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Abstract

An information-processing paradigm in the brain
is proposed, instantiated in an artificial neural net-
work using biologically motivated temporal encod-
ing. The network will locate within the external
world stimulus, the target memory, defined by a
specific pattern of micro-features.

The proposed network is robust and efficient.
Akin in operation to the Swarm Intelligence
paradigm, Stochastic Diffusion Search, it will find
the best-fit to the memory with linear time com-
plexity. Information multiplexing enables neu-
rons to process knowledge as ‘tokens’ rather than
‘types’. The network illustrates possible emergence
of cognitive processing from low level interactions
such as memory retrieval based on partial match-
ing.

1 Introduction

One of the important roles of metaphor in science
is to facilitate understanding of complex phenom-
ena. Metaphors should describe phenomena in an
intuitively understandable way that captures their
essential features. We argue that a description of
single neurons as computational devices does not
capture the information processing complexity of
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real neurons and argue that describing them in
terms of communication could provide a better al-
ternative metaphor. These claims are supported
by recent discoveries showing complex neuronal be-
haviour and by fundamental limitations of estab-
lished connectionist cognitive models. We suggest
that real neurons operate on richer information
than provided by a single real number and there-
fore their operation cannot be adequately described
in standard Euclidean setting. Recent findings in
neurobiology suggest that, instead of modelling the
neuron as a logical or numerical function, it could
be described as a communication device.

The prevailing view in neuroscience is that neu-
rons are simple computational devices, summing
up their inputs and calculating a non-linear out-
put function. Information is encoded in the mean
firing rate of neurons which exhibit narrow speciali-
sation - they are devoted to processing a particular
type of input information. Further, richly inter-
connected networks of such neurons learn via ad-
justing inter-connection weights. In the literature
there exist numerous examples of learning rules
and architectures, more or less inspired by vary-
ing degrees of biological plausibility. Almost from
the very beginning of connectionism, researchers
were fascinated by computational capabilities of
such devices [42, 56]. The revival of connection-
ism in the mid-eighties featured increased interest
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in analysing the properties of such networks [55],
as well as in applying them to numerous practi-
cal problems [26]. At the same time the same
devices were proposed as models of cognition ca-
pable of explaining both higher level mental pro-
cesses [58] and low level information processing in
the brain [22]. However, these promises were based
on the assumption that the computational model
captures all the important characteristics of real
biological neurons with respect to information pro-
cessing. We will indicate in this article that very
recent advances in neuroscience appear to invali-
date this assumption. Neurons are much more com-
plex than was originally thought and thus networks
of oversimplified model neurons are orders of mag-
nitude below the complexity of real neuronal sys-
tems. From this it follows that current neural net-
work ‘technological solutions’ capture only superfi-
cial properties of biological networks and further,
that such networks may be incapable of provid-
ing a satisfactory explanation of our mental abil-
ities. We propose to complement the description
of a single neuron as a computational device by an
alternative, more ‘natural’ metaphor :- we hypoth-
esise that a neuron can be better and more natu-
rally described in terms of communication rather
than purely computation. We hope that shifting
the paradigm will result in escaping from the lo-
cal minimum caused by treating neurons and their
networks merely as computational devices. This
should allow us to build better models of the brain’s
functionality and to build devices that reflect more
accurately its characteristics. We will present a
simple connectionist model, NEural STochastic dif-
fusion search netwORk (NESTOR), fitting well in
this new paradigm and will show that its properties
make it interesting from both the technological and
brain modelling perspectives. Selman et al. posed
some challenge problems for Artificial Intelligence
[61]. In particular Rodney Brooks suggested revis-
ing the conventional McCulloch Pitts neuron model
and instead investigating the potential implications
(with respect to our understanding of biological
learning) of new neuron models based on recent
biological data. Further, Selman claimed that the
supremacy of standard heuristic, domain specific
search methods of Artificial Intelligence need to be
revised and suggested that recent investigation of
fast general purpose search procedures has opened
a promising alternative avenue. Furthermore, in

the same paper Horvitz posed the development of
richer models of attention as an important problem,
as all cognitive tasks “... require costly resources”
and ”controlling the allocation of computational re-
sources can be a critical issue in maximising the
value of a situated system’s behaviour.” We claim
that the new network presented herein addresses all
three challenges posed in the above review paper
[61], as it is isomorphic in operation to Stochastic
Diffusion Search (SDS), a fast, generic probabilis-
tic search procedure which automatically allocates
information processing resources to search tasks.

