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Acoustic Lexemes for Organizing
Internet Audio
Michael A. Casey

In this article, a method is proposed for automatic fine-scale audio description that draws
inspiration from ontological sound description methods such as Shaeffer’s Objets Sonores
and Smalley’s Spectromorphology. The goal is complete automation of audio description
at the level of sound objects for indexing and retrieving sound segments within Internet
audio documents. To automatically segment audio documents into acoustic lexemes, a
hidden Markov model is employed. It is demonstrated that the symbol stream of cluster
labels, generated by the Viterbi algorithm, constitutes a detailed description of audio as a
sequence of spectral archetypes. The ASCII base-64 encoding scheme maps cluster indices
to one-character symbols that are segmented into 8-gram sequences for indexing in a
relational database. To illustrate the methods, the essential components of an audio search
engine are described: the automatic cataloguer, the retrieval engine and the query
language. The results of experiments that test the accuracy and the retrieval efficiency of
six new similarity-matching algorithms for audio using acoustic lexemes are presented.

The article concludes with examples of audio matching using the structured query
language (SQL) for creating new musical sequences from large extant audio collections.
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Introduction

General audio documents, including music, speech and environmental audio, are
increasingly available on the Internet via large content repositories, the growth of
which has been spurred by the development of derivative works licenses, such as the
Creative Commons (Lessig, 2004). The scale of these resources necessitates the use of
sophisticated tools for organizing and locating materials by the way their content
sounds. Many approaches to content-based audio retrieval have been proposed
(Wold et al., 1996; Zhang, 1998; Casey, 2002) that are based on searching in high-
dimensional audio feature spaces and hence pose significant problems in realizing an
efficient implementation (Berchtold et al., 2001). Here we propose a new method for
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audio retrieval that represents high-dimensional audio features as strings describing
the morphology of spectral archetypes.

Consider, for example, the open-source audio collection available at http://
archive.org, which is a large collection of heterogeneous sound materials consisting
of musical works, soundscape recordings, speeches, meetings and so forth, much of
which is distributed with a Creative Commons deed. Among the audio resources are
23,690 live recordings made at concerts. The administrators estimate that there is about
one Petabyte of data held in the archive, and while it is unknown what the total duration
of audio is, we made an estimate using reasonable bounds. The lower bound on
individual documents held in the archive is estimated as the total number of compressed
video DVDs that would fit into the archive, about 10A5 or one hundred thousand full-
length feature films. An upper bound for the duration of the audio archive is estimated
as if the archive were entirely composed of MPEG Layer-III audio (mp3) files at
128,000 bits per second coding. With these limits, we estimate the total duration of
audio on the archive to be somewhere between 34.2 and 2,000 years (Rhodes, 2005).
Without content-based organization, the sounds within most of these documents will
remain hidden. The current prevailing system of artist, title, genre, date textual term
descriptions is not sufficiently detailed to enable access to sound events within the
documents.

A second example of an Internet collection is the Freesound project (http://www.
pfreesound.org). Here the focus of the collection is samples, individual sound objects
or short source audio clips. The sound materials are organized into a database and
can be retrieved using a non-specialized ontology based on the associative WordNet
English lexical model (Miller, 1995). Within the Freesound project there is also
content-based search capability that describes the ‘microsound’ structure using audio
feature vectors influenced by the Shaefferian ontology. Each retrieved sound file can
be used as a query to filter the database contents to the closest N matches, or the
furthest N matches from the query. The current size of the Freesound database is
10,000 samples with a mean duration of 3.25 seconds per sample (Cano &
Koppenberger, 2004).

Both of the aforementioned databases index whole audio documents: archive.org
documents consist in large part of entire live recordings of concerts with multiple
works occupying a single document, and, in the case of Freesound, the documents are
generally short-duration samples intended to be used as a unit of musical creativity.
These systems require that the audio is pre-segmented into individual documents
that have a single level of description attached as required by the use case scenario.
Likewise, most existing content-based audio systems, such as Wold et al. (1996) and
Cano and Koppenberger (2004), provide a single audio feature vector for each
document. Such systems are called homogeneous audio’ search engines.

Given the temporal gulf between concerts and sound objects, a single level of
description is not sufficient to access the content. For our purposes, we require
retrieval of individual events located within audio documents. So, we aim to extract
sound-objects from whole audio documents and make them individually available in
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a database as findable units for musical creativity. We require a method to auto-
matically segment heterogeneous sound documents into homogeneous regions.
Furthermore, we require database indexing methods so that these regions can be
efficiently matched and retrieved in a query-by-example system. We call such systems
‘heterogeneous audio’ search engines (Casey, 2004).

