple trials were always 

repeatable as the network contained no random elements and the inputs were simulated. 

Thus the network was too large and took too long to teach to be practical for the 

SENARIO application. 

7.3.3. THE STOCHASTIC DIFFUSION NETWORK 

The SDN (Chapter 4) consisted of a number of agents that randomly selected locations 

within the trial environment, and for each of these agent locations a simulator produced a 

range vector. The range vector was made rotationally invariant using the range histogram 

technique, then a random selection of range histogram columns from each agent’s 

simulated range vector were compared against the range vector produced by the range 

finders. If the test was successful, the agent continued to test this location; otherwise it 

selected a location from another successful agent or randomly selected another location. 

The network operated in two stages, determining first the position and then the orientation 

of the location of the wheelchair. The network was able to be easily integrated to the radio 
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beacon input data and was able to test all environment locations, unlike the N-tuple. The 

number of agents required to adequately sample throughout the network search space was 

proportional to the environment size. 

7.4. DEVELOPMENT OF A FOCUSED STOCHASTIC DIFFUSION 

NETWORK 

The Focused Stochastic Diffusion Network developed in Chapter 5 consisted of a number 

of agents each of which randomly selected a location within the trial environment around 

which to concentrate its search. As with the SDN, the range finder input vector was made 

rotationally invariant, allowing the localisation problem to be divided into the position and 

then the orientation stages. The network focused towards a solution by slowly refining the 

initial test locations selected by network agents. In a similar manner to the SDN, each 

agent tested a selection of range histogram columns from a simulated range vector against 

the range histogram columns provided by the range vector from the range finders. 

However, with the FSDN a variable tolerance value was used during the testing. If the 

agent was successful, its focusing level increased, which made subsequent testing harder 

by decreasing the tolerance permitted between the simulated ranges and those provided by 

the range finders, and by increasing the number of columns that needed to be tested. The 

network was able to easily integrate the data provided from the radio beacon system. To 

improve the speed of performance the map data was pre-processed, which took 10 hours 

for the Zenon and Rehabilitation Centre environments. The pre-processed map data 

provided the simulator with a list of walls that needed to be simulated, rather than 

calculating the ranges to all walls within the wheelchair environment. 

The second objective of this thesis was to use the developed self-localisation methodology 

on a wheelchair in two environments within the SENARIO project. The most time-
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consuming operation in determining the location of the wheelchair using the FSDN was 

the simulation of the locations selected by the agents for testing, even though simulation 

time was reduced by pre-processing the environment map. Pre-processing required the 

maximum amount of possible on-board memory when a 4cm resolution map was used. 

7.4.1. COMPARISON OF FSDN TO GENETIC ALGORITHMS (GAS) 

FSDN could be considered as a GA (Tsutsui et al, 1997) where the location selected by 

each agent is the gene for the agent. In this case FSDN is a mutation-only GA: where the 

probability of mutation increases as the individual increases in age, the number of tests that 

are performed increases, and the tolerance decreases. The mutation is restricted, however, 

in that each gene is allowed to vary only by a limited amount from its current value, or the 

values that it may select are determined directly from its current values. When a test phase 

for an individual agent has been successful, the probability for mutation is zero; when the 

test phase has failed, then the probability for mutation is 1. 

The FSDN has similar properties to an adaptive GA, where the probability of mutation of 

the genes is reduced as the fitness of the individual increases (Srinivas & Patnaik, 1994). 

Srinivas & Patnaik (1994), also state that when the probability for mutation is very high 

then a GA becomes a purely random search. The FSDN is a restricted random search, as at 

each stage in the network operation, where a random decision is required, the network uses 

mutation where the range of the mutation is restricted by the results of the previous state of 

the agent. 

7.4.2. NEW PARADIGM 

It has been reported by Nasuto et al (1998) that the SDN is a change in paradigm for 

artificial neural networks, as these types of networks consist of communications units 

rather than processing units. 
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In the self-localisation application, the SDN and the FSDN were used to communicate the 

position of an AGV by translating the input range vector into an environment location. The 

network units have not learnt a relationship between the input and the desired output, and 

they are not processing the input to obtain an output. Their output response is a simple 

reaction to the presented input and, in the case of FSDN, a response to the input and to the 

inputs presented to the unit in the past. 