2 Computational metaphor

The emergence of connectionism is based on the
belief that neurons can be treated as simple com-
putational devices [42]. Further, the assumption
that information is encoded as mean firing rate of
neurons was a base assumption of all the sciences
related to brain modelling. The initial boolean
McCulloch-Pitts model neuron was quickly ex-
tended to allow for analogue computations. The
most commonly used framework for connection-
ist information representation and processing is a
subspace of a Euclidean space. Learning in this
framework is equivalent to extracting an appropri-
ate mapping from the sets of existing data. Most
learning algorithms perform computations which
adjust neuron interconnection weights according to
some rule, adjustment in a given time step being a
function of a training example. Weight updates are
successively aggregated until the network reaches
an equilibrium in which no adjustments are made
(or alternatively stopping before the equilibrium, if
designed to avoid overfitting). In any case knowl-
edge about the whole training set is stored in final
weights. This means that the network does not pos-
sess any explicit internal representation of the (po-
tentially complex) relationships between training
examples other than that which implicitly exists as
a distribution of weight values. We do not consider
representations of arity zero predicates, (e.g. those
present in NETtalk [59]), as sufficient for represen-
tation of complex relationships. These limitations
result in poor internal knowledge representation
making it difficult to interpret and analyse the net-
work in terms of causal relationships. In particular
it is difficult to imagine how such a system could
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develop symbolic representation and logical infer-
ence (cf. the symbolic/connectionist divide). Such
deficiencies in the representation of complex knowl-
edge by neural networks have long been recognised
[19, 7, 54]. The way in which data are processed
by a single model neuron is partially responsible
for these difficulties. The algebraic operations that
it performs on input vectors are perfectly admissi-
ble in Euclidean space but do not necessarily make
sense in terms of the data represented by these vec-
tors. Weighted sums of quantities, averages etc.,
may be undefined for objects and relations of the
real world, which are nevertheless represented and
learned by structures and mechanisms relying heav-
ily on such operations. This is connected with a
more fundamental problem missed by the connec-
tionist community - the world (and relationships
between objects in it) is fundamentally non-linear.

Classical neural networks are capable of discov-
ering non-linear, continuous mappings between ob-
jects or events but nevertheless they are restricted
by operating on representations embedded in lin-
ear, continuous structures (Euclidean space is by
definition a finite-dimensional linear vector space
equipped with standard metric). Of course it is
possible in principle that knowledge from some do-
main can be represented in terms of Euclidean
space. Nevertheless it seems that only in extremely
simple or artificial problems the appropriate space
will be of small dimensionality. In real life prob-
lems spaces of very high dimensionality are more
likely to be expected. Moreover, even if embedded
in a Euclidean space, the actual set representing a
particular domain need not be a linear subspace, or
be a connected subset of it. Yet these are among
the topological properties required for the correct
operation of classical neural nets. There are no
general methods of coping with such situations in
connectionism.

Methods that appear to be of some use in such
cases seem to be freezing some weights (or restrict-
ing their range) or using a ‘mixtures of experts’ or
‘gated networks’ [31]. However, there is no prin-
cipled way describing how to perform the former.
Mixture of experts models appear to be a better
solution, as single experts could in principle ex-
plore different regions of a high dimensional space
thus their proper co-operation could result in sat-
isfactory behaviour. However, such architectures
need to be individually tailored to particular prob-

lems. Undoubtedly there is some degree of modu-
larity in the brain, however, it is not clear that the
brain’s operation is based solely on a rigid modular-
ity principle. In fact we will argue in the next sec-
tion that biological evidence seems to suggest that
this view is at least incomplete and needs revision.
We feel that many of the difficulties outlined above
follow from the underlying interpretation of neu-
ron functioning in computational terms, which re-
sults in entirely numerical manipulations of knowl-
edge by neural networks. This seems a too restric-
tive scheme. Even in computational neuroscience,
existing models of neurons describe them as geo-
metric points even though neglecting the geometric
properties of neurons (treating dendrites and axons
as merely passive transmission cables) makes such
models very abstract and may strip them of some
information processing properties. In most techni-
cal applications of neural networks the abstraction
is even higher - axonic and dendritic arborisations
are completely neglected - hence they cannot in
principle model the complex information process-
ing taking place in these arbors [62]. We think
that brain functioning is best described in terms
of non-linear dynamics but this means that pro-
cessing of information is equivalent to some form
of temporal evolution of activity. The latter how-
ever may depend crucially on geometric properties
of neurons as these properties obviously influence
neuron activities and thus whole networks. Friston
[21] stressed this point on a systemic level when he
pointed out to the importance of appropriate con-
nections between and within regions - but this is ex-
actly the geometric (or topological) property which
affects the dynamics of the whole system. Qualita-
tively the same reasoning is valid for single neurons.
Undoubtedly, model neurons which do not take into
account geometrical effects perform some process-
ing, but it is not clear what this processing has to
do with the dynamics of real neurons. It follows
that networks of such neurons perform their oper-
ations in some abstract time not related to the real
time of biological networks (We are not even sure
if time is an appropriate notion in this context, in
case of feedforward nets ‘algorithmic steps’ would
be probably more appropriate).

This concerns not only classical feedforward nets
which are closest to classical algorithmic processing
but also many other networks with more interest-
ing dynamical behaviour (e.g. Hopfield or other
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attractor networks). Of course one can resort to
compartmental models but then it is apparent that
the description of single neurons becomes so com-
plex that we have to use numerical methods to de-
termine their behaviour. If we want to perform any
form of analytical investigation then we are bound
to simpler models.

