Understanding Musical Sound with
Forward Models and Physical Models

Michael A. Casey

Perceptual Computing Group
MIT Media Laboratory
E15-401c, 20 Ames Street
Cambridge, MA 02139
Phone: (617) 253-0116

e-mail mkc@media.mit.edu

Abstract

This research report describes an approach to parameter estimation for phys-
ical models of sound-generating systems using distal teachers and forward
models, [Jordan and Rumelhart, 1992, Jordan, 1990]. The general problem
is to find an inverse model of a sound-generating system that transforms
sounds to action parameters; these parameters constitute a model-based de-
scription of the sound. We first show that a two-layer feed-forward model
is capable of performing inverse mappings for a simple physical model of
a string. We refer to this learning strategy as direct inverse modeling; it
requires an explicit teacher and it is only suitable for convex regions of the
parameter space.

A model of two strings was implemented that had non-convex regions
in its parameter space. We show how the direct modeling strategy failed at
the task of learning the inverse model in this case and that forward models
can be used, in conjunction with distal teachers, to bias the learning of an
inverse model so that non-convex regions are mapped to single points in the
parameter space. Our results show that forward models are appropriate for

learning to map sounds to parametric representations.

1 Introduction

When we listen to music we perceive more than pitches, durations and a
general sense of timbre; we also recover detailed gestural information, such
as how hard an instrument is bowed, and even which part of the bow is
on the string. As listeners we correlate what we hear with our gestural
understanding of the perceived sound model. The interpretation of gestu-
ral information is part of the experience of listening to music and, more
generally, that of listening to any sound. Our understanding of musical in-
struments, for example, is a combination of implicit and explicit knowledge
of their input and output behaviors. Musicians may correlate gestural infor-
mation with musical signals on a much finer scale than lay listeners because
they possess a more detailed understanding of musical instruments, from
direct physical experience, and are thus able to parameterize according to
their internalized instrumental models. Lay listeners, however, may map
musical information in a more abstract manner, relating to sound models
other than musical instruments, voice for example, or perhaps not in terms
of sound at all; however, such speculation is beyond the scope of this paper.

We present a general technique for recovering gestural information for
sound models from audio signals. Our claim is that such information is part
of the mechanism by which we learn to understand and recreate sounds.
If we can parameterize a sound environment in terms of learned models of
sound-generating systems, we have achieved a form of understanding. Our

goal is to show that physically meaningful parameters can be recovered from

audio signals if they closely fit a learned sound model. Although we develop
our examples in terms of recovering physically parameterized data for a
sound model, it is also possible that more abstract feature mappings could
be learned, such as those described by [Grey, 1975]. The learning paradigms
presented below are suitable for parameterized mappings to many classes of

sound model.

2 Direct Inverse Modeling

The obvious starting point for the problem of learning to map a sound to a
parametric representation is to use the direct inverse modeling strategy. The
model learns the inverse mapping by reversing an observed set of inputs and
outputs for the instrument, producing a functional mapping between them;
instead of a physical action producing a sound, we want the sound to produce
the physical action.

An example of a direct solution to the inverse modeling problem is clas-
sical supervised learning. The learner is explicitly presented with a set of
sound, aclion-parameter pairs observed from the physical model, {y*,x*},
and is trained using an associative learning algorithm capable of non-linear
mappings. Once trained, the learner has the ability to produce actions from
sound intentions, hopefully with good generalization. This technique is only
suitable for modeling data that is convex in the region of the solution space

that we are interested in, see Figure 1.

Figure 1: Direct Inverse Modeling
Intention Actions

Y X

The direct inverse modeling strategy takes intentions as input and maps them to actions.
This is the reverse function of a physical environment, which takes actions as input and
maps them to an outcome. Classical supervised learning is an example of such a learning

system.

2.1 Direct Inverse Modeling of a Convex Solution Space

Solution regions and learnability are well-studied characteristics in the ma-
chine learning community; see for example, [Anthony and Biggs, 1992, Haussler, 1989,
Minsky and Papert, 1969]. A solution set X is said to be convex if and only
if there exist three co-linear points p, ¢, such that, if p € X and r € X,

then ¢ € X; otherwise the region is non-convex. See Figure 2.