Nasuto et al (1998) conclude that this type of network could be analogous to that of 

biological neural networks, but concede that biological systems may be a combination of 

processing and communication units. 

7.5. IMPLEMENTATION PROBLEMS 

A fundamental problem that has not yet been satisfactorily overcome, when using a range 

vector as the input to the self-localisation system, is to distinguish between the four 

possible location solutions when the wheelchair is in a square room. This phenomenon is 

caused by the room symmetry producing range vectors that are identical if rotated by 90° 

increments. The solution used in SENARIO was to specify that the door into the room 

must be open when self-localising, thus breaking the room symmetry. 

There is also a considerable problem when using any range data algorithm in a large 

institution like a hospital. Many rooms produce the same range vector, and there is no 

method, using the range vector alone, of distinguishing in which of the identical rooms the 

wheelchair is located. The method specified in SENARIO to overcome this problem is to 

use inductively coupled radio beacons, which transmit a unique identity to the wheelchair 

(Chapter 3). The location of each beacon was pre-determined, so that when a beacon code 

was received, a number of agents were loaded with this location to prime the FSDN to the 
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correct region of the environment search space. It was not possible to prove that this 

worked due to the reduced radio signal range when the radio beacon antenna was installed 

on the wheelchair. 

7.5.1. RADIO BEACON SOFTWARE INTEGRATION 

The radio beacons were to be placed at known (x,y) positions within the wheelchair 

environment map. This would have allowed a look-up table to be created to convert the 

radio beacon identification number into an environment position. The position would then 

have to be transferred into the Positioning sub-system network (Chapter 2). 

The FSDN was able to integrate the radio beacon data easily as it could load a number of 

agents with the beacon position, and as long as the positional error threshold was at least 

the radius of the range circle of the radio beacons, then the wheelchair would be within the 

agent’s acceptance area. A different method of integration would be needed for other 

networks. For example, integration into the RBF and associative N-tuple networks would 

be difficult as the networks are taught from simulated range vectors. It is not possible to 

say that the wheelchair is at the beacon position as the wheelchair could be any where 

within a circle around the beacon position and at any angle. With these two networks, the 

networks would need to be run as normal, with rejection of any results that were not within 

the circle of locations around the beacon position.  

Integration into the SDN would be identical to that of FSDN. However as SDN operates on 

exact positions the agents would need to be primed with a range of positions within the 

range circle of the beacon. 
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7.5.2. THE AREA OF ACCEPTANCE FOR GOOD RESULTS 

Several authors (Cox, 1991; Freund & Dierks, 1994; Townsend & Tarassenko, 1999) use 

the diameter of the AGV as the area of acceptance of good results. Initially this appears to 

be a reasonable approach: irrespective of the actual size of the AGV, as long as the result is 

within its diameter it is accepted, and therefore allows for comparison of different 

techniques. It implies that the size of the AGV is proportional to the size of the 

environment. However, the accuracy required of any localisation system is dependent on 

the proximity of the nearest mapped or unmapped obstacle and the consequences of hitting 

it. The system needs to be accurate whether for a wheelchair passing through a doorway, 

an oil tanker berthing with a dock or a helicopter landing on a helipad. Each requires very 

high accuracy, at times, and is completely independent of the size of the vehicle involved, 

or the size or dimensions of the environment it is operating in. 

7.6. APPLICATIONS OF FSDN AND FUTURE WORK 

7.6.1. APPLICATIONS FOR FSDN 

FSDN may be used for any applications where a unique solution needs to be found in a 

large contiguous search space. The individual dimensions of the search space can be 

unrelated to each other. Searching for a string of characters within a document, for 

example, does not necessarily need each character to be related to the characters on either 

side of it, and each character could be a dimension within the search space of possible 

solutions. 
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7.6.2. MODIFICATIONS TO FSDN FOR THE SELF-LOCALISATION 

PROBLEM 

The FSDN could be altered to allow for areas that are not to be included within the area of 

possible solutions, but are within the environment. This would prevent the network from 

being able to select regions of the environment that are not physically accessible to the 

AGV but may be environment locations that are similar to the current location of the AGV. 