Relationships between real life objects or events
are often far more complex for Euclidean spaces
and smooth mappings between them to be the most
appropriate representations. In reality it is usually
the case that objects are comparable only to some
objects in the world, but not to all. In other words
one cannot equip them with a ‘natural’ ordering re-
lation. Representing objects in a Euclidean space
imposes a serious restriction, because vectors can
be compared to each other by means of metrics;
data can be in this case ordered and compared in
spite of any real life constraints. Moreover, vari-
ables are often intrinsically discrete or qualitative in
nature and in this case again Euclidean space does
not seem to be a particularly good choice. Net-
works implement parametrised mappings and they
operate in a way implicitly based on the Euclidean
space representation assumption - they extract in-
formation contained in distances and use it for up-
dates of weight vectors. In other words, distances
contained in data are translated into distances of
consecutive weight vectors. This would be fine if
the external world could be described in terms of
Euclidean space however it would be a problem if
we need to choose a new definition of distance each
time a new piece of information arrives.

Potentially new information can give a new con-
text to previously learnt information, with the re-
sult that concepts which previously seemed to be
not related now become close. Perhaps this means
that our world model should be dynamic - chang-
ing each time we change the definition of a dis-
tance? However, weight space remains constant
- with Euclidean distance and fixed dimensional-
ity. Thus the overall performance of classical net-
works relies heavily on their underlying model of
the external world. In other words, it is not the
networks that are ‘smart’, it is the choice of the
world model that matters. Networks need to ob-
tain ‘appropriate’ data in order to ‘learn’, but this
accounts to choosing a static model of the world
and in such a situation networks indeed can per-
form well. Our feeling is that, to a limited ex-

tent, a similar situation appears in very low level
sensory processing in the brain, where only the
statistical consistency of the external world mat-
ters. However, as soon as the top down information
starts to interact with the bottom up processing
the semantic meaning of objects becomes signifi-
cant and this can often violate the assumption of
static world representations. It follows that classi-
cal neural networks are well equipped only for tasks
in which they process numerical data whose rela-
tionships can be well reflected by Euclidean dis-
tance. In other words classical connectionism can
be reasonably well applied to the same category of
problems which could be dealt with by various re-
gression methods from statistics. Moreover, as in
fact classical neural nets offer the same explana-
tory power as regression, they can be therefore re-
garded as its non-linear counterparts. It is however
doubtful whether non-linear regression constitutes
a satisfactory (or the most general) model of fun-
damental information processing in natural neural
systems. Another problem follows from the rigidity
of neurons’ actions in current connectionist models.
The homogeneity of neurons and their responses is
the rule rather than the exception. All neurons
perform the same action regardless of individual
conditions or context. In reality, as we argue in
the next section, neurons may condition their re-
sponse on the particular context, set by their im-
mediate surroundings, past behaviour and current
input etc. Thus, although in principle identical,
they may behave as different individuals because
their behaviour can be a function of both morphol-
ogy and context. Hence, in a sense, the way con-
ventional neural networks operate resembles sym-
bolic systems - both have built in rigid behaviour
and operate in an a priori determined way. Tak-
ing different ‘histories’ into account would allow
for the context sensitive behaviour of neurons - in
effect for existence of heterogeneous neuron pop-
ulations. Standard nets are surprisingly close to
classical symbolic systems although they operate in
different domains: the latter operating on discrete,
and the former on continuous spaces. The differ-
ence between the two paradigms in fact lies in the
nature of representations they act upon, and not so
much in the mode of operation. Symbolic systems
manipulate whole symbols at once, whereas neural
nets usually employ sub-symbolic representations
in their calculations. However, both execute pro-
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grams, which in case of neural networks simply pre-
scribe how to update the interconnection weights in
the network. Furthermore, in practice neural net-
works have very well defined input and output neu-
rons, which together with their training set, can be
considered as a closed system relaxing to its steady
state. In modular networks each of the ‘expert’ nets
operates in a similar fashion, with well defined in-
puts and outputs and designed and restricted inter-
communication between modules. Although many
researchers have postulated a modular structure for
the brain [20], with distinct functional areas being
black boxes, others [44, 18] have realised that the
brain operates rather like an open system which,
due to the ever changing conditions, exhibits exten-
sive connectivity between areas and no fixed input
and output. The above taxonomy resembles a sim-
ilar distinction between algorithmic and interactive
systems in computer science, the latter possessing
many interesting properties [70].

3 Biological evidence

Advances in neuroscience provide us with evidence
that neurons are much more complex than previ-
ously thought [34]. In particular, it has been hy-
pothesised that neurons can select input depending
on its spatial location on the dendritic tree or on
its temporal structure [34, 6, 23]. Some neurobiol-
ogists suggest that synapses can remember the his-
tory of their activation or, alternatively, that whole
neurons discriminate spatial and/or temporal pat-
terns of activity [23]. Various authors have pos-
tulated spike encoding of information in the brain
[65, 60, 35]. The speed of information processing
in some cortical areas, the small number of spikes
emitted by many neurons in response to cognitive
tasks [53, 57, 66], together with very variable be-
haviour of neurons in vivo [63], suggest that neu-
rons would not be able to reliably estimate mean
firing rate in the time available. Some results sug-
gest that firing events of single neurons are repro-
ducible with very high reliability and interspike in-
tervals encode much more information than firing
rates [8]. Others found that neurons in isolation
can produce, under artificial stimulation, very reg-
ular firing with high reproducibility rate suggesting
that the apparent irregularity of firing in vivo may
follow from interneuronal interactions or may be