Figure 2: Non-Convexity of One-to-Many Mappings

Intentions Actions

The point on the left should be mapped inside the bounded region on the right, but the
multiple solutions are averaged to the cross in the center of the graph. Since the cross lies

outside of the solution region (the bounded area) the problem is non convex.

As an illustration of modeling a convex solution space we implemented
an inverse model to learn to map a sound waveform, generated by a physical
model of a single violin string, to the physical stop position on the string.
This mapping was unique, and therefore convex, since for every sampled
waveform that was produced using the physical model, there was only one

stop-parameter value.

The violin string model was implemented using a discrete version of
the wave equation efficiently computed using digital waveguides and linear
time-invariant filters for damping, dispersion and resonance characteristics:
[Smith, 1986, Smith, 1992], see Figure 3. The parameterization of the violin

model is given in Table 1.

Figure 3: Digital Waveguide Model of a String
1 1 1 1

— Z = Z +— Z | z

— A
-1 | ___ Tota Wave -H(e ™)
Displacement
I_ Z_l — Z_l H— Z_l —— Z_l

A single string can be modeled with a bi-directional delay line representing the right (top)

and left (bottom) traveling components of the wave. The output of the string model is the
sum of the two waves at a given output point. The two ends of the string reflect the wave
back in the opposite direction. The dispersion, damping and resonance characteristics
of the string can either be collected in a single filter, as in this diagram, or they can be

distributed accross separate filters.

Table 1: String Model Parameters

Symbol H Description ‘ Units
d initial string displacement m
l total string length (nut to bridge) | m
¢ string velocity m/s
s stop position m

The first experiment required only the D string of the violin. The length
of the violin from the nut to the bridge was 0.32 m and the model was
calibrated so that the pitch class A4 was at 440.000 Hz, thus the open D
string had a fundamental frequency of fo = 293.665 Hz. The speed of wave

propagation in the string was determined by ¢ = \/% where K was the

string tension and e was the linear mass density of the string; for the D
string the wave propagation speed was 187.9456 m/s.

The training set for the direct inverse model comprised a set of time-
domain waveforms generated by the violin model, y*, and a set of target
parameters that produced the waveforms, x*. The original waveforms were
represented at 16-bit resolution with floating-point values in the range 0-1.
We used the first 61 samples generated by the physical model as the repre-
sentative set for each of the waveforms; this allowed frequencies as low as
293.665 Hz (D4) to be uniquely represented. The waveforms were generated
at frequencies spaced a half-step apart along the D string, spanning two oc-
taves starting in open position (0.32 m). The stop position for each of the
waveforms was expressed as distance along the string.

The direct inverse model was implemented as a two-layer feed-forward
network with biases, utilizing the generalized delta-rule as a learning algo-
rithm, [Rumelhart et al., 1986]. There were 61 linear input units, one for
each sample of the sound intention y*, 20 logistic hidden units and a single
linear output unit for the stop position. The training pairs were presented
in random order with the entire set of data being presented in each epoch.
We used an adaptive learning-rate strategy and included a momentum term
for faster convergence.

Figure 4 shows the convergence of the parameter errors in the inverse
model for 5000 epochs of the training data, and the mean-squared perfor-
mance error for each of the training patterns after the inverse model reached

criterion. The parameter error is the difference between the target actions

Figure 4: Convergence and Mean Errors of Direct Inverse Model: Convex
Data

Direct Inverse Model: Epoch Square Errors
001 T T T T T

0.008 7

0.004 : : b

0.002 b

OM*

0 50 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training Epoch

Mean Square Parameter Error

5 Direct Inverse Model: Mean Square Performance Error

= 0.01 T T T T

w

(0]

2 0.008

<

£

S 0.006 1
@

a

o 0.004- 1
i

=

& 0.002 /\ b
c

s 0 | | /\

= 0 5 10 15 20 25

Training Data Index

The upper graph shows the convergence of the direct inverse model to the parameter error
criterion < 0.0001. The lower graph shows how the performance error is distributed across

the training set. The mean-squared performance error was = 5.6 bits.

