
Stochastic Diffusion Search: partial function
evaluation in swarm intelligence dynamic
optimisation

Kris De Meyer1, Slawomir J. Nasuto2, and Mark Bishop3

1 King’s College London, University of London, UK
kris demeyer@kcl.ac.uk

2 Department of Cybernetics, The University of Reading
Whiteknights, Reading, RG6 6AY, UK
s.j.nasuto@reading.ac.uk

3 Department of Computing, Goldsmiths College
New Cross, London, SE14 6NW, UK
m.bishop@gold.ac.uk

1 Summary

The concept of partial evaluation of fitness functions, together with mecha-
nisms manipulating the resource allocation of population based search meth-
ods, are presented in the context of Stochastic Diffusion Search, a novel swarm
intelligence metaheuristic that has many similarities with ant and evolution-
ary algorithms. It is demonstrated that the stochastic process ensuing from
these algorithmic concepts has properties that allow the algorithm to optimise
noisy fitness functions, to track moving optima, and to redistribute the popu-
lation after quantitative changes in the fitness function. Empirical results are
used to validate theoretical arguments.

2 Introduction

In recent years there has been growing interest in a distributed mode of com-
putation utilising interaction between simple agents, (e.g., evolutionary al-
gorithms; particle swarm optimisation; ant algorithms etc.). Certain of these
“swarm intelligence” systems have been directly inspired by observing in-
teractions between social insects, such as ants and bees. For example, algo-
rithms inspired by the behaviour of ants – ant algorithms – typically use the
principle of communication via pheromone trails to successfully tackle hard
search and optimisation problems (see [19] for a recent review). This indirect
form of communication, based on modification of the physical properties of

2 K. De Meyer et al.

the environment, has been termed stigmergetic communication. The prob-
lem solving ability of these algorithms emerges from the positive feedback
mechanism and spatial and temporal characteristics of the pheromone mass
recruitment system they employ. Other swarm intelligence methods explore
mechanisms based on biological evolution, flocking behaviour, brood sorting
and co-operative transport, [28].

Independently of the above mechanisms, Stochastic Diffusion Search (SDS)
was proposed in 1989 as a population-based pattern-matching algorithm [3]
[4]. Unlike stigmergetic communication employed in ant algorithms, SDS uses
a form of direct communication between agents (similar to the tandem calling
mechanism employed by one species of ants, Leptothorax Acervorum, [33]).

SDS uses a population of agents where each agent poses a hypothesis about
the possible solution and evaluates it partially. Successful agents repeatedly
test their hypothesis while recruiting unsuccessful agents by direct communi-
cation. This creates a positive feedback mechanism ensuring rapid convergence
of agents onto promising solutions in the space of all solutions. Regions of the
solution space labelled by the presence of agent clusters can be interpreted as
good candidate solutions. A global solution is thus constructed from the in-
teraction of many simple, locally operating agents forming the largest cluster.
Such a cluster is dynamic in nature, yet stable, analogous to “a forest whose
contours do not change but whose individual trees do” [1].

Optimisation problems with stochastic and dynamically changing objec-
tives pose an interesting challenge to many swarm intelligence algorithms
which require repeated (re)evaluations of the fitness function. For certain ap-
plications the computational cost of these evaluations can prove prohibitive:
e.g., for online tracking of rapidly changing objectives, or for computationally
expensive fitness functions. In addition, in the case of genetic optimisation
of dynamically changing objectives, an additional complication comes from
the tendency of selection mechanisms to reduce diversity in the population
(population homogeneity), potentially resulting in inadequate responses to
subsequent changes in the fitness function. The first issue has previously been
addressed by methods that attempt to reduce the amount of evaluation work
performed, e.g., by estimating fitness values or by evaluating cheap, approxi-
mative fitness functions instead. The second issue has typically been addressed
by methods introducing or preserving diversity in the population.

SDS handles these two problems in a related, but slightly different man-
ner: firstly, it utilises the radically different concept of partial evaluation of
fitness functions to save on the computational cost of repeated evaluations,
reminiscent of the partial information available to individual social insects as
they engage in recruitment behaviour. Secondly, the variation and selection
mechanisms employed by SDS offer a new solution to the population homo-
geneity problem providing an alternative mechanism to balance the tradeoff
between a wide exploration of all feasible solutions and a detailed exploitation
of a small number of them.

Stochastic Diffusion Search 3

This chapter introduces SDS in the context of swarm intelligence algo-
rithms and demonstrates its applications in the field of stochastic and dynamic
optimisation. The chapter is structured as follows: Sect. 3 discusses interaction
mechanisms in social insects. Section 4 introduces partial evaluation of the fit-
ness function and the balance between exploration and exploitation in search
(the allocation of resources). In Sect. 5, an in-depth account of the standard
SDS algorithm is provided. Section 6 examines the similarities and differences
between SDS and Swarm Intelligence algorithms. Alternative mechanisms for
the manipulation of resource allocation in SDS are discussed in Sect. 7. Section
8 illustrates the use of SDS in a few simple stochastic and dynamic optimi-
sation problems. Finally, discussion and conclusions are presented in Sect. 9
and Sect. 10 respectively.

3 Mechanisms of Interaction in Social Insects

Swarm intelligence views the behaviour of social insects – ants, bees, ter-
mites and wasps – as offering a powerful problem solving metaheuristic with
sophisticated collective intelligence. Composed of simple interacting agents,
this intelligence lies in a network of interactions among the individuals and
between the individuals and the environment [6].

Social interaction in ants [24] and honey bees [21] [43] has evolved an
abundance of different recruitment strategies with the purpose of assembling
agents at some point in space for foraging or emigration to a new nest site.

Such recruitment forms can be local or global, one to one or one to
many, deterministic or stochastic. The informational content of the interaction
ranges from very simple to complex and can be partial or complete. However,
all such recruitment mechanisms propagate useful information through the
colony as a whole.

Often, the recruitment is based on exchange of very simple stimulative
information to trigger a certain action. Although the stimulative effect of
a recruitment signal is typically mixed with the directional function of the
signal, they actually constitute different functions: the stimulative function is
merely used to induce following behaviour in other individuals, whereas the
directional function conveys the information of where exactly to go.

In ants, chemical communication through the use of pheromones consti-
tutes the primary form of recruitment. From an evolutionary viewpoint, the
most primitive strategy of recruitment seems to be tandem running: a success-
ful foraging ant will, upon its return to the nest, attract a single ant (different
strategies exist - chemical, tactile or through motor display) and physically
lead this ant to the food source.