stimulus dependent [39]. The use of interspike in-
terval coding enables richer and more structured in-
formation to be transmitted and processed by neu-
rons. The same mean firing rate corresponds to
a combinatorial number of interspike interval ar-
rangements in a spike train. What would previ-
ously be interpreted as a single number can carry
much more information in temporal coding. More-
over, temporal coding enables the system to encode
unambiguously more information than is possible
with a simple mean firing rate. Different parts of a
spike train can encode qualitatively different infor-
mation. All these possibilities have been excluded
in the classical view of neural information process-
ing. Even though a McCulloch-Pitts neuron is suf-
ficient for production of spike trains, spike trains
by themselves do not solve the binding problem
(i.e. do not explain the mechanism responsible for
integration of object features which are processed
in spatially and temporally distributed manner).
However, nothing would be gained, except possibly
processing speed, if the mean firing rate encoding
would be merely replaced by temporal encoding as
the underlying framework of knowledge represen-
tation and processing still mixes qualitatively dif-
ferent information by simple algebraic operations.
The irregular pattern of neuron activity in vivo [63]
is inconsistent with temporal integration of excita-
tory post synaptic potentials (EPSPs) assumed in
classical model neurons. It also introduces huge
amounts of noise, thus making any task to be per-
formed by neurons, were they unable to differen-
tially select their input, extremely difficult. On the
other hand, perhaps there is a reason for this ir-
regular neuronal behaviour. If neurons are coin-
cidence detectors rather than temporal integrators
[34, 65] then the randomness of neuron firing is an
asset rather than liability. One of the most difficult
and as yet unresolved problems of computational
neuroscience is that of binding distinct features of
the same object into a coherent percept. How-
ever, in [49], Nelson postulates that it is the tra-
ditional view ‘transmission first, processing later’,
that introduces the binding problem. On this view
processing cannot be separated from transmission
and, when entangled with transmission performed
by neural assemblies spanning multiple neuronal ar-
eas, it makes the binding problem non-existent [50].
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4 Communication metaphor

The brain’s computational capabilities have to be
understood in a metaphorical sense only. All mat-
ter, from the simplest particles to the most com-
plex living organisms undergoes physical processes
which, in most sciences, are not given any special
interpretation. However, when it comes to nervous
systems the situation changes abruptly. In neuro-
science, and what follows in connectionism, it is
assumed that neurons and their systems possess
special computational capabilities, which are not
attributed to other, even the most complex, biologi-
cal substances (e.g. DNA). This is a very anthropo-
morphic viewpoint because, by definition, compu-
tation is an intentional notion and it assumes exis-
tence of some ‘demon’ able to interpret it. Thus we
claim that the very assumption of computational
capabilities of real neurons leads to homuncular
theories of mind. In our opinion to say that neurons
perform computations is equivalent to saying that
e.g., a spring extended by a moderate force com-
putes, according to Hook’s law, how much it should
deform. We need to stress that our stance does
not imply that one should abandon using computa-
tional tools for modelling and analysing the brain.
However, one should be aware of their limitations.
On the other hand, although also metaphorical,
treating neurons as communicating with each other
captures their complex (and to us fundamental),
capability of modifying behaviour depending on the
context. Our claim is that communication as bio-
logical information processing could describe more
compactly complex neuronal operations and pro-
vide us with intuitive understanding of the meaning
of these operations (albeit we do not impose that
this meaning would be accessible to single neurons).
Although interpreting neurons as simple numerical
or logical functions greatly simplifies their descrip-
tion, it introduces problems at the higher levels of
neural organisation. Moreover, as we argued earlier
recent neurobiological evidence supports the claim
that the idea of neurons being simple computa-
tional devices has to be reconsidered. We argue
that communication better describes neuron func-
tionality than computation. In contrast to com-
putation, communication is not a merely anthro-
pomorphic projection on reality. Even relatively
simple organisms, e.g. bacteria, communicate with
each other or with the environment. This ability

is essential for their survival and it seems indis-
pensable for more complex interactions and social
behaviour of higher species. The role of communi-
cation in human development and in social interac-
tions cannot be overestimated [14]. It seems there-
fore that communication is a common process used
by living systems on all levels of their organisation.
In our opinion the most fundamental qualitative
properties of neurons postulated recently are their
capability to select different parts of converging sig-
nals and the capability of choosing which signals to
consider in the first place. Thus neurons can be said
to communicate to each other simple events and to
select information which they process or transmit
further. The selection procedure could be based
on some criteria dependent on the previous signals’
properties such as where from and at what moment
the information arrived. This would account for
neurons’ spatio-temporal filtering capacity. Also it
would explain the amount of noise observed in the
brain and apparent contrast between reliability of
neural firing in vitro and their random behaviour
in vivo. What is meaningful information for one
neuron can be just noise for another. Moreover,
such noise would not deter functionality of neurons
that are capable of responding to selected infor-
mation. One could object to our proposal using
the parsimony principle - why introduce an extra
level of complexity if it has been shown that net-
works of simple neurons can perform many of the
tasks attributed to biological networks? However,
we argue that such a position addresses a purely
abstract problem, which may have nothing to do
with brain modelling. What is possible to com-
pute with artificial neurons is, in principle, a math-
ematical problem; how the same functionality is
achieved in the brain is another matter. The in-
formation processing capacity of dendritic trees is
a scientific fact not merely a conjecture. Instead
of computational parsimony we propose an ‘eco-
nomical’ one: the brain facilitates the survival of
its owner and for that purpose uses all available re-
sources to processes information. Polychronisation,
emergence of time locked but not synchronised pat-
terns of activity or synfire chains, groups of mutu-
ally synchronised neurons which are out of synch
with each other are other suggestions proposed in
the literature that propose richer temporal process-
ing capacity of neurons and their networks [30, 1].
In the next section we will outline a connectionist
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architecture, in which neurons’ operation is based
on communication more than on computation (the
fact that communication is implemented using a
form of computation should not detract us from
recognition of the importance of the communica-
tion as a level at which the operation of neurons
can be meaningfully described and interpreted ver-
sus computation as implementing such processes on
an inherently Turing like architecture).