x* and the output of the inverse model x:

Byaram = 5(x" = %) (x" = %) 1)

The performance waveforms and the squared performance errors are
shown in Figure 5. The performance outcome was computed by apply-
ing the outputs of the inverse model x to the inputs of the physical model.
The performance error compares the the input waveform y* to the outcome

waveform y:

Jperf = %(y* -y 'y -y) (2)

The mean-squared performance errors are given by:

L1 & o
Pe‘rfmse = W ; M Z (y] - y]) (3)

J=1
where N is the number of training patterns, M is the number of samples

in the waveform.

Figure 5: Performance Outcome of Direct Inverse Model: Convex Data
Original Training Data

25F
20p
15¢
10p

5_

I 1 1 1 | |

10 20 30 40 50 60

Direct Inverse Model: Performance Outcome

25F
20p
15p
10p

1 1 1 1 1 1

10 20 30 40 50 60

Training Set Index

Direct Inverse Model: Performance Error

10

0 40 50 60
Sampfe Number

The upper two images show gray-scale plots of the waveforms for the convex training set
and the direct inverse model’s performance outcome; dark regions are small values. The
lower image shows the performance squared error.

The original waveforms had 16 bits of resolution; the mean-squared
performance error of the direct inverse model after convergence to crite-
rion was 7.8267 x 10~*. The accuracy of the performance was given by
16 4 log, 7.8267 x 10™* ~ 5.6 bits. This was the performance accuracy of

the inverse model when trained to a mean square parameter accuracy of

< 0.0001. The accuracy of the direct inverse model of the convex data

set was acceptable for our purposes. (The typical noise margin for digital
recording = 6 bits).

The evaluation of the model in this manner was purely a matter of
convenience for illustration purposes. If we were interested in developing a
perceptual representation of auditory information we would not use the error
critereon cited above, which reflects the ability of the system to reconstruct
the original data. For more sophisticated applications of inverse modeling for
audio data, we would need to develop perceptual error measures, ensuring
that the machine makes judgements that are perceptually valid in human

terms; see, for example, [Grey, 1975, Lee and Wessel, 1992].

2.2 Direct Inverse Modeling of a Non-Convex Solution Space

By adding another degree of freedom to the violin string model we made
the task of learning the inverse model a much harder problem. In the next
experiment we added a second string; the learning task was to map a set
of waveforms to parameters representing the string stop positions (as in the
previous experiment) as well as a unit representing string selection, in this
case the D string (fo = 293.665 Hz) and the A string (fo = 440.000 Hz). In
the physical-model implementation, the fundamental pitch fqy of each string
in open position was determined by the speed of propagation of the wave
through the string, ¢ = \/g For the D string the speed of propagation was
187.9456 m/s and for the A string it was 281.6000 m/s.

The set of stop positions spanned two octaves for the D string (D3 — D5)

and an augmented eleventh for the A string (A4 — D{5) spaced at half-step

intervals. The pitch ranges were determined by the resolution of the physical
model since it was implemented as a digital waveguide with unit delays.
The highest frequency for half-step resolution, without adding fractional
delays to the model, is given by %, where SR is the sampling rate of the
physical model and n is the number of delays used to model the string. The
minimum number of delays required for a half-step resolution has to satisfy

the inequality:

-1

n< 22—
1—212

| (4)

This gave n < 34 for the required half-step interval resolution. The
sample rate was 44100 Hz, thus the highest frequency was 1297.1 Hz, ap-
proximately Dg5.

There was considerable overlap in the training data because the wave-
forms from the string model for pitch classes A4-D5 on both strings were
exactly equivalent. With this overlap the solution space was non-convex;
thus solutions that averaged the multiple parameter sets for each duplicated
waveform were not valid.