We propose a system to automatically describe the fine structural detail of sound
using symbolic representations of audio archetypes that enable content-based queries
on sub-document level segments. Following Schaeffer’s Objets Sonores and Smalley’s
Spectromorphology, our system uses ontologies of sound properties and sound
behaviours (Schaeffer, 1966; Smalley, 1986). These description languages are applic-
able to diverse sonic materials whether they are pitched, un-pitched, noise-based,
gesture, texture, single source or mixed. Like the aforementioned ontologies, Acoustic
Lexemes describe sound spectra as sequences of archetypes; our description language
differs in that the archetypes are extracted by machine learning from a set of sound
examples. Acoustic Lexemes are derived from a corpus of audio material, such as a set
of musical pieces or source materials, and compactly represent the salient acoustic
behaviours within the corpus. One advantage of the lexeme representation is relative
independence from theories about music thereby maintaining generality. In the
following sections, we define acoustic lexemes and their interface with efficient
relational database technologies that scale to searching in Internet volumes.

Creative Organization of General Audio

Content-based audio query systems admit a new type of music composition that we
call ‘meta-music’, which is composed by querying large databases and synthesizing
audio content from the results. For example, a variety of audio mosaic systems have
been proposed that match segments from a target audio file to a database of audio
source materials to synthesize a new version of the target from the source materials
(Pachet et al., 2001; Casey, 2003; Schwartz, 2000; Sturm, 2004; Lazier & Cook, 2003).
A composition emerges by concatenation of the retrieved audio output for each input
segment. Control over the synthesis is achieved in a number of ways, such as
changing the features, modifying the similarity function or by restricting the view on
the source materials. The synthesis quality of these systems has been widely reported
to improve as the size of the source database grows. However, as the volume of
available source material grows, the computation time for retrieval grows
exponentially. Therefore, efficient methods for automatic segmentation, indexing
of long audio documents and retrieval of sub-segments have immediate application
in such creative systems. We will now describe the essential components of our
system. The first step was to decide which audio features to use.

Audio Features for Content-based Description

Choices of audio features and similarity measure crucially determine the attributes of
self-similarity and therefore the definition of a segment. We sought features that
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could represent a wide variety of sound types; thus we excluded features that solely
represented traditional music concepts such as pitch class and harmony. Instead, we
used Cepstral Coefficients, which de-correlate timbre and pitch components of audio
spectra. Taking the log of the spectrum amplitudes and applying the Discrete Cosine
Transform (DCT) yields Cepstral features. We used a slightly modified form of the
widely used Mel-Frequency Cepstral Coefficients (MFCC) employing a logarith-
mically spaced filter bank to approximate the psycho-acoustically motivated Mel
frequency scale (Logan & Chu, 2000; Casey, 2004). Features are calculated from short
windowed sub-sections of audio with each frame overlapping with the previous
frame by some proportion of the window length. Overlapping windows by greater
durations yields smoother features. The feature frame rate was 1/100th of a second, so
at each 10ms time point an analysis window of 30ms duration was sampled and
transformed to a feature vector as described above. The extracted features form a
time-series trajectory that defines a probability space. The smoothness of features
depends on the composition of sources, the window length, the hop size and the
salience of the chosen features.

Modelling Spectral Dynamics

We adopted a data-driven approach using a 40-state hidden Markov model with
parameters inferred by machine learning over a large corpus of audio training data. It
is a reasonable assumption that certain sequences of spectra occur more frequently
than others. We model such time dependence between audio features by a discrete
first-order Markov chain process. In the model, the probability of the current active
state, or symbol, depends solely upon the identity of the symbol in preceding step:

T(j, k) = Probability(current_symbol is k GIVEN previous_symbol was j).

Therefore we condition the choice of current_symbol upon the previous_symbol
using a discrete probability distribution over all possible sequences of two symbols, of
which there are N* (see Figure 1).

Audio features are not usually available as discrete symbols, so how does the
Markov transition model apply to the audio feature data? The answer is to organize
the model hierarchically and treat the symbols as generators of audio features
(Rabiner, 1989). We model these generators as random processes, by which we mean
that a symbol k generates the observed audio feature at each time step by sampling
from a multidimensional Gaussian density:

P(feature GIVEN current_symbol = k) = P{x ~ N(p;, %)}
ke {A,B,...,Z,a,b,...,n}

where

iz
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40 Lexeme Markov Transition Matrix
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Figure 1 Transition matrix for a 40-state Markov model. Some transitions have effectively
zero probability of occurrence and are therefore excluded from the set of two-symbol
sequences generated by the model.