5 NESTOR: a connectionist
Spiking Neuron Stochastic
Diffusion Network

The connectionist network architecture of
NESTOR consists of three one-dimensional
layers: the input retina consisting of a layer of
receptor neurons; a layer of matching neurons and
a layer of memory neurons. In operation the func-
tion of NESTOR is to label and locate the best fit
of a target pattern (hereafter called a memory and
defined by the activity of memory neurons), from a
particular external stimulus on the retina (defined
by the pattern of activity on receptor neurons). All
neurons output spike trains in which information
is encoded in Inter-Spike Intervals (ISI’s). Such
temporal coding allows for a much richer repertoire
of information encoding than a simple mean firing
rate. In particular, different parts of the spike
train may encode different types of information
effectively leading to multiplexing. Moreover,
only parts of the spike trains may encode directly
information about the stimulus (or memory); the
other parts providing a modulatory input internal
to the network and setting the context in which
the sensory (or memory) information is processed.
It is such a hypothetical encoding scheme that is
utilised in NESTOR.

Matching neurons are fully interconnected to all
other matching neurons. They are also fully con-
nected to both receptor neurons and memory neu-
rons. A schematic diagram of network connectiv-
ity is given in Figure 1. The restriction to one-
dimensional layers is for clarity of exposition only
and extension to two-dimensional layers is straight-
forward.

Matching neurons perform a set of operations
on their input essentially akin to (nonlinear) filter-

Figure 1: The architecture of NESTOR

ing. In contrast to the operation of classical neuron
models, matching neurons select the spike trains
to process on the basis of information contained
in the first part of the spike trains and on their
own state. Subsequently, their output and state
will be dependent on the information contained in
the second part of the accepted spike trains. How-
ever, the output will always consist of (parts of)
the accepted spike trains; no further processing of
the inputs is needed. In this sense their operations
amounts to filtering which information will be prop-
agated throughout the network rather than calcu-
lating some numeric transformation of their over-
all input. Nonlinearity of filtering stems from its
contextual nature; which parts of matching neu-
ron’s input are being propagated depends on its
own state and on the properties of other input com-
ponents.

More specifically, matching neurons both main-
tain and output hypotheses - ‘where’ values - defin-
ing possible locations of the target pattern on the
retina. Also for clarity of exposition we use the
labels ‘active’ and ‘inactive’ to identify the inter-
nal ‘state’ of matching neurons, however these la-
bels are neither used or known by other matching
neurons. An active matching neuron will output
its current hypothesis as a spike train; an inactive
matching neuron will adopt a new hypothesis from
the first spike train it receives and output this. This
spike train can either be from another matching
neuron or from memory and retina neurons.

Matching neurons evaluate their hypothesis -
‘where’ value - by comparing randomly selected
micro-feature(s) - ‘what’ information - from the
memory and the corresponding ‘what’ information
from the retina. If the micro-features are the same
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(the corresponding ‘what’ values are the same), this
provides evidence that the hypothesis is good and
so the matching neuron becomes active.

An active matching neuron initiates a spike
train and retains its current hypothesis (its ‘where’
value). Thus a successful matching neuron will
not switch to evaluate other locations in the search
space (retina), but will continue to randomly evalu-
ate its current hypothesis - ‘where’ value - by test-
ing for the presence of other (randomly selected)
micro-features from the target.

On the contrary, a neuron failing to discover the
same micro-feature will remain inactive and will
adopt a new hypothesis encoded in a spike train
arriving from other matching neurons. As these
spike trains are accepted on the basis of their ar-
rival time, an inactive matching neuron can either
exploit a potentially correct position signalled by
an active matching neuron or explore a completely
new position encoded in the spike train generated
by another inactive neuron.

However, if the first spike train arrives from
memory or retina, a matching neuron will simply
output a spike train encoding the position defined
by the input trains without further processing or
changes to its [notional] state.

It is apparent that, over consecutive cycles of
operation, a matching neuron evaluating the spike
trains encoding the retinal region with the highest
overlap of microfeatures with the target memory is
more likely to retain its memory at the next cycle
of activity, than it is when processing spike trains
encoding other locations. This is because, by defini-
tion, the chance of matching a micro-feature from
the retina and the memory is highest here. Ef-
fectively matching neurons operate by filtering the
incoming spike trains on the basis of their past ac-
tivity.