To show how this applies to the problem of inverse modeling we used
the direct inverse modeling strategy of Section 2.1 on the the non-convex
training data. Figures 6 and 7 show the results obtained using the two-layer
feedforward network described above, with an extra output unit represent-
ing the choice of string. The model failed to converge to criterion over

5000 epochs, so the performance error was significant in some regions of

the solution space. The mean-squared performance error was 0.0024; us-
ing the same calculation for the accuracy as for the convex data set we got
log, 0.0024 + 16 ~ 7.3 bits of error, which was significantly worse perfor-

mance than for the convex data set.

Figure 6: Convergence and Mean Errors of Direct Inverse Model: Non-

Convex Data

Direct Inverse Model: Parameter Square Errors
001 T T T T T T T

0.008 7

0.006 - b

0.004- ~ : .

0.002 b

Mean Square Parameter Error

1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Direct Inverse Model: Performance Error

o
o
=

© o
o o
S o
d ®

I

o

S

=
T

0.002

1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Training Set Index

Mean Square Performance Error

The upper graph shows the mean-square parameter error for 5000 epochs of the non-
convex training data. The inverse model failed to converge to a criterion of 0.0001 for this
data. The lower plot shows the performance errors resulting from the parameters given
by the direct inverse model. The mean-squared performance error was = 7.3 bits.
These results show that direct inverse modeling using a two-layer feed-
forward network gave unsatisfactory results for non-convex training data.

We improved on the accuracy of the inverse model by implementing a learn-

ing technique that was better suited to non-convex data set.

10

Figure 7: Performance Qutcome of Direct Inverse Model: Non-Convex Data
Original Non-Convex Training Data

40
30
20
10

10 20 30 40 50 60

Direct Inverse Model: Performance Outcome

40

20p

Training Set Index

10 20 30 40 50 60

Direct Inverse Model: Performance Error

40
30
20
10

10

50 60

Sampf’éJ Number’

The upper two images show gray-scale plots of the waveforms for the non-convex training
set and the direct inverse model’s performance outcome; dark regions are small values.

The lower image shows the performance squared error.

3 Forward Models for Non-Convex Data

A forward model is a learned approximation of the physical environment and
it is used in series with an inverse model to form a composite learning sys-
tem. This learning system is capable of solving the inverse mapping for non-
convex regions of the solution space,[Jordan, 1990, Jordan and Rumelhart, 1992].
The training technique for the composite model is called distal learning and
it is illustrated in Figure 8. The learner controls a distal outcome via a set of
proximal variables which are inputs to a physical environment, in our case a
physical model of two violin strings. The variable names and their functions

for the composite system are outlined in Table 3.

11

Figure 8: Distal Learning

Error Term
e,

¥ Actions Direct Control
Intention

X

x
—_— —
y LEARNER pp— ENVIRONMENT

Variables
Distal
Variables

Indirect Control Outcome

The distal learning paradigm uses errors collected at the output of the environment to
drive the learning of the proximal variables. The learner’s task is to find the set of action

parameters that produce the intended outcome.

Table 2: Simulation Input and Output Variables

Symbol H Variable ‘ Description
y* Intention (Target Outcome) | Sampled Waveform
y Predicted OQutcome Approximated Waveform
y Actual Outcome Waveform Output from Physical Model
X Actions Estimated Action Parameters
x* Target Actions Training Action Parameters

3.1 Training the Forward Model

The training set for the forward model comprised pairs of action parame-
ters and sound outcomes. We used the same non-convex training set as for
the direct inverse model but with the inputs and outputs reversed. Once
learned, the forward model was able to approximate the input/output be-
havior of the physical model. The output of the forward model is called the
predicted outcome y and the difference between the sound intention y* and

the predicted outcome y is the predicted performance error:

Jprea = 5(¥y" = Iy -9) (5)

We used this error for optimizing the forward model. As in the two pre-

12

vious experiments, the forward model was implemented as a two-layer feed-
forward network with 2 linear units for inputs, representing string selection
and stop positions, 20 logistic hidden units and 61 output units correspond-
ing to the sample estimates of the violin string models. The forward model
was trained until the predicted performance error reached an accuracy of
~ 6 bits, (mean-squared predicted performance error < 0.001). Figure 9
shows the convergence of the forward model to within the chosen treshold.
The lower graph in figure 9 shows the mean-squared predicted performance

error for each of the training patterns.