The modifications would need to be a crude rejection of any agent that selected a location 

within the excluded areas. 

7.6.3. MODIFICATIONS TO THE WHEELCHAIR 

The wheelchair could be modified to accommodate a larger passive radio beacon antenna 

further away from the metal frame, the two large DC batteries and the drive motors. 

Without such a modification, the operational range of the radio beacon system was 

severely restricted. 

The frame that the range finders were attached to could have been further strengthened to 

reduce movement induced by the movement of the wheelchair. 

7.6.4. INVESTIGATION INTO THE PROPERTIES OF FSDN 

Nasuto & Bishop (1999) have investigated the mathematical properties of the SDN. This 

work could be extended to determine the mathematical properties of using the FSDN to 

select a location within a search space. 

An insight into the operation of the network would be gained by running a trial to monitor 

the position of every agent and show their changing positions as they progress towards 

their selected result. Further investigation of ways to improve the configuration of FSDN 

would also be valuable. For example it would be useful to perform desktop simulations to 
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monitor the effect of the initial range vector histogram column width, which could improve 

the results obtained in the Rehabilitation Centre environment. Similarly, it would be useful 

to perform a set of trials to determine the optimum number of agents that achieves the 

fastest time to termination, for an environment using a fixed test location and termination 

conditions. 

7.7. CONCLUSIONS 

Taking into account the integration of the radio beacons, existing artificial neural networks 

were not suitable for solving the self-localisation problem on a free ranging AGV in a large 

environment. The SDN, which was the most suitable of the three networks investigated 

was then expanded and modified to develop a novel artificial neural network the FSDN. It 

is not as fast as the N-tuple network, but it is able to provide exact locations rather than 

discrete points placed evenly over the environment map. It is not a general problem solver 

in the style of a Multi-Layer Perceptron or a Radial Basis Function network, but it does not 

require any learning time or centre evaluation time. It has the advantages of direct 

inclusion of radio beacon positions and finds a solution in less iterations than the 

Stochastic Diffusion Network. 

Finally, the FSDN, despite the problems noted above, was at times capable of robustly, 

repeatedly and accurately determining the location of the wheelchair in a large mapped 

environment with no a priori location information, and is therefore worthy of further 

investigation and development. 
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9. APPENDIX A 

COMPARISON OF AVAILABLE RANGE FINDERS 

 LEUZE MAYSER 
ELECTRONIC 

ERWIN SICK 
OPTIC 
ELECTRONIC 

OXFORD 
UNIVERSITY 

P&F 

SCAN ANGLE 190° 180° 360° 180° 
SCANNING RATE 10HZ 8HZ 1HZ-5HZ 10HZ 
ANGULAR 
RESOLUTION 

2° 0.5° 0.5° 3° 

DISTANCE 15M 50M 15M 3M 
THRESHOLD 
RANGES 

2 2 0 3 

THRESHOLD RANGE 
CHANGES 

ON-LINE GRAPHICALLY NONE RS232 AND 

GRAPHICALLY 
INNER RANGE 

SWITCH 
RELAY PNP NONE PNP 

MIDDLE RANGE 

SWITCH 
NONE NONE NONE PNP 

OUTER RANGE 

SWITCH 
PNP PNP NONE PNP 

SIGNAL 
AMPLITUDE 

NOT 

AVAILABLE 
NOT 

AVAILABLE 
AVAILABLE NOT 

AVAILABLE 
SCANS REQUIRED 

FOR OBJECT 

DETECTION 

2 1 1 1 

NUMBER OF 

DEVICES 

REQUIRED 

2 2 1 2 

COMMUNICATIONS 
BAUD RATE 

9600 38400 NOT KNOWN 38400 

POWER 
CONSUMPTION 

<800MA <800MA NOT KNOWN <250MA 

COST 3833 ECU ~3833 ECU NOT 

AVAILABLE 
~800 ECU 

 