In so-called group recruitment, an ant summons several ants at a time, then
leads them to the target area. In more advanced group recruitment strategies,
successful scouts lay a pheromone trail from the food source to the nest.
Although this trail in itself does not have a stimulative effect, ants that are

4 K. De Meyer et al.

stimulated by a motor display in the nest can follow the trail to the food
source without additional cues from the recruiter.

Finally, the most developed form of recruitment strategy is mass recruit-
ment. Stimulation occurs indirectly: the pheromone trail from nest to food
source has both a stimulative and directional effect. Worker ants encountering
the trail will follow it without the need for additional stimulation. Individual
ants deposit an amount of pheromones along the trail, dependent on the per-
ceived quality or type of the food source. The outflow of foragers is dependent
on the total amount of pheromone discharged. Recruitment strategies during
emigration to new nest sites show a similar wide variety of physiology and
behaviour.

In honeybees, both stimulation and orientation occur primarily via motor
display. Bees that have successfully located a source of nectar or pollen will
engage in so called waggle dances. The direction of the dance indicates the
direction of the food source, whereas the velocity of the dance depends on
the distance to the find. The perceived quality and accessibility of the food
source influence the probabilities that a particular forager becomes a dancer,
continues exploiting the food source without recruiting or abandons the food
source and becomes a follower. A follower bee follows the dance of one ran-
domly chosen dancing bee, then tries to find the food source indicated by that
bees dance.

When compared to the stimulative function of recruitment strategies in
ants, bees can be said to practice group recruitment: each bee directly recruits
several other bees during its time on the dance floor. However, the directional
function is very different. Whereas ants either have to lead the follower to
the food source - which is time consuming - or leave signposts along the way;
bees do neither. They have evolved a form of symbolic communication, more
adapted to their specific conditions.

Different foraging and recruitment strategies induce different quantitative
performances. For ants, it was demonstrated that tandem recruitment is slower
than group recruitment, which in turn is slower than mass recruitment [12].
Also, the degree of accuracy - how many ants reach the food source for which
they have been recruited - is dependent on the type of communication used
and differs greatly from species to species [17].

Whatever the exact details of the recruitment behaviour, it leads to a
dynamical balance between exploration of the environment and exploitation of
the discovered food sources. Abstracting the social interaction and recruitment
mechanisms observed in insect societies has inspired the design of many of the
artificial swarm intelligence methods. The next section will concentrate on one
such heuristic abstracted from natural systems – that of partial information
exchange – and discuss its implications for search efficiency.

Stochastic Diffusion Search 5

4 The Concept of Partial Evaluation

Many functions that have commonly been used as benchmark problems for
swarm intelligence algorithms (e.g., evolutionary algorithms, particle swarm
optimisation, etc.) typically have relatively small evaluation costs [18, 44].
This stands in stark contrast with real-world applications, which are not nec-
essarily so well-behaved – for several possible reasons: the evaluation cost of a
single candidate solution may be a rapidly-increasing function of the number
of parameters, as e.g., for some problems in seismic data interpretation [44];
or, even an evaluation cost that is linear in the number of function parameters
can be excessively high: for example, the selection of sites for the transmis-
sion infrastructure of wireless communication networks can be regarded as a
set-cover problem [20] with an evaluation cost of candidate solutions that is
linear in the number of sites; however, the evaluation of a single site involves
costly radio wave propagation calculations [25]. Hence for swarm intelligence
algorithms which explicitly evaluate costly fitness functions, it is not only im-
portant to limit the total number of fitness evaluations, but also the amount
of computational work that is performed during the evaluation of a single
candidate solution. This is exceedingly true for stochastic and dynamically
changing problems, which may require multiple and continuing function eval-
uations.

The problem of costly function evaluations has been addressed many times
independently for static and dynamic, noisy and noise-free problem settings
(see [26] for a recent review). Two somewhat different approaches exist: firstly,
the fitness of part of the individuals can be estimated – rather than calculated
– from the fitness of other individuals or individuals from previous generations
using tools from statistics [9, 27]. In the second line of approach, the costly fit-
ness function is replaced with a cheaper, approximate fitness function, which
is evaluated instead; when the search has started to converge, the computa-
tional process can switch to evaluating the original fitness function to ensure
correct convergence [26].

In contrast, by analogy to the partial information about the environment
available to individuals in insect societies, the approach advocated here cap-
italises on the fact that many fitness functions are decomposable into com-
ponents that can be evaluated independently. An evaluation of only one or a
few of these components – a partial evaluation of the fitness function – may
still hold enough information for optimisation purposes. The next section will
introduce a metaheuristic based on partial evaluation of fitness function.

5 Stochastic Diffusion Search

Stochastic Diffusion Search (SDS) is an efficient generic search method, orig-
inally developed as a population-based solution to the problem of best-fit
pattern matching. SDS uses a one-to-one recruitment system akin to the

6 K. De Meyer et al.

tandem-running behaviour found in certain species of ants. In this section
we will introduce the SDS algorithm and subsequently demonstrate that effi-
cient global decision making can emerge from interaction and communication
in a population of individuals each forming hypotheses on the basis of partial
evidence.

We start by providing a simple metaphor, the restaurant game, that en-
capsulates the principles of SDS behaviour.

5.1 The restaurant game

A group of delegates attends a long conference in an unfamiliar town. Each
night they have to find somewhere to dine. There is a large choice of restau-
rants, each of which offers a large variety of meals. The problem the group
faces is to find the best restaurant, that is the restaurant where the maximum
number of delegates would enjoy dining. Even a parallel exhaustive search
through the restaurant and meal combinations would take too long to accom-
plish. To solve the problem delegates decide to employ a Stochastic Diffusion
Search.

Each delegate acts as an agent maintaining a hypothesis identifying the
best restaurant in town. Each night each delegate tests his hypothesis by din-
ing there and randomly selecting one of the meals on offer. The next morning
at breakfast every delegate who did not enjoy his meal the previous night,
asks one randomly selected colleague to share his dinner impressions. If the
experience was good, he also adopts this restaurant as his choice. Otherwise
he simply selects another restaurant at random from those listed in ‘Yellow
Pages’.

Using this strategy it is found that very rapidly significant number of
delegates congregate around the best restaurant in town. Abstracting from
this algorithmic process:

Initialisation phase
whereby all agents (delegates) generate
an initial hypothesis (restaurant)

loop
Test phase

Each agent evaluates evidence for its hypothesis
(meal degustation). Agents divide into active
(happy diners) and inactive (disgruntled diners).