Figure 9: Convergence and Mean Errors of Forward Model

Forward Model: Epoch Square Errors
002 T T T T T

Mean Square Error
o
o o
o =
[t (6]

o
o
S
a

1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training Epoch

Forward Model: Mean Square Performance Error
002 T T T T T T

o
o o
o P
= [
T
1

Mean Square Error
o
o
o
(8]
T
Il

0 M

1
0 5 10 15 20 25 30 35 40
Training Set Index

The upper graph shows the convergence of the forward model’s mean-squared predicted
performance error. The lower figure shows the mean-squared predicted performance error,
=~ 6 bits.

13

Figure 10: Predicted Performance Qutcome of Forward Model
Original Training Data

Il
10 20 30 40 50 60
Sample Number

Forward Model Approximation

40
x 30
[)
220

10

10 20 30 40 50 60
Sample Number

Square of the Difference

40
3 30
220

10

10 20 30 40 50 60
Sample Number

The upper two images show the waveforms for the training set and the forward model’s
approximation; i.e. the predicted performance. The lower image shows the predicted

performance squared error.

3.2 Training the Inverse Model using the Forward Model

Once the forward model was trained we placed it in series with the inverse
model to form a composite learning system of the type shown in Figure 11.
Again, the inverse model was implemented as a two-layer feed-forward net-
work with 61 input units, 20 logistic hidden units and 2 output units. The
composite model can also be thought of as a single four-layer feed-forward
network, see Figure 12. First the intention waveform y* was given to the
input units of the inverse model. The activations were fed forward, through
the inverse model, to the forward model. The activations passed completely
through the four layers of the network until values were obtained for the out-

put of the forward model. We then recursively computed the deltas for each

14

of the 4 layers and adjusted the weights of the inverse model, leaving the
forward model unchanged since it had already converged to a satisfactory

solution.

Figure 11: Composite Learning Scheme

Predicted

Inte;:tion INVERSE Actions FORWARD Outfgme
Y = wMmopEL T MODEL [Ty

,/ Actual

Error Term PHYSICAL |\ Oteome
MODEL Yy

A forward model is placed in series with the inverse model and in parallel with the physical
environment. The performance errors are propagated back through the forward model
to the inverse model but the forward model’s weights are left unchanged. The entire

composite system is designed to produce accurate actions by optimizing the outcome.

Figure 12: Connectionist Implementation of Composite Learning Scheme

Predicted
Outcome

Intentio

PHYSICAL
MODEL

The distal learning architecture is implemented as two feed-forward networks placed in
series; the first is the inverse model and the second is the forward model. The system can
also be thought of as a single four-layer network. The forward model’s outputs are replaced
by the physical model’s outputs so that the performance error is used for optimization.
The outputs of the composite network occur in the middle since it is the actions that we

want to obtain.

There are three approaches to training the inverse model using a forward
model: training from random initial conditions, training from the direct
inverse model’s final condition and training with the predicted performance
error of Equation 5.

Training from random initial conditions is standard practice for many
applications of connectionist networks. The strength of the connections are

initialized to small (|w| < 0.1) uniformly distributed values with zero mean.

15

As the network converges to a globally satisfactory solution, the weights
get larger, representing a progressively higher-order fit to the training data.
Initializing the network with small weights ensures that the model does not
over-fit the data.

If we initialize the distal inverse model with the weights obtained from
the direct inverse model the task of the composite learning system is made
somewhat easier and we observe faster convergence than for random initial
conditions. This technique works because the direct inverse model is good
for convex regions of the solution space; if the inverse modeling problem has
relatively small non-convex regions the difference between the direct inverse
model and distal inverse model will be small.

We used the performance error for optimization during learning with
these models, see Equation 2, which is different than the predicted perfor-
mance error of Equation 5.