The location on the retina of the best fit to the
memory located by the network is encoded in the
dominant spike train output of matching neurons,
i.e. it is the position corresponding to the mode of
the distribution of matching neuron ‘where’ signals.

As the process of memory location by the net-
work is statistical in nature, the assembly of neu-
rons encoding the best fit solution can fluctuate
dynamically both in number and identity. Even
though single neurons can change their ‘where’ in-
formation with relatively high probability and their
activity can be considered random when considered

in isolation, they nevertheless collectively produce
stable behaviour in a quasi-deterministic manner.
This form of dynamic information decoding has
to be contrasted with the conventional neural net-
works operation where the readout from the net-
work is possible due to the deterministic and fixed
functionality of individual neurons.

As the time jitter of matching neurons efferent
activity is small compared to the length of the in-
formation encoding, an assembly of neurons finding
the best-fit may produce time locked or near oscil-
latory behaviour. Hence in this model oscillatory
behaviour may be a result of, rather than a cause of,
the binding of features belonging to the same object.

5.1 Retina and memory

The function of each receptor neuron is to commu-
nicate its position on the retina and to encode the
micro-feature that stimulated it. The first ISI sent
by a receptor neuron encodes information about
its position on the retina (the ‘where’ information,
∆twret) and the second ISI encodes the micro-feature
that stimulated this receptor (the ‘what’ informa-
tion, ∆tmret). For modelling purposes we assume the
following relationship between a receptor’s retinal
position and its encoding via the ISI as:

∆twj+1 ∝ ∆twj + ∆tw (1)

where j, j+1 are two adjacent retinal positions
and ∆tw is the minimal increment of the ISI (see
Figure 2). The above encoding is akin to the prin-
ciple of preservation of receptor’s topographic or-
ganisation although its particular form is arbitrary
and assumed here to simplify this exposition - any
relation enabling determination of the length of the
first ISIs of neighbouring receptor neurons would be
equally suitable.

In operation memory neurons are functionally
identical to receptor neurons. Thus at the onset
of activity, their first ISI, ∆twmem encodes relative
‘where’ information and the second ISI, ∆tmmem en-
codes memory ‘what’ information.

Hence the only difference between receptor cells
and memory neurons is that receptors respond
to and encode external stimuli whereas memory
neurons encode and propagate internal representa-
tions of the external world. However, in operation
matching neurons need to distinguish the ‘source’
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Figure 2: Encoding of information in the spike
trains of receptor cells. The relative position of re-
ceptor cells in the spike train is encoded in the first
Inter-Spike Intervals. The difference t, between the
first Inter-Spike Interval’s lengths of adjacent re-
ceptor cells is constant for any receptor cell j. The
second ISI’s encode micro-features that activated
corresponding receptor cells.

of afferent information (matching, memory or re-
ceptor neuron). This requires either ‘labelled’ in-
put lines or some form of source-encoding within
the spike train. However, both methods provide
information at the expense of an increase in net-
work complexity, therefore to aid the clarity of this
short exposition, the process underlying this par-
ticular mechanism will be left open, with source in-
formation explicitly available to matching neurons
as required.

5.2 Matching layer neurons

A matching neuron only stores the ‘where’ infor-
mation (defined by the ISI encoding the value of
∆twneur), of an accepted spike train. The delay be-
tween a matching neuron firing and the arrival of
the resulting spike train to efferent neurons follows
from the transmission delays introduced by efferent
axons.

We assume that the sum of the maximal length
of the spike train,Tl and maximal time delay Td is
smaller than the length of the time interval between
consecutive updates of matching neurons, T:

Tl + Td ≤ T (2)

Further, it is assumed that the probability dis-
tribution of the spike train arrival times to a given
matching neuron is the same for all afferent axons.

The method by which a matching neuron pro-
cesses incoming information depends on the infor-
mation itself and on the past activity imprinted in
neuron’s memory (∆twneur) and state (either active
or inactive). If a matching neuron is in an active
state, it will select for processing the first spike
trains from the retina and memory that fulfil the
condition:

∆twret + ∆twmem = ∆twneur (3)

This condition ensures that each matching neu-
ron selects a micro-feature from memory and com-
pares it with appropriate information from the
retina, (see Figure 3). Subsequently, the matching
neuron will compare the second ISIs from the corre-
sponding spike trains, ∆tmmem and ∆tmret , defining
the ‘what’ information from the memory and the
retina.