Putting the data-generating function and the symbol transition probabilities together
we can write a hidden Markov model (HMM) for acoustic lexemes invoking Bayes
rule for factoring our conditional probability distributions:

P(current = k GIVEN feature AND previous = j) o< P(x ~ N({p, 2x))T(j, k).

This equation leads to a method to assign the observed feature to a lexeme symbol by
choosing the symbol k that maximizes the product of the two known distributions.

To train the HMM, we used a portion of the available data inferring the parameters
to the set of generating Gaussian densities using maximum likelihood learning with
the expectation maximization (EM) algorithm (Dempster et al., 1977). To test our
proposed system, we trained a 40-state HMM using 200 randomly chosen 10-second
clips chosen from 20 works in a varied corpus of electroacoustic music; there were
128 full length works in total, 20 used for training 108 for testing retrieval methods.
This material was chosen for its diverse sound content and difficulty for segmentation
tasks with materials consisting of vocal utterences, synthesized audio, environmental
audio, concrete sources and instrumental sources structured with little pitch-time
lattice organization. Figure 2 shows a view of the first two dimensions of a 20-
dimensional Log Frequency Cepstral Coefficient (LFCC) feature space that is
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Acoustic Lexeme Clustering with Gaussians Distributions
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Figure 2 Clustering of the audio feature space by a mixture of Gaussian probability
density functions. Here we show only 8 of 40 clusters for illustrative purposes. In a
hidden Markov model, only one distribution is active per sample, so each audio feature
vector gets assigned to one of 40 Gaussian lexeme symbols.

populated by Gaussian distributions over the data. The distributions describe the
probability of each location in the feature space, given one of the states as the active
class. The ellipses describe iso-contours of like probabilities.

Automatic Segmentation of Internet Audio

Weimplemented an automatic lexeme segmenter to label sequences of audio buffers, 10ms
apart, using a pre-trained hidden Markov model and the Viterbi algorithm to estimate the
most probable sequence of symbols that generate the given sequence of audio buffers
(Viterbi, 1967) (see Figure 3). Repeated symbols are removed from the Viterbi symbol
stream thus integrating 10ms input buffers into longer homogeneous regions. Repeats
occur where consecutive audio buffers are labelled as samples drawn from the same
multidimensional Gaussian random process (i.e., when there is no state transition). When
a transition occurs, we label the segment with the acoustic lexeme corresponding to the
associated Gaussian random processes, or HMM state. The symbols are represented using
the ASCII base-64 encoding of the numerical index of each Gaussian state, 1-40. Figure 4
illustrates the mapping of Markov model states to ASCIL.
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Acoustic Lexeme Viterbi Lattice Showing Best Path
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Figure 3 A Viterbi trellis used for solving the optimal state sequence from observed data
in a hidden Markov model. At each time step, the colour of lines between states indicates
the probability of transition as the product P(x|k)T(j,k) (see text). Lexeme symbol
boundaries are determined by transitions between states. Lexical ‘strings’, consisting of
two or more lexemes, are used to index sound segments in the relational database.

E state 123 40
ASCII ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmn

Figure 4 Mapping of state index to ASCII code symbol.

Figure 5 provides a system diagram of our AutoSeg system, which converts
sequences of 20-dimensional LFCC audio feature vectors to lexeme N-gram sequences
represented as strings of ASCII characters. Audio segments, then, are represented by
strings in a relational database and are efficiently stored and retrieved using a B-Tree
data structure that is built into most relational database management systems. As such,
content-based filtering and sorting is extremely efficient because audio content search
is transformed to string matching using well-known tree-based sequence matching
algorithms such as those described by Sankoff and Kruskal (1983).
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Figure 5 System for automatic segmentation and relational indexing of sub-document-
level segment within audio files available on the Internet.