However, we also obtained good results with faster convergence by us-
ing the predicted performance error; the difference was that the predicted
performance error used the forward model’s outputs as an error measure so
there was no need to present the action parameters to the physical model.
An inverse model trained in this way is biased by the inaccuracies of the
forward model, thus we switched to performance error optimization for the
last few epochs of training. This technique is only effective if the forward
model has converged to a good approximation of the physical model. We
initialized the inverse model with the direct inverse model’s final values. See

Table 3 for a summary of the various error functions and training sets that

16

were used for the above models.

Table 3: Training Sets and Error Terms for the Various Models

Forward Model

‘ Direct Inverse Model ‘ Distal Inverse Model

Training Actions, OQutcomes Intentions, Actions Intentions
Set {x*,y"} {y*,x*} {v*y}
Optimization || Predicted Performance Error Parameter Error Peformance Error
Brror =9 -9 s =T —%) | 3y -y -y)

Figures 13, 14 and 15 show the results of training the inverse model using
the three forward-modeling strategies outlined above, as well as the results
for the direct inverse modeling technique.

We can see from Figure 13 that the fastest convergence was given by the
the third of the non-direct techniques, which used the predicted performance
error for most of the training epochs. After 3000 trials the three distal-
inverse models had converged to a solution that met the error criterion, the
direct inverse model had not.

The mean-squared performance errors for the entire training set of the
two-string violin model are shown in Figure 14. The performance errors,
shown in Figure 15, are concentrated in smaller regions for the three distal-
inverse models than for the direct inverse model. The inverse model with the
best overall performance was the distal inverse model trained from the direct
inverse model’s final values. The mean-squared performance error for this

model was 5.1136 x 10~* which gives an accuracy of log, 5.1136 x 107 +16 =~

17

Figure 13: Convergence of the Inverse Models: Non-Convex Data
Direct Inverse Model

0.0l T T T
0.005F B
0 I I I I I
o 0 500 1000 1500 2000 2500 3000
(o]
= Distal Inverse Model: Random Initial Values
L 0.01 ~ 17 T T T
e
@O 0.005F B
©
3 O | | | |
(?')- 0 500 1000 1500 2000 2500 3000
c Distal Inverse Model: Direct Model Initial Values
©
q) 001 T T T
= 0.005(B
0 I I I I I
0 500 1000 1500 2000 2500 3000
Distal Inverse Model: using Predicted Performance Error
0.01 T T T T T
0.005(B
0
0 500 1000 1500 2000 2500 3000

Training Epoch
Each of the four figures shows the evolution of the mean-squared error for 3000 epochs of
the non-convex training set. The upper graph shows the mean-squared parameter error for
the direct model, the remaining three graphs show the mean-squared performance error

for the distal inverse models.

5 bits. This is significantly better performance than for the direct inverse

model and is well within the required criterion of 6 bits of error.

4 Performance on Novel Data

In order to evaluate the generalization capabilities of each of the inverse mod-
eling techniques we constructed a novel data set comprising target sounds
that required parameter values that were not in the original training set
but that were generalized as a result of the learning. We produced a new
set of waveforms using the D string on the violin with stop positions that
were in quarter-tones with the training set. The frequencies available at a

quarter-tone resolution we were limited by:

18

Figure 14: Mean Performance of the Inverse Models: Non-Convex Data
Direct Inverse Model

— 002 T T T T T T T T
o
= 001f 1
L
m 0 I 1 I
O 0 5 10 15 20 25 30 35 40 45
c
g Distal Inverse Model: Random Initial Values
= 0.02 T T T T T
‘*C:) 0.01+ B
o .
o ob—— 1 I B e e
o 0 5 10 15 20 25 30 35 40 45 50
(1)
g Distal Inverse Model: Direct Model Initial Values
U) 002 T T T T T T T
c L B
g oo1
o //\-v\’—\l
O e | I —t L I
= 0 5 10 15 20 25 30 35 40 45 50
Distal Inverse Model: using Predicted Performance Error
0.02 T T T T T T T
0.01+ B
0 L I I 1 M L
0 5 10 15 20 25 35 40 45 50

Training Set Ind3éO><
The four figures show the mean-squared performance errors of each of the direct inverse
modeling strategies for all waveformsin the convex training set. The best performance was
the distal inverse model initialized with the direct model’s final state, the mean-squared

error for this model was = 5 bits.