Diffusion phase
Inactive agents adopt a new hypothesis by either
communication with another agent (delegate) or, if the
selected agent is also inactive, there is no information
flow between the agents; instead the selecting agent
must adopt a new hypothesis (restaurant) at random.

endloop

Stochastic Diffusion Search 7

By iterating through test and diffusion phases agents stochastically ex-
plore the whole solution space. However, since tests succeed more often on
good candidate solutions than in regions with irrelevant information, an indi-
vidual agent will spend more time examining good regions, at the same time
recruiting other agents, which in turn recruit even more agents. Candidate
solutions are thus identified by concentrations of a substantial population of
agents.

Central to the power of SDS is its ability to escape local minima. This is
achieved by the probabilistic outcome of the partial hypothesis evaluation in
combination with reallocation of resources (agents) via stochastic recruitment
mechanisms. Partial hypothesis evaluation allows an agent to quickly form its
opinion on the quality of the investigated solution without exhaustive testing
(e.g. it can find the best restaurant in town without having to try all the meals
available in each).

Terminology

In the original formulation of SDS a population of agents searches for the best
solution to a given optimisation problem. The set of all feasible solutions to
the problem forms the solution space S. Each point in S has an associated
objective value. The objective values taken over the entire solution space form
an objective function f . For simplicity reasons, it is assumed that the objective
is to minimise the sum of n {0,1}-valued component functions fi:4

min
∀s∈S

f(s) = min
∀s∈S

n∑

i =1

fi(s) fi : S → {0,1} . (1)

Although this may seem as a serious restriction, many optimisation prob-
lems can actually be transformed into (1) – as explained in [31]. Section 8 will
also give an example of such a transformation. During operation, each agent
maintains a hypothesis about the best solution to the problem; a hypothesis
is thus a candidate solution, or designates a point in the solution space. No
a-priori assumptions are made about the representation of hypotheses: they
can be binary strings, symbolic strings, integer numbers, or even (at least in
theory) real numbers.

Algorithm

Agents in the original SDS algorithm operate synchronously. They undergo
various stages of operation, which are summarised in the algorithm below

Initialise(Agents);
repeat
Test(Agents);

4Component functions fi can be deterministic or probabilistic.

8 K. De Meyer et al.

Diffuse(Agents);
until (Halting Criterion);

Initialise

As a first step, agents’ hypothesis parameters need to be initialised. Different
initialisation methods exist, but their specification is not needed for the basic
understanding of the algorithm; a discussion can be found in [31].

Test

Each agent randomly selects a single component function fi, i ∈ {1, . . . , n},
and evaluates it for its particular hypothesis sh ∈ S. Based on the outcome
of the evaluation, agents are divided into two groups: active and inactive. For
active agents, fi(sh) = 0; for inactive agents, fi(sh) = 1. Please note that,
by allowing fi to be probabilistic, it is possible that different evaluations of
fi(sh) have a different outcome. The test phase is described in pseudo-code
below.

for agent = 1 to (All Agents)
cf = Pick-Random-Component-Function();
if (cf(agent.hypothesis) == 0)

agent.activity = TRUE;
else

agent.activity = FALSE;
end

end

Diffuse

During the diffusion phase, each inactive agent chooses at random another
agent for communication. If the selected agent is active, then the selecting
agent copies its hypothesis: diffusion of information. If the selected agent is
also inactive, then there is no flow of information between agents; instead, the
selecting agent adopts a new random hypothesis. Active agents, from their
side, do not start a communication session in standard SDS. The diffusion
phase is summarised below.

for agent = 1 to (All Agents)
if (agent.activity == FALSE)

agent2 = Pick-Random-Agent(Agents);
if (agent2.activity == TRUE)

agent.hypothesis = agent2.hypothesis;
else

agent.hypothesis = Pick-Random-Hypothesis();
end

end
end

Stochastic Diffusion Search 9

Halt

Several different types of halting criteria exist [31]; their specification is not
needed for the understanding of the algorithm. The most simple halting cri-
terion could be based on reaching a prescribed threshold of a total number of
active agents.

From agent operation to population behaviour

The algorithmic description of agent operation is insufficient to understand
how SDS solves optimisation problems. Therefore, it is necessary to consider
what happens with the population as a whole: by iterating through test and
diffusion phases individual agents continually explore the entire solution space.
Since tests succeed more often in points in the solution space with good ob-
jective values, agents spend on average more time examining high-quality
solutions, at the same time attracting other agents, which in turn attract
even more agents – a mechanism that causes dynamic yet stable clusters of
agents to form in certain points in the solution space. However, the limited-
ness of resources (the finite population size) ensures that only the best solution
discovered so far is able to maintain a stable cluster of agents. It is this dispro-
portionate allocation of resources that eventually allows the optimal solution
to be identified from the largest cluster of agents, without any single agent
ever evaluating the full objective function explicitly.

The stochastic process underlying the resource allocation in standard SDS
– an ergodic Markov chain – has been thoroughly analysed [36]. The behaviour
of the process is determined by probabilities of producing active agents during
the test phase. For each candidate solution, these probabilities, averaged over
all component functions, form the test score of the optimisation problem. The
v test score does not only depend on the values of the objective function, but
also on the particular test procedure used. Convergence times and average
cluster size are functions of population size and the test score [36].

5.2 Previous Work on SDS

SDS was introduced in [3] [4] and subsequently applied to a variety of real-
world problems: locating eyes in images of human faces [5]; lip tracking in
video films [23]; self-localisation of an autonomous wheelchair [2] and site se-
lection for wireless networks [25]. Furthermore, a neural network model of SDS
using spiking neurons has been proposed [37]; [38]. Emergent synchronisation
across a large population of neurons in this network can be interpreted as
a mechanism of attentional amplification [16]. The analysis of SDS includes
the characterisation of its steady state resource allocation [36], the proven
convergence to the globally optimal solution [39] and linear time complexity
[40].

10 K. De Meyer et al.

6 Similarities and Differences between SDS and Social
Insects Algorithms

6.1 Comparison with social insects

Contrary to the stigmergetic communication used in most ant algorithms, SDS
uses a one-to-one recruitment system akin to the tandem-running behaviour
found in certain species of ants. With reference to SDS it is claimed that effi-
cient global decision making can emerge from interaction and communication
in a population of individuals each forming hypotheses on the basis of partial
evidence.