If the comparison is successful (i.e. the micro-
feature propagated by the receptor neuron is iden-
tical to that propagated by the memory neuron)
the matching neuron fires a spike train correspond-
ing to the position defined by ∆twneur. In the next
cycle of activity it will explore other microfeatures
at that position as it will remain in an active state
and its internal memory will not change. Other-
wise, the matching neuron will become inactive. In
the inactive state the matching neuron will accept
information from either the first arriving spike train
from another matching neuron or spike trains mem-
ory and the retina (albeit with no constraints on
ISI’s). In the latter case the matching neuron will
fire a spike train corresponding to the position de-
fined jointly by first inter spike intervals arriving
from the memory and the retina. In the former
case it will modify its memory, ∆twneur, to store the
first ISI from another neuron and will change its
state to active. This mechanism allows a match-
ing neuron to check the position pointed to by an-
other successful matching neuron or alternatively
a completely random position in the search space
derived from the spike train generated by another
inactive neuron. From the fact that arrival times
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Figure 3: (a) Relative positions of the micro-
feature, C, selected from the target memory,
[A1BB3C33G], and on the retina, [ADC33 ..
A1BB3C33G .. XTGPS]; (b) their encoding in the
length of Inter-Spike Intervals by receptor cell and
memory neuron respectively, together with the re-
sulting matching neuron target position encoding.

of spike trains are independent and identically dis-
tributed random variables it follows that the choice
of the spike trains based on their arrival times to a
given neuron is unbiased. It means that a matching
neuron can choose information arriving from other
matching neurons with equal probability.

Operation of NESTOR can be better understood
if one realises that it is closely related to a dis-
tributed swarm intelligence system called Stochas-
tic Diffusion Search described in the next section.

6 Stochastic Diffusion Search

SDS is an efficient probabilistic swarm intelligence
global search and optimisation technique that has
been applied to diverse problems such as site selec-
tion for wireless networks [68], mobile robot self-
localisation [10], object recognition [12] and text
search [11]. Additionally, a hybrid SDS and n-tuple
RAM [2] technique has been used to track facial
features in video sequences [12, 24].

Previous analysis of SDS has investigated its
global convergence [45], linear time complexity [46]
and resource allocation [48] under a variety of
search conditions.

SDS is based on distributed computation, in
which the operations of simple computational
units, or agents are inherently probabilistic. Agents
collectively construct the solution by performing
independent searches followed by diffusion of in-
formation through the population. Positive feed-
back promotes better solutions by allocating to
them more agents for their exploration. Limited re-
sources induce strong competition from which the
largest population of agents corresponding to the
best-fit solution rapidly emerges.

SDS uses a population of agents. In many search
problems the solution can be thought of as com-
posed of many subparts and SDS explicitly utilises
such decomposition to increase the search efficiency
of individual agents. In SDS each agent poses a
hypothesis about the possible solution and eval-
uates it partially. Successful agents repeatedly
test their hypothesis while recruiting unsuccessful
agents by direct communication. This creates a
positive feedback mechanism ensuring rapid con-
vergence of agents onto promising solutions in the
space of all solutions. Regions of the solution space
labelled by the presence of agent clusters can be
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interpreted as good candidate solutions. A global
solution is thus constructed from the interaction
of many simple, locally operating agents forming
the largest cluster. Such a cluster is dynamic in
nature, yet stable, analogous to, “a forest whose
contours do not change but whose individual trees
do”, [3, 13]. The search mechanism can be illus-
trated with the following analogy.

6.1 The restaurant game

A group of delegates attends a long conference in
an unfamiliar town. Each night they have to find
somewhere to dine. There is a large choice of
restaurants, each of which offers a large variety of
meals. The problem the group faces is to find the
best restaurant, that is the restaurant where the
maximum number of delegates would enjoy dining
(this simplistic model constructed to illustrate the
SDS assumes that all diners have the same prefer-
ences). Even a parallel exhaustive search through
the restaurant and meal combinations would take
too long to accomplish. To solve the problem
delegates decide to employ a Stochastic Diffusion
Search.

Each delegate acts as an agent maintaining a hy-
pothesis identifying the best restaurant in town.
Each night each delegate partially evaluates his hy-
pothesis by dining there and randomly selecting one
of the meals from the menu. The next morning at
breakfast every delegate who did not enjoy his meal
the previous night, asks one randomly selected col-
league to share his dinner impressions. If the expe-
rience was good, the unsatisfied diner also adopts
this restaurant as his choice. Otherwise he simply
selects another restaurant at random from those
listed in ‘Yellow Pages’.

Using this strategy it is found that very rapidly
significant number of delegates congregate around
the ‘best’ restaurant in town.

Abstracting from the above algorithmic process:
By iterating through test and diffusion phases

agents stochastically explore the whole solution
space. However, since tests succeed more often
on good candidate solutions than in regions with
irrelevant information, an individual agent will
spend more time examining good regions, at the
same time recruiting other agents, which in turn,
via a positive feedback cycle, recruit even more
agents. Good candidate solutions are thus iden-

Initialisation phase

Whereby all agents (delegates) generate

an initial hypothesis (select a restaurant).

loop

Test phase

Each agent evaluates evidence for its

hypothesis (meal degustation).

Agents are classified as active (happy

diners) or inactive (disgruntled diners).

Diffusion phase

Inactive agents adopt a new hypothesis

by either communication with another

agent or, if the selected agent is also

inactive, there is no information flow

between the agents; instead the

selecting agent must adopt a new

hypothesis (restaurant) at random.

endloop

tified by concentrations of a substantial population
of agents.

Central to the power of SDS is its ability to es-
cape local minima. This is achieved by the prob-
abilistic outcome of the partial hypothesis evalua-
tion in combination with reallocation of resources
(agents) via stochastic recruitment mechanisms.
Partial hypothesis evaluation allows an agent to
quickly form its opinion on the quality of the in-
vestigated solution without exhaustive testing (e.g.
it can find the best restaurant in town without hav-
ing to try all the meals available in each).