Lexeme N-gram Sequences

N-grams are ordered sequences of symbols that are fixed to a given length, N; chosen
between 2 and 8 in our experiments. The AutoSeg segmenter allocates a new symbol only
when a transition is generated by the Viterbi algorithm, thus repeated state symbols are
joined into a single lexeme symbol with a duration attribute in were multiples of 10ms,
the signal window rate. The segmenter accumulates duration into a total for each
N-gram. After N symbols have been concatenated to form a string, they are inserted into
the database along with their start time and N-gram duration. We extracted all 8-gram
sequences from our 128-work database for our experiments. There were 1.6 million
individual 8-gram segments for the 128 works. Lower-order N-grams, at orders 2
through 7, are sub-sequences of the 8-gram sequences and were accessed in our
experiments via substring searches on the 8-gram sequences. In our database, the
durations of the 8-grams varied from 0.08 seconds, with each symbol’s duration equal to
1 feature vector (0.01s), to 52.05 seconds with each symbol representing many hundreds
of feature vectors. We calculated that there were 742 unique bi-gram sequences and
669,340 unique 8-gram sequences out of 1.6 million sequences in the database of 128
electroacoustic works consisting of about 600 minutes of audio.

Interpretation of Automatically Extracted Lexeme N-Grams

Figure 6 illustrates the most frequently occurring 2-grams, or bi-grams, in our
database. The first lexeme bi-gram represents a transition from wide band spectrum
to a low-frequency spectrum; a characteristic of onsets. By listening, we verified that
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Ten Most Probable Lexeme Bi-grams
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Figure 6 The ten most frequent lexeme bi-grams of 1.6 million shown as spectral prototypes;
there is no time index, lexemes encode sequences of spectral archetypes, the order is encoded
but not the duration. The ASCII Base64 Encoding of the bi-gram is given below each
prototype. N-gram sequences, such as these bi-grams, are duration-independent. We encode
duration separately in the database for maximum retrieval control.

these were indeed onsets. The distribution of energy in the archetype spectrum shows
that these lexemes are selective for energy in the mid-range frequencies. On listening,
we observed selectivity for mid-range pitched components around A440 with reed-
like timbres. The second lexeme is the reverse of the first indicative of an onset
occurring within a sustained segment.

The third lexeme bi-gram also consists of wide band to low-frequency transition,
but these lexemes select for lower frequency components than the first two bi-grams.
The fourth is the mirror image of the third and the fifth lexeme bi-gram shows low-
frequency components decaying. The sixth bi-gram mirrors the fifth and also selects
for low-frequency components. The next bi-gram represents transitions from low
energy to high frequency with intensity. And the final two again are mirror images of
low-frequency sustained tones with some undulation causing periodic state change.

There were a total of 742 such unique bi-grams occurring in the database of
1.6 million segments. The relatively low number of unique morphologies generated
by the HMM suggests that there is a high degree of temporal structure in the audio
data and supports our requirement of description compactness. The ten most
common 8-gram sequences are shown in Figure 7. The first two 8-grams encode
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Ten Most Probable Lexeme 8-grams
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Figure 7 The first ten of 669,340 unique lexeme 8-gram sequences. As in the previous
figure, the images show the sequences as prototype spectra using each lexeme’s Gaussian
mean approximation synthesized as a spectral frame. This illustrates the degree of
repetition and patterning inherent within audio data. The most probable lexeme
sequences occur many thousands of times in the database.

sustained low-frequency energy; they occur, respectively, 16,753 and 16,692 times
with mean 8-gram duration of 0.2s. 8-grams 7 and 8 represent silence, with
alternating low-energy spectral archetypes; they occur 5,228 and 5,217 times in the
database, respectively, and have a mean duration of 0.25s.

These N-gram illustrations are just a few examples of the specific spectro-
morphological meaning of symbolic lexeme sequences. In these cases we inspected,
the most frequently occurring segments as classified by their bi-grams and 8-grams.
Our observations reveal some interesting properties of the model. In particular, we
observed a high degree of symmetry and structure in the resulting model in spite of
the diversity of audio content. We now propose that these archetypal structures can
be used to match sound segments simply by matching the strings that represent their
archetype sequences. Our central hypothesis is that sound segments with similar
strings will sound similar when presented to the human listener. A discussion and
evaluation of the validity of this hypothesis is outside the scope of the current article
(for detailed discussions on this hypothesis with respect to audio features and human
similarity judgments, see, e.g., Pohle et al., 2005; Berenzweig et al., 2003).