The recruitment process in real insects is much more complex than that
used in SDS where the process of communicating a hypothesis has been com-
pletely abstracted. An agent does not have to go through a lengthy and pos-
sibly erroneous process of tandem running or waggle dancing to communicate
its hypothesis parameters to another agent.

Although no ant or bee species matches exactly the recruitment behaviour
of inactive or active agents in SDS, Pratt et al [42] describe the collective
decision making strategy of a species of ants that use a similar tandem running
recruitment strategy during nest migration. They come to the conclusion that
these ants need higher individual cognitive abilities - such as the ability to
compare the quality of two nest sites - to come to an optimal solution, as
opposed to ants using stigmergetic forms of communication.

Nevertheless, the fundamental similarity between SDS and social insects
suggests that global and robust decision making in both types of systems
emerges quickly from the co-operation of constituent agents, each of which
individually would not be able to solve the problem within the same time
frame.

6.2 Comparison with Ant Algorithms

Both SDS and ant algorithms are population-based approaches to search and
optimisation that use a form of communication reminiscent of communication
in real ants. However, most ant algorithms, and especially the ones described
by the ant colony optimisation metaheuristic [19], rely on the idea of stigmer-
getic communication. Good solutions emerge from temporal and spatial char-
acteristics of the recruitment strategy: short routes receive more pheromones
because it takes less time to travel them. In SDS, communication is direct,
one-to-one and immediate; solutions do not emerge from temporal aspects of
the recruitment system, but merely from the end result of recruitment - the
spatial clustering of agents.

Non-stigmergetic ant algorithms have also been proposed. It was shown
in [29] that a tandem running recruitment mechanism improves the foraging
efficiency of a colony of robots. Further, an optimisation algorithm based on
the foraging strategy of a primitive ant species has also been proposed, [34].

Stochastic Diffusion Search 11

This algorithm - called API - alternates between evaluation phases and nest
replacement phases. During evaluation, ants explore random points in a cer-
tain area around the nest site and remember the best sites. The evaluation
phases allow for recruitment between ants: an ant with a better solution can
summon an ant with a poorer solution to help it explore its area. However,
recruitment on this level did not seem to improve significantly the results
obtained. Nest replacement in API can also be considered as a form of re-
cruitment: all the ants are summoned to the optimal point found so far, then
start exploring anew. Although on a much slower time scale, the alternation
between evaluation and nest replacement in API has similarities with the test
and diffusion phases in SDS.

7 Variations on a Theme

Many variations of the standard SDS algorithm are possible: agent updates
can occur synchronously for the whole population or asynchronously; the
choice of another agent during diffusion can be restricted to agents in a cer-
tain neighbourhood or to the whole population; the activity of agents can be
binary, integer or even real values, possibly reflecting the history of the agent;
during testing, agents can vary the amount of evidence needed for a positive
test of a hypothesis. During diffusion, agents can have different reactions to
information from other agents, e.g. active agents could choose to communicate
and modify their hypothesis according to the state of the contacted agent etc.
Some of these modifications have been previously documented [2], [36], [14],
[16]. Each of them has a distinct effect on the convergence and steady-state
behaviour of the algorithm. However, it can be said that in all cases a dy-
namical balance between exploration of the solution space and exploitation of
discovered solutions naturally emerges.

7.1 Manipulating the Resource Allocation Process

The resource allocation process of SDS can be manipulated in a number of
ways by altering properties of the test and diffusion phase [31]. This section
focusses on two modifications that are useful for application towards dynamic
problems.

Shifting the balance towards local exploration

Standard SDS has no mechanism to exploit self-similarity in the objective
function – a regularity exhibited by many real-world problems: namely the
fact that nearby solutions in the solution space often have similar objective
function values [13]. However, a mechanism introducing small variations on
the diversity of hypotheses already present in the population can be easily

12 K. De Meyer et al.

incorporated into the algorithm. One possibility is to perturb the copying of
hypotheses parameters by adding a small random offset during replication
of a hypothesis in the diffusion phase, much like mutation in evolutionary
algorithms. The effect thereof is to smear out large clusters of agents over
neighbouring locations in the solution space. It allows the SDS process to
implicitly perform hill-climbing – resulting in improved convergence times in
solution spaces with self-similarity [31] – as well as tracking of moving peaks.
An example in Sect. 8 will demonstrate the latter point.

Shifting the balance towards global exploration

The conflicting demands of a continued wide exploration of the solution space
(especially in dynamic environments), versus the need for a stable cluster ex-
ploiting the best solution discovered so far, are not necessarily satisfied in the
most optimal way by standard SDS. Its allocation process is very greedy: once
a good solution is detected, a large proportion of the population is allocated
towards its exploitation, making these agents unavailable for further explo-
ration. A mechanism that frees up part of these resources without severely
disrupting the stability of clusters would increase the efficiency of SDS for
many classes of problems, including dynamic ones. One such mechanism is
context-sensitive SDS [36]. The sole difference with standard SDS resides in
the diffusion phase for active agents: each active agent selects one agent at
random; if the selected agent is active and supports the same hypothesis,
then the selecting agent becomes inactive and picks a new random hypothe-
sis. This self-regulatory mechanism counteracts the formation of large clusters:
the probability that two active agents with the same hypothesis communicate
during the diffusion phase increases with relative cluster size. This introduces
a mechanism of negative selection or negative feedback to the original al-
gorithm. For certain test scores, it also allows the formation of clusters on
multiple similar, near-optimal solutions.

7.2 Standard SDS and stochastic objective functions

Certain types of noise in the objective function may be completely absorbed in
the probabilistic nature of the partial evaluation process, and do not influence
the search performance of SDS: i.e., they have no effect on convergence times
and stability of clusters. More formally, noise that introduces or increases
variance in the evaluation of component functions fi – without altering the
averaged probabilities of the test score – has no effect on the resource alloca-
tion process.

Only when noise changes the values of the test score can the resource
allocation process be affected, with a potential for positive as well as negative
consequences: a bias which pushes the best test score values more up than poor
test score values is likely to accelerate convergence and increase the stability
of clusters; conversely, a bias that increases lower test scores more than the

Stochastic Diffusion Search 13

test score of the optimal solution will hamper search performance. In a worst
case scenario, the bias could disturb the order of the test score and make
SDS converge to a false optimum. However, without any knowledge about the
probability distribution generating the noise, no optimisation method would
be able to correct such noise. Section 8 presents an example demonstrating
the robustness of SDS search performance to moderate amounts of noise.