7 Comparison of SDS and
NESTOR

Under specific assumptions about the probability
distribution of delays and the use of multiplexing of
information encoded in the spike trains, NESTOR
mimics operation of the generic SDS. The corre-
spondence between these architectures can be es-
tablished by equating matching neurons of the lat-
ter with agents. However, the important differ-
ence between the two is that in SDS the activity
state of a given agent is accessible to other agents,
whereas in NESTOR information about the inter-
nal state of a matching neuron is only used lo-
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cally. Matching neurons do not have direct ac-
cess to the internal states of other neurons. More-
over, the two algorithms differ in the way they en-
code information. All the information necessary
for operation of matching neurons is (in princi-
ple) encoded explicitly, whereas in SDS agents can
only act on the information distributed by other
agents; their activity constituting an implicit in-
formation. Moreover, the information encoding in
SDS is in an abstract, dimensionless form, typi-
cal for vast majority of artificial neural networks
and even for more faithful neural models utilising
rate coding. On the contrary, all the information
processed by matching neurons in NESTOR has a
physical dimension of time interval between con-
secutive spikes. This characteristic introduces time
delays into NESTOR and thus bears on the dy-
namics of this network. Another difference between
the systems follows from different modes of opera-
tion. SDS operates in synchroneous mode and all
agents go through their cycles of activity in par-
allel. In contrast, matching neurons in NESTOR
operate asynchroneously, which prevents a one to
one correspondence between the largest cluster of
active agents in the in SDS and the strongest invari-
ant spike train pattern encoding the solution found
by NESTOR. Both above mentioned features affect
the time count in both systems - several hundreds
of time steps in NESTOR correspond to a single
iteration of SDS.

Figure 4 shows an example of operation of both
SDS, panel (a), and NESTOR, panel (b), illustrat-
ing these differences. Thus, traces denote the num-
ber of agents in the largest active cluster in case of
SDS, and the number of active neurons firing the
spike train encoding the solution in NESTOR. The
differences discussed above influence the quantita-
tive differences in the dynamics of the two systems
(e.g. much larger variance in case of NESTOR).
Nevertheless, in spite of these differences, the qual-
itative behaviour of SDS and NESTOR is similar
(in both the time course and quasi-steady state be-
haviour).

8 Discussion and conclusions

The neural network outlined in this paper per-
forms SDS and solves the best-fit matching prob-
lem. This functionality emerges from its ability to

Figure 4: (a) Time evolution of the largest clus-
ter of active agents pointing to the same position
in the search space in SDS; (b) time evolution
of the number of active matching neurons emit-
ting the spike train encoding the solution found by
NESTOR. The difference of the information en-
coding mode between the two algorithms affects dif-
ferent time scales as well as quantitative measures
of response such as variance (see text for details).
However, qualitative behaviour of both systems is
similar in both time course and quasi-steady state.
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self-organise in response to incoming stimuli. The
network effectively uses a tagged dynamic assem-
bly encoding for the target, and finding this within
the search space results in the onset of time locked
activity of spike trains within the neural assembly.

Micro-features defining the target are tagged
both by their retinal encoding and their relative po-
sition on the retina. A label-tag encodes ‘what’ the
micro-feature is and a location-tag defines ‘where’
it is. Thus the NESTOR network processes knowl-
edge as ‘tokens’ and not as ‘types’. This con-
trasts information processing in most associative
networks, where knowledge is represented as sim-
ple types (defined by vectors in Euclidean space). It
has been suggested by Van de Velde [69] that ‘type’
representation schemes are a fundamental cause of
many of the problems encountered when modelling
symbolic processes by associative networks.

NESTOR constitutes a very simplified model
qualitatively demonstrating how information may
be processed in a neural architecture utilising tem-
poral encoding and multiplexing. As such, some
important issues such as encoding of memories need
future elaboration. Instead, this paper argues the
possibility that knowledge representation in the
networks using temporal encoding of information
may be fundamentally different from that used in
classical nets. In our model the activity of single
neurons does not suggest a semantical interpreta-
tion, as neurons respond to all features. However,
an assembly of such neurons, locked to a particular
location in the search space, does acquire a semanti-
cal interpretation, as it supports a tagged-tokenised
internal representation of the object it attends to.
The neurons do not constitute the internal repre-
sentation in themselves, as the assembly is dynami-
cally fluctuating, but their pattern of activity does.
Thus, although an assembly supporting a partic-
ular representation in different time instants can
differ considerably in the number and identity of
its constituent neurons, the representation is con-
tinuous and stable over time.

Further, the allocation of neurons to the best fit
of the target is analogous to an attention mech-
anism switching computational resources between
target objects. This suggests a possible solution
to the classical parallel/serial divide problem of at-
tention theory described by Treisman [64]. In our
model both types of attention coexist. Single neu-
rons process information from the search space in

parallel and serial attention emerges when an as-
sembly of neurons that have been focused on one
area of the retina ‘locks’ to another. Moreover,
the network will retain one of the most funda-
mental properties of SDS - automatic allocation of
resources, whose characteristics have been exten-
sively investigated in [48].

———————————————————–
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