We now go on to discuss how lexeme sequences are expressed in a relational model
so that they can be accessed within a relational database for efficient retrieval.
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Relational Data Model for Acoustic Lexemes

To implement our system, we used the relational database model thereby enabling use of
proven industrial-strength, scalable database management systems such as PostgreSQL
(Stonebraker et al., 1983). We implemented our system using standard distribution
components with no specialized software for query processing and matching. Our
implementation is centred upon two relations (tables) called the ‘MediaTable’ and the
‘LexemeTable’ (see Tables 1 and 2). The first table contains a unique locator for the
media on the Internet using a uniform resource locator. It also stores any textual
metadata that is attached to the whole document such as artist, title, style, publication
date, and so on. The first table is linked to the LexemeTable via a unique identifier for
the audio document. The LexemeTable contains the sub-segments that were
automatically extracted for each document. FEach segment is allocated a unique
identifier, a start time, duration and an 8-gram sequence of acoustic lexemes stored as 8-
character strings. We also represent histograms of the occurrence of characters within a
40-character string to support alternate matching methods described below.

Creative Queries with Acoustic Lexemes

As discussed above, a number of systems have previously been proposed that express
creative musical processes as queries to a database (Zils & Pachet, 2001; Casey, 2003;

Table 1 Relational database MediaTable (audio documents)

Media relation Data type Example entry

medialD integer key 3821%* (primary key)

URL text “http://sounds.org/file01.wav”

Title text “Source recordings”

Author text “M. Casey”

Date text “30 May 2005”

Format text “WAVE RIFF”

Description text “ambient cityscape recorded in barcelona”

Table 2 Relational database LexemeTable (audio segments)

Lexeme relation Data type Example entry

segID integer key 87492* (primary key)

medialD integer key 3821%* (foreign key)

lexemes character(8) “LTLjajLT”

startTime integer 41548 (centi-seconds)

stopTime integer 42120 (centi-seconds)

duration integer 572 (centi-seconds)

histogram character(40) “0000000000030000000200000010000000020000”

indicator character(40) “0000000000010000000100000010000000010000™
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Schwartz, 2000; Sturm, 2004; Lazier & Cook, 2003). All of these systems start with some
extant material to be used for querying. This audio is matched, segment-by-segment,
against a database of pre-indexed sound material. In such systems, retrieved segments
may be in any specified relationship to the target audio, such as nearness or farness in
feature spaces. The nature of such queries can get very complicated, so to express
organization of audio in a rigorous and robust manner we must use a query language.

Many composing languages have been proposed, mostly based on the orchestra/
score synthesis paradigm, such as Music-IV and CSound, or the event-based systems
such as PureData and Max-MSP. In none of these systems can a query such as those
posed above be expressed succinctly as a concept. Fortunately, specialized query
languages exist that are used to express database queries and optimize the query based
on algebraic re-writing of it. In the future, it is unlikely that composers will learn
complex query languages. Instead, the query operations will be embedded within
software and a simple-to-use graphical user interface will be used to construct a query.

One such language is the Structured Query Language (SQL) in which a number of
basic operations, such as INSERT and SELECT, are combined to form more complex
and expressively powerful queries. SQL assumes the relational model for the data, so
we use the relations defined above that represent both tables and columns for each
media item and N-gram segment (Stonebraker et al., 1983).

Figure 8 illustrates the query framework for segment retrieval from Internet audio.
Feature extraction is applied to the query audio and the features are then passed
through to the Viterbi algorithm. The Viterbi state sequence is then post-segmented by
removing repetitions and recording each state index and its duration. The symbol
stream is ASCII base-64 encoded and concatenated into 8-gram sequences which
are wrapped in an SQL command and passed to the query execution program
(see Figure 9). Here, lexeme matching is applied to a pre-stored database of acoustic
lexeme segment descriptions from the same lexicon. The best matches are returned as a
list of URLs, start times and durations that are then fetched via the Internet and
presented to the user within their application. As well as lexeme processing, the query
engine can integrate high-level textual metadata within the SQL query framework,
thereby enabling constraints on which portions of the database are used for matching.