7.3 Standard SDS and dynamic objective functions

In principle, standard SDS is immediately applicable to dynamically chang-
ing objective functions. The probabilistic outcome of the partial evaluation
process, in combination with a continued random re-sampling of the solution
space, means that the search process can reallocate its resources from a global
optimum that has become sub-optimal to the new global optimum. Allocation
of resources in standard SDS is dynamic and self-regulatory ; however, it need
not be optimal : for instance, no variational mechanism for the tracking of
slowly moving peaks is present in the original formulation of SDS. However,
as section 7.1 demonstrates, such a mechanism is easily included.

8 Examples

In general, synthetic dynamic benchmarks (as introduced in [7, 35]) make no
assumptions about the computational costs of function evaluations. In other
cases, objective functions that allow cheap function evaluations and that have
often been used to benchmark optimisation algorithms in static, noise-free
conditions – such as the DeJong test suite – have been adapted to reflect
noisy [30] or dynamic [41] conditions. These two approaches do not allow
to demonstrate the potential gain in algorithmic efficiency of partial func-
tion evaluation. It is therefore necessary to construct an alternative objective
function that allows partial evaluation. Such a function can be constructed
from the elementary image alignment problem depicted in Fig. 1. Please note
that this example is meant as proof of principle, rather than an attempt to
construct one optimised solution to a specific problem.

The problem consists of locating a small image within a larger image by
finding the (x, y) transformation coordinates that produce the best match
between the small image and a similar-sized part of the larger image. The
small image is taken from another large image which was photographed from
a slightly different angle. Sub-pixel sampling is not performed, meaning that
the search space is discrete. The size of the solution space – all admissible
combinations of x and y values – corresponds to the size of the large pho-
tograph, (300 by 860 pixels). The size of the small image is 30 by 40 pixels.
The images are RGB colour images, meaning that 3 colour intensity values
are available per pixel.

14 K. De Meyer et al.

The measure to determine the degree of matching between the two images
is the Manhattan distance over all colour intensity values R, G and B:

f(x, y) =
∑

k,l

(|rkl −Rkl(x, y)|+ |gkl −Gkl(x, y)|+ |bkl −Bkl(x, y)|) (2)

Here rkl stands for the red colour intensity value of pixel (k, l) in the small
image, and Rkl(x, y) for the red colour intensity value of pixel (x + k, y + l)
in the large image. The image alignment problem then consists of finding a
solution to the problem:

min
x,y

f(x, y) (3)

The motivation for choosing this particular problem is threefold: firstly,
the solution space is small enough in size and number of dimensions so that
it can be visualised (Fig. 2); secondly, the shape of the resulting landscape is
more complex than is easily attainable with artificially constructed benchmark
problems; thirdly, the objective function can be decomposed into component
functions fi (a single term of the summation in (2)) that can be evaluated
independently.

Fig. 1. Image alignment problem. The task is to align a small image, taken from
another image which was photographed from a slightly different angle, with this large
image. The best alignment of the two images is indicated by the black rectangle

The solution space S is 2-dimensional and discrete, with x ∈ {1, . . . , 860}
and y ∈ {1, . . . , 300}. The size of the solution space is 860 ∗ 300 = 258000.
The number of component functions fi is determined by the number of terms
in the summation of (2) and hence by the size of the small image and the

Stochastic Diffusion Search 15

different colour intensity values: 30 ∗ 40 ∗ 3 = 3600. Component functions fi

are discrete each with an integer range [0, 255].
Minimisation problem (3) is easily transformed into problem (1); for com-

ponent i and solution hypothesis (x, y), the test procedure should calculate
the quantity:

ti(x, y) =
fi(x, y)

255
(4)

The test procedure then needs to output 0 with probability ti(x, y), and 1
with probability 1− ti(x, y). This procedure ensures that the transformation
of objective function values to test score values is strictly order-preserving, a
sufficient condition for a correct optimisation of the objective function f [31].

Fig. 2. Objective function generated from the image matching problem in Fig. 1.
Peak 1 is the optimal solution. Peak 2 and 3 are of slightly lower quality. Peak 2
and 3 have been manually increased to make the problem more challenging

Characterisation of the search problem

Unlike well-known benchmark problems such as the DeJong test suite or Schaf-
fer’s F6 function the structure of this specific problem is not well characterised
in terms of its search difficulty. This section provides an empirical assessment
of search difficulty by comparing the behaviour of SDS with several common
optimisation algorithms on a noise free problem: random search, a multi-start

16 K. De Meyer et al.

best-improving hill climber, and a standard implementation of the particle
swarm optimisation (PSO) algorithm5. The performance of SDS for noisy
and dynamic perturbations of the objective function will be discussed in sub-
sequent sections.

Random Search proceeds by choosing a solution at random and evaluating
it until the optimal solution of Peak 1 in Fig. 2 is found.

Hill Climber A solution is chosen at random and evaluated. In subsequent
iterations, the eight surrounding solutions are evaluated, and the search
moves to the solution offering the greatest improvement in objective value.
If no such improvement is possible (the search has arrived at a local op-
timum), then it is restarted in a new, randomly chosen location. These
steps are performed until the optimal solution of Peak 1 is discovered.

PSO This algorithm follows the local constriction variant of PSO [28]. The
algorithm runs until the optimal solution of Peak 1 has been discovered
by at least 1 particle. Following parameters have been used: constriction
coefficient χ = 0.729; cognitive and social parameters c1 = c2 = 2.05;
200 particles with a neighbourhood radius of 1; and maxVx = 100 and
max Vy = 200. These parameters have been chosen to give optimal search
performance of the PSO algorithm. The reader is referred to [28] for details
of the implementation.

SDS A standard SDS algorithm with a population size of 1000 agents has
been used. A small mutational mechanism, as described in Sect. 7.1, has
also been employed: during copying, the hypothesis is perturbed by adding
a randomly generated offset to the (x, y) parameters of the active agent.
The offset oj is generated independently for x and y by:

oj =
[r

s

]
(5)

where r is a normally-distributed random variable with zero mean and
standard deviation 1, s is a parameter controlling the standard deviation
of oj , and

[·] denotes rounding to the nearest integer. For this particular
experiment, s = 4, resulting in an average copying accuracy of 92%, or
in a mutation rate of 8%. The search is said to be converged when the
optimal solution of Peak 1 has attracted a cluster of 1/3 of all agents. No
other parameters need to be defined.