-1

1—-2712

| (6)

which gave n = 69. Therefore f.: = % = 639.13H 2 (D45). So we

had to limit the testing set to 14 waveforms computed in the range D4 -

Di5.

Figures 16 and 17 show the distribution of errors in the output of each
of the inverse models. The inverse model with the best overall performance
on the novel data was the model trained using the predicted performance
error. The mean-squared performance error for this model was 1.5724 x 10~*

giving an error of log, 1.5724 x 10~* 4+ 16 ~ 3.4 bits. The accuracy is better

19

Figure 15: Performance Outcomes of the Inverse Models: Non-Convex Data

Output Waveforms Direct Inverse Model Waveform Square Error
40 40
20 20
20 40 60 20 40 60
Eﬁ Distal Inverse Model: Random Initial Values
g 40 40
D 20 20
()
o 20 40 60 20 40 60
c
= Distal Inverse Model: Direct Model Initial Values
]
S
= 40 40
20 20
20 40 60 20 40 60
Distal Inverse Model: using Predicted Performance Error
40 40
20 20

20 40 60 20 40 60
Sample Number

The images on the left show gray-scale plots of the output waveforms of the physical model
given the action parameters from each of the inverse models. The images on the right

show the squared performance error; dark regions are small values.

than for the original training data because we were testing the model in a
small range of the problem space, due to the limited frequency resolution of
the physical model. The results show that the generalization capabilities of

distal inverse models are good for the given problem domain.

5 Conclusions

In this paper we have shown that inverse modeling techniques can be used to
map representations of sound to physical parameters for sound-generating
models. The inverse modeling strategy depends on the geometry of the

solution space. If the solution region is convex we can use a direct inverse-

20

Figure 16: Mean Performance of the Inverse Models: Novel Data

Output Waveforms Direct Inverse Model Waveform Square Error
15 15
10 10

5 5

20 40 60 20 40 60
Distal Inverse Model: Random Initial Values

15 15
10 10
5

20 40 60 20 40 60

Distal Inverse Model: Direct Model Initial Values

15
10
5

20 40 60 20 40 60

15
10

Testing Set Index

:
I

Distal Inverse Model: using Predicted Performance Error

15

10

5

20 40 60 20 40 60
Sample Number

15
10

:
I

The four figures show the mean-squared performance error for each of the inverse models
given novel data as input. The distal inverse model trained using the predicted perfor-

mance error gave the best performance with =~ 3.4 bits error.

modeling strategy, such as back-propagation in a two-layer, feed-forward
network. However, non-convex solution regions require a more sophisticated
approach to deriving the inverse model. One such approach is that of using
distal teachers with forward models. We implemented such a system and
obtained satisfactory results for recovering physical parameters for models
of violin strings.

With careful implementation, the forward modeling strategy is general
enough to be applied to many inverse modeling problems in the auditory
domain. We are currently expanding the scope of the current research to
include models of other sounding systems; e.g. single-reed, brass and vocal-
tract models. The outputs of these inverse models can be treated as features

to which we can apply pattern recognition techniques for source classification

21

Figure 17: Performance Qutcomes of the Inverse Models: Novel Data

Direct Inverse Model

Output Waveforms Waveform Square Error

40 40
20 20
20 40 60 20 40 60
Eﬁ Distal Inverse Model: Random Initial Values
g 40 40
S 20 20
n
o 20 40 60 20 40 60
c
= Distal Inverse Model: Direct Model Initial Values
©
S
= 40 40
20 20
20 40 60 20 40 60

Distal Inverse Model: using Predicted Performance Error
40

20

40
20

M
I

20 40 60 20 40 60
Sample Number

The images on the left show gray-scale plots of the output waveforms of the physical model
given the action parameters of each of the inverse models in response to novel data. The

images on the right show the squared performance error; dark regions are small values.

and gesture recognition. An example of this is to use parameters recovered
from real musical performances to classify different playing styles or per-
formance techniques, perhaps creating a machine listening system that can
understand the subtleties of musical performance.

Future work will include the development of distance functions for au-
ditory data that take into account human perceptual factors. Time-domain
representations are unsatisfactory for many applications of audio inverse
modeling; there are many different time-domain representation of a signal
that produce a single auditory percept. This is due, in large part, to the
low salience of phase in the human auditory system. We have experimented

with a constant-Q frequency representation which better represents the per-

22

ceptual distance between auditory stimuli. !

!The author would like to acknowledge the help of Michael Jordan of the MIT Brain and
Cognitive Sciences department during the early development of this work, Eric Scheirer
of the MIT Media Lab for his insightful comments during the revision process and Barry
Vercoe of the MIT Media Lab for providing continual support for this research.

23

References

[Astrom and Wittenmark, 1984] Astrom, K.J. & Wittenmark, B.W. Com-
puter Controlled Systems. Englewood Cliffs, NJ: Prentice Hall.

[Anthony and Biggs, 1992] Anthony, M., & Biggs, N. “Computational
Learning Theory”, chapter 8. Cambridge Tracls in Theoretical Com-
puter Science, Cambridge University Press.

[Duda and Hart, 1973] Duda, R.O, Hart, P.E. Pattern Classification and
Scence Analysis. New York: Wiley

[Elman, 1990] Elman, J.L. “Finding Structure in Time.” Cognitive Science
14, pp. 179-211.

[Grey, 1975] Grey, J.M. “An Exploration of Musical Timbre.” Ph.D Disser-
tation, Department of Psychology, Stanford University.

[Haussler, 1989] Haussler, D. “Generalizing the PAC model: Sample size
bounds from metric dimension-based uniform convergence results.” In
Proceedings of the 30th Annual Symposium on Foundations of Com-
puter Science. IEEE Computer Society Press.

[Jordan, 1990] Jordan, M.I. “Motor learning and the degrees of freedom
problem.” In M. Jeannerod (Ed.), Attention and Performance, XIII.
Hillsdale, NJ: Erlbaum.

[Jordan and Rumelhart, 1992] Jordan, M.I. & Rumelhart, D.E. “Forward
models: Supervised learning with a distal teacher”, Cognitive Science
(in press).

[Kohonen, 1989] Kohonen, T. Self Organization and Associative Memory
(3rd Ed.). Berlin: Springer-Verlag

[Lee and Wessel, 1992] Lee, M., & Wessel, D., “Connectionist Models for
Real-Time Control of Synthesis and Compositional Algorithms.”,
Proceedings of the International Computer Music Conference. San
Fransisco: International Computer Music Association.

[McIntyre et al., 1983] McIntyre, M.E., Schumacher, R.T., and Woodhouse,
J. “On the Oscillations of Musical Instruments.” Journal of the
Acoustical Sociely of America, 75:5, pp.1325-1345

[Minsky and Papert, 1969] Minsky, M.L., & Papert, S.A., Perceptrons: An
Introduction to Compulational Geometry, Cambridge: MIT

[Risset and Mathews, 1969] Risset, J.C. & Matthews, M.V. “Analysis of
Musical Intrument Tones.” Physics Today 22:2, pp.23-40

[Rumelhart et al., 1986] Rumelhart, D.E., Hinton, G.E., & Williams, R.J.
“Learning Internal Representations by Error Propagation”. In D.E.

24

Rumelhart and J.L. McClelland, editors, Parallel Distributed Pro-
cessing: Fzplorations in the microstructure of cognition. Volume 1:
Foundations, pp. 318-363, Cambridge, MA: MIT

[Smith, 1986] Smith, J.O. “Efficient Simulation of the Reed-Bore and Bow-
String Mechanism.” Proceedings of the International Computer Music
Conference. San Fransisco: International Computer Music Associa-

tion.

[Smith, 1992] Smith, J.O. “Physical Modeling Using Digital Waveguides.”
Computer Music Journal 16:4, pp. 74-87

25