Figure 3 compares the search behaviour of these four algorithms: Fig-
ure 3a shows the cumulative distribution of total number of partial func-
tion evaluations for random search, hill climbing and PSO. Fig. 3b shows
the cumulative distribution of total number of partial function evaluations

5Because noisy and dynamic conditions have led to several alternative PSO for-
mulations that outperform the standard PSO algorithm under these specific condi-
tions, this comparison is performed for noise-free and static conditions only. This
will ensure that the characterisation of the search problem difficulty is not biased
by the relatively poor performance of the standard PSO under these conditions.

Stochastic Diffusion Search 17

for SDS. The efficiency of partial evaluation can be illustrated by compar-
ing the evaluation cost of SDS with that of the three other algorithms. For
example, random search needs around 191000 complete evaluations of (2) to
attain a 50% success rate of locating the global optimum, this corresponds to
191000∗3600 = 687600000 evaluations of component functions fi. In contrast,
SDS has a median of around 683000 component evaluations, a difference of
three orders of magnitude. For comparison, PSO needs 16000 full function
evaluations and hill climbing 4000.

However, rather than just comparing these numbers, it is interesting to
see from how many component functions fi onwards SDS starts to outperform
the other algorithms. The probabilistic, partial evaluation mechanisms in SDS
transforms the search into a stochastic dynamical process that is independent
of the number of component functions in the objective function, and only
depends on the exact shape of the landscape. In other words, whether the
landscape of Fig. 2 is generated by a function consisting of 100, 1000 or 10000
component functions, the averaged search behaviour of SDS is always the
same. For this particular landscape, SDS would outperform random search
for objective functions consisting of 683000/191000 ≈ 4 or more component
functions fi. For PSO this number becomes 683000/16000 ≈ 43, and for
hill climbing 683000/4000 ≈ 171. The relatively poor performance of PSO
compared to the hill climber can be explained by the fact that the swarm
consisted of 200 particles each performing full function evaluations. It is likely
that the performance of PSO relative to hill climber would improve if, for
example, the dimensionality of the problem were increased.

1 2 3 4 5 6 7x10^8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partial Function Evaluations

P
ro

po
rt

io
n

of
 R

un
s

S
uc

ce
ed

ed

Random
Hill
PSO

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partial Function Evaluations

P
ro

po
rt

io
n

of
 R

un
s

S
uc

ce
ed

ed

SDS

Fig. 3. Comparison of random search, hill climbing, PSO and SDS on the search
problem of Fig. 2. Results are averaged over 1000 runs for each algorithm

18 K. De Meyer et al.

The effect of noisy perturbations

To illustrate that SDS is relatively immune to certain types of noise, the fol-
lowing experiment was conducted: during every evaluation of a particular fi,
the outcome of the evaluation is perturbed with normally distributed noise
with zero mean value and different levels of standard deviation: 5%, 10% and
20% of the actual function value of fi(x, y). The parameter settings for the
standard SDS algorithm were the same as for the previous experiment. The
cumulative distribution of convergence times is reported in Fig. 4. It can be
seen that there is hardly any effect of the noise levels on the cluster forma-
tion process. Increasing the noise levels even further, beyond 20%, introduces
a negative bias into the test score. Because of the non-linear properties of
the SDS process, the effect on this particular landscape is to accelerate the
search. However, this is not necessarily so for all objective functions. A de-
tailed discussion of the ramifications of using such mechanisms to improve
search performance is beyond the scope of this paper.

Moving peaks

To illustrate that a cluster of agents is able to track a moving peak, the
following experiment was performed: the entire objective function of Fig. 2
was shifted one location to the left and one location to the front every 50
iterations of an SDS simulation. A population of 1000 context-sensitive agents
with mutation parameter s = 2 (resulting in a copying accuracy of 47%, or
a mutation rate of 53%) was run for 10000 iterations. Figure 5 summarises
the results: the left graph depicts the total number of active agents (higher
curve) and the size of the cluster at the location of the moving Peak 1 (lower
curve). The right graph depicts the location of the largest cluster of agents
every 50 iterations, just before a new shift of the objective function. The
results show that the largest cluster of agents follows the movement of Peak
1 almost perfectly. 50 iterations of 1000 agents constitute 50000 evaluations
of component functions, equivalent to only 14 evaluations of (2).

Changing peaks

To illustrate that a cluster of SDS agents can reallocate itself successfully
when optimal solutions become sub-optimal, the following experiment was
performed: 1000 context-sensitive SDS agents6 were simulated for 5000 iter-
ations, while peaks in the landscape were slowly decreased or increased. The
results of this experiment can be seen in Fig. 6. After 1000 iterations, Peak 1
starts to deteriorate, with as consequence a gradually decreasing cluster size
at that location. Peak 2 remains constant, while Peak 3 grows gradually in

6With the same perturbation of hypothesis-copying as in the previous experi-
ment.

Stochastic Diffusion Search 19

height and width. Shortly after Peak 1 becomes lower than Peak 2, there is
a sudden shift of the dominant cluster towards the location of Peak 2. When
Peak 3 grows larger than Peak 2, a similar shift occurs to the location of Peak
3.

9 Discussion

Pratt [42] suggests that Leptothorax Alpipennis require extra cognitive abil-
ities in order to efficiently compare different nest sites. Although it could be
that these ants need higher cognitive abilities because the exact dynamics of
their recruitment process do not allow convergence on the best site in a fast
enough time span, experience with SDS shows that these abilities are in prin-
ciple not required. As long as one of the two nest sites has a higher probability
of inducing recruitment, ants can come to a global decision about the best
site without the ability of comparing the two sites directly.

Differences in the operation of SDS and the bulk of ant algorithms has re-
sulted in their application in different types of search and optimisation prob-
lems. In Mitchell [32], a taxonomy of search problems has been proposed:

• Pattern matching problems, in which the goal is to locate a predefined
target in a larger solution space.

• Optimisation problems, in which the goal is to select a solution from a set
of candidates such that a given cost function is optimised.

• Path planning problems, in which the goal is to construct a path to reach
a specified target.

Whereas SDS in its present form seems mostly applicable to the first type
of search problems, ant algorithms have mostly been used for solving the sec-
ond type. As such, both approaches seem complementary. However, the gen-
eral principles behind SDS can clearly be applied to other problem classes.
These are the principles of partial evaluation of candidate solutions and di-
rect communication of information between agents. Using these principles,
SDS can be defined as a new generic search method or metaheuristic, applica-
ble to other types of problems outside the pattern-matching domain, such
as model fitting; robust parameter estimation; and Inductive Logic Program-
ming. Research in these areas is ongoing.

9.1 SDS and evolutionary algorithms

At first sight, the SDS algorithm, described in a language of agents, test and
diffusion phases, may seem far removed from evolutionary algorithms. Indeed,
it did not originate from metaphors about biological evolution, but from the
field of neural networks [4]. However, SDS and algorithms inspired by Dar-
winian evolution fit both within a general framework of processes that are

20 K. De Meyer et al.

governed by mechanisms of variation, selection and replication [11]. For SDS,
this description applies to the perspective of the hypotheses: randomly picking
new hypotheses and perturbing the copying process constitute mechanisms of
variation, similar to random immigrants and mutation mechanisms in evolu-
tionary algorithms; the rejection of hypotheses in the diffusion phase is a form
of “death” for the hypotheses; hypothesis copying is a form of reproduction.
Good hypotheses are more likely to survive test phases for longer, and are
able to spread more to other agents. Finally, resources are limited, in that
there is only a finite number of agents which hypotheses can occupy.

There are, of course, differences. Firstly, there is no explicit fitness-based
selection: selection is the consequence of agent interaction, resulting in the
most radical form of tournament selection. Secondly, because of the indirect
and continual evaluation of individual hypotheses, SDS can be thought to
simulate evolutionary processes on a different timescale than other types of
evolutionary algorithms. Thirdly, because single agents lack the capacities to
judge the quality of solutions on their own, good solutions need to be identified
by clusters of agents. This means that SDS explicitly needs at least some level
of convergence, whereas this is not necessarily true for other evolutionary
algorithms.

10 Conclusions

It has been shown that SDS is in principle applicable to stochastic and dy-
namic optimisation problems. The algorithmic concepts of partial evaluation
and mechanisms for altering the balance between exploration and exploita-
tion – together with a well-developed understanding of how these influence
the behaviour of the stochastic process underlying SDS – can be of potential
interest to the swarm intelligence community at large. Although SDS has been
applied to different types of optimisation problems, e.g., [2, 25], it has never
before been applied explicitly to stochastic or dynamic optimisation problems.
To this end, the present work draws on the expanded understanding of SDS
developed in [31].

Future work should include a more precise characterisation of the influence
of external noise on the search performance, in the context of the mathemati-
cal models of SDS developed in [36], as well as methods to estimate for specific
types of problems how much – if anything – can be gained in computational
efficiency from partial evaluation. Hybridisation with explicit hill-climbing
strategies – already employed in [22] – and multi-population implementations
– as described for evolutionary algorithms in [8] – may prove to be invaluable
extensions to the simple methods presented here. Finally, a better understand-
ing of the more complex, focussed SDS mechanisms, as employed in [2, 25],
can render SDS useful for stochastic and dynamic problems of much larger
scale than the ones described here.

Stochastic Diffusion Search 21

References

1. Arthur, W B,(1994) Inductive Reasoning and Bounded Rationality (The El
Farol Problem). Amer. Econ. Rev. Papers and Proceedings 84: 406

2. Beattie, P, Bishop, J (1998) Self-localisation in the senario autonomous wheel-
chair. Journal of Intelligent and Robotic Systems 22: 255–267

3. Bishop, J M (1989) Anarchic Techniques for Pattern Classification. Chapter 5.
PhD Thesis, University of Reading

4. Bishop, J (1989) Stochastic searching networks. In: 1st IEE Conf. ANNs,
329331 London

5. Bishop, J M, Torr, P (1992) The Stochastic Search Network. In: Lingard, R,
Myers, D J, Nightingale, C Neural Networks for Images, Speech and Natural
Language. Chapman and Hall, New York, 370387

6. Bonabeau, E, Dorigo, M, Theraulaz, G (2000) Inspiration for Optimization
from Social Insect Behaviour. Nature 406: 3942

7. Branke, J (1999) Memory-enhanced evolutionary algorithms for dynamic op-
timization problems. In: Congress on Evolutionary Computation. Volume 3.,
IEEE 1875–1882

8. Branke, J, Kauler, T, Schmidt, C, Schmeck, H (2000) A multi-population ap-
proach to dynamic optimization problems. In Parmee, I., ed.: Adaptive Com-
puting in Design and Manufacture, Springer 299–308

9. Branke, J, Schmidt, C, Schmeck, H (2001) Efficient fitness estimation in noisy
environments. In Spector, L., ed.: Genetic and Evolutionary Computation Con-
ference, Morgan Kaufmann 243–250

10. Branke, J (2003) Evolutionary approaches to dynamic optimization problems
– introduction and recent trends. In: Branke, J, ed. Proceedings of EvoDOP

11. Campbell, D (1974) Evolutionary epistemology. In Schilpp, P, ed. The Philos-
ophy of Karl Popper. Open Court 413–463

12. Chadab, R, Rettenmeyer, C (1975) Mass Recruitment by Army Ants. Science
188:11241125

13. Christensen, S, Oppacher, F (2001) What can we learn from no free lunch? a
first attempt to characterize the concept of a searchable function. In: Spector et
al., L, ed. Genetic and Evolutionary Computation Conference, San Fransisco,
Morgan Kaufmann 1219–1226

14. De Meyer, K (2000) Explorations in Stochastic Diffusion Search: Soft- and
Hardware Implementations of Biologically Inspired Spiking Neuron Stochastic
Diffusion Networks, Technical Report KDM/JMB/2000/1, University of Read-
ing

15. De Meyer, K, Bishop, J M, Nasuto, S J (2002) Small-World Effects in Lattice
Stochastic Diffusion Search, Proc ICANN2002 Madrid, Spain

16. De Meyer, K, Bishop, J M, Nasuto S J (2000) Attention through Self-
Synchronisation in the Spiking Neuron Stochastic Diffusion Network. Con-
sciousness and Cognition 9(2)

17. Deneuborg, J L, Pasteels, J M, Verhaeghe, J C (1983) Probabilistic Behaviour
in Ants: a Strategy of Errors? Journal of Theoretical Biology 105:259271

18. Digalakis, J, Margaritis, K (2002) An experimental study of benchmarking
functions for evolutionary algorithms. International Journal of Computer Math-
emathics 79:403–416

19. Dorigo, M, Di Caro, G, Gambardella, L M (1999) Ant Algorithms for Discrete
Optimization. Artificial Life 5(2):137172

22 K. De Meyer et al.

20. Garey, M R, Johnson, D S (1979) Computers and Intractability: a guide to the
theory of NP-completeness. W. H. Freeman

21. Goodman, L J, Fisher, R C (1991) The Behaviour and Physiology of Bees, CAB
International, Oxon, UK

22. Grech-Cini, E, McKee, G (1993) Locating the mouth region in images of hu-
man faces. In: Schenker, P, ed. SPIE - The International Society for Optical
Engineering, Sensor Fusion VI 2059, Massachusetts

23. Grech-Cini, E (1995) Locating Facial Features. PhD Thesis, University of Read-
ing

24. Holldobler, B, Wilson, E O (1990) The Ants. Springer-Verlag
25. Hurley, S, Whitaker, R (2002) An agent based approach to site selection for

wireless networks. In: ACM symposium on Applied Computing, Madrid, ACM
Press

26. Jin, Y (2005) A comprehensive survey of fitness approximation in evolutionary
computation. In: Soft Computing, 9:3–12.

27. El-Beltagy, M A, Keane, A J (2001) Evolutionary optimization for computa-
tionally expensive problems using Gaussian processes. In: Arabnia, H, ed. Proc.
Int. Conf. on Artificial Intelligence’01, CSREA Press 708–714

28. Kennedy, J, Eberhart, R C (2001) Swarm Intelligence. Morgan Kaufmann
29. Krieger, M J B , Billeter, J-B, Keller, L (2000) Ant-like Task Allocation and

Recruitment in Cooperative Robots. Nature 406:992995
30. Krink, T, Filipic, B, Fogel, G B, Thomsen, R (2004) Noisy Optimization Prob-

lems – A Particular Challenge for Differential Evolution? In: Proc. of 2004
Congress on Evolutionary Computation, IEEE Press 332–339

31. De Meyer, K (2003) Foundations of Stochastic Diffusion Search. PhD thesis,
University of Reading

32. Mitchell, M (1998) An Introduction to Genetic Algorithms. The MIT Press
33. Moglich M, Maschwitz U, Holldobler B (1974) Tandem calling: a new kind of

signal in ant communication. Science 186(4168):1046-7
34. Monmarch, N, Venturini, G, Slimane, M (2000) On How Pachycondyla Apicalis

Ants Suggest a New Search Algorithm. Future Generation Computer Systems
16:937-946

35. Morrison, R W, DeJong, K A (1999) A test problem generator for non-
stationary environments. In: Congress on Evolutionary Computation. Vol-
ume 3., IEEE 2047–2053

36. Nasuto, S J (1999) Resource Allocation Analysis of the Stochastic Diffusion
Search. PhD Thesis, University of Reading

37. Nasuto, S J, Bishop, J M (1998) Neural Stochastic Diffusion Search Network -
a Theoretical Solution to the Binding Problem. Proc. ASSC2, Bremen

38. Nasuto, S J, Dautenhahn, K, Bishop, J M (1999) Communication as an Emer-
gent Methaphor for Neuronal Operation. Lect. Notes Art. Int. 1562:365380

39. Nasuto, S J, Bishop, J M (1999) Convergence Analysis of Stochastic Diffusion
Search. Parallel Algorithms and Applications 14(2):89107

40. Nasuto, S J, Bishop, J M, Lauria, S (1998) Time Complexity of Stochastic
Diffusion Search. Neural Computation (NC98), Vienna, Austria

41. Parsopoulos, K E, Vrahatis, M N, (2005) Unified Particle Swarm Optimization
in Dynamic Environments, Lect. Notes Comp. Sci. 3449:590-599

42. Pratt, S C, Mallon, E B, Sumpter, D J T, Franks, N R (2000) Collective
Decision- Making in a Small Society: How the Ant Leptothorax Alpipennis
Chooses a Nest Site. Proc. of ANTS2000, Brussels, Belgium

Stochastic Diffusion Search 23

43. Seeley, T D (1995) The Wisdom of the Hive. Harvard University Press
44. Whitley, D, Rana, S B, Dzubera, J, Mathias, K E (1996) Evaluating evolution-

ary algorithms. Artificial Intelligence 85:245–276

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partial Function Evaluations

P
ro

po
rt

io
n

of
 R

un
s

S
uc

ce
ed

ed

No Noise
Noise = 5%
Noise = 10%
Noise = 20%

Fig. 4. Influence of noise on the cumulative distribution of convergence times. Re-
sults are averaged over 1000 runs for each of the noise levels

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

900

1000

Iterations

A
ge

nt
s

100 200 300 400 500 600 700 800

50

100

150

200

250

300

x

y

Fig. 5. Tracking of a moving peak. The left graph depicts overall activity and the
size of the cluster at the moving location of Peak 1. The right graph depicts the
(x, y) location of the largest agent cluster every 50 iterations

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

700

800

900

1000

Iterations

A
ge

nt
s

Overall Activity
Peak1
Peak2
Peak3

Fig. 6. Changing peaks. Depicted are the overall activity in the population and
the cluster sizes at Peak 1, 2 and 3, for a population of 1000 agents run for 5000
iterations. After 1000 iterations, Peak 1 starts slowly decreasing in height and width,
while Peak 3 starts slowly increasing. Peak 2 remains the same throughout the
experiment. At iteration 1700, Peak 1 becomes lower than Peak 2. At iteration
2300, Peak 3 becomes higher than Peak 2, and keeps growing until iteration 4000.
The height of the peaks changes very slowly: e.g. for Peak 1 only 0.3% of the function
range every 100 iterations. However, even these subtle changes are reflected in the
resource allocation of the agent population

Index

Evolutionary Algorithms, 19
exploration vs exploitation, 2, 4, 12

hill climbing, 16

Leptothorax Acervorum, 2

optimisation
dynamic, 2, 13
global, 9, 10, 12, 17
objective function, 7
stochastic, 12

partial evaluation, 2, 5
component functions, 7, 12, 14, 17
decomposable, 5, 14

Particle Swarm Optimisation, PSO, 16
pattern matching, 2, 5

recruitment

direct communication, 2

stigmergetic communictation, 2

tandem calling, 2, 4, 10

resource allocation, 3, 11

search taxonomy, 19

Stochastic Diffusion Search, SDS, 2, 5,
11

active agents, 8

context-sensitive, 12

diffusion, 8

inactive agents, 8

positive feedback, 2

test score, 9

Swarm Intelligence, 1