Structured Query Language for Audio Retrieval

Systems for audio mosaicing perform matching using search over audio feature
vectors. Such searches consist either of pre-computing N*N distances, which is
intractable for very large N, or employing multidimensional indexing structures such
as R-Trees or KD-Trees. Unfortunately, there are no standard methods to support
vector-based queries in dimensions higher than two, and there is little or no support
for vector-based queries in available database management systems. Furthermore,
high-dimensional vector space indexing does not inherently represent sequences;
therefore, further research is required before efficient search methods for
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Content-Based Audio Segment Query for Internet Audio
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Figure 8 Schematic diagram of the lexeme retrieval system. Audio queries are presented
via a graphical user interface, such as a sound editor or media player, low-level audio
features are then extracted and passed to the HMM Viterbi decoder. The string of
symbols is converted to an 8-gram and used to query the semantic audio database. The
result is a set of media locators for audio segments that match the query criteria.

high-dimensional vector sequences become widely available. Until these problems
have been solved, we propose a range of query templates that can be used with most
available relational database management systems utilizing the acoustic lexeme
representation to perform approximate spectral matching in a large-scale audio
database. We now give some examples of how segment matching is expressed in the
structured query language (SQL) using the relations defined above.

Duration Only Constraint

In the first example, we employ the SELECT command to retrieve all segments in the
database that are less than 10 and greater than 2.5 seconds in duration:

SELECT segID,mediaID FROM LexemeTable WHERE duration < 1000 AND
duration > 250;

This command returned 1,620 rows out of 1.6 million in our database, thus filtering
the database to about 1/1000th of the original entries.



502 M. A. Casey
Query Spectrogram Result Spectrum

50 . 20
100 450 60 40 60 g 60

100
Query Prototype Result Prototype

50 100 e 20 40 g g 60
Query Archetype Sequence Result Archetype Sequence

St

=N

eee

=NwW
B I

20 20

60 60

8

Figure 9 Three layers of the query and retrieval process using acoustic lexemes. The top layer
shows spectrograms of the query and result with time in 1/100th second and 1/16th-octave
logarithmic frequency bands indexed from 1 to 70. The second layer shows the time-aligned
prototypes synthesized by the hidden Markov model for each spectrogram. The bottom
layer shows the compact lexeme 8-gram sequence for each of the query and result
prototypes. Matching is performed with the bottom layer, which is agnostic to time.

The table columns for the LexemeTable include duration, segID and medialD and
they are defined, along with the other columns, in Table 2 above. It is noteworthy
that the duration here refers to the total duration of the lexeme sequence (8-gram)
and not the duration of individual lexemes as explained above. In the following
example, we apply further constraints to filter out more of the database to retrieve
more targeted results.

Lexeme Exact Match

We first write an SQL expression to filter the database to those segments that have the
exact same sequence of eight lexemes as the query segment:

SELECT segID,medialID FROM LexemeTable WHERE lexemes= ‘TjTjzjzj’
AND duration < 1000 AND duration > 500;
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The chances of an exact match are defined by the probability distribution that lexeme
sequences are drawn from. It is not guaranteed that there will be an exact match in
the database to a given lexeme sequence. If there is no exact match, then we must
invoke one of a number of approximate matching methods. The most probable
lexeme sequence, DMDMDMDM, is associated with 16,753 segments in different
audio files in our database of which 21 are between 2.5 and 10 seconds in duration.
Thus the length of our result list is reduced to 21 candidates matching our search
criteria from a total of 1.6 million initial candidates.

Lexeme Substring Match (Low-order N-gram Matching)

The following query truncates the query string and performs matching only against
the shortened lexeme string. If the shortened result string matches the shortened
query string, then the segment is returned as a match.

SELECT segment FROM table WHERE lexemes LIKE ‘TjTj%’ ANDduration <
1000 AND duration > 500;

Lexeme Sequence Approximate Matching

Given the probabilistic nature of our model it is likely that similar sounding segments
have similar, but not identical, lexeme sequences. Using the histogram indicator
function of our lexeme 8-gram sequences we can make an exact string-match query
that generates an approximate match by reducing constraints on symbol ordering
when matching.

Lexeme Histogram Match

The first type of approximate matching that we considered was to match using
histograms of eight-lexeme sequences. The maximum number of occurrences of a
lexeme is four since our representation has eliminated repetitions. Our encoding
placed a digit 0—4 in each lexeme position [A,B, ..., Z,a,b, ..., m] therefore making
a 40-character string: one character for each possible lexeme (see Table 2).

SELECT segID,mediaID FROM LexemeTable WHERE histogram=query-
HistogramAND duration < 1000 AND duration > 500;

The matching algorithm then considered only those segments with exactly matching
lexeme histograms. Clearly this includes the set of segments returned by an exact
match, since exact sequence matches will have matching histograms too. However,
the filter generally admits many more sequences than the extract lexeme sequence
string match.

A second approximation was to use the indicator function of the histogram. This
lexeme key is almost the same as the histogram, except that a 1 is used for every
non-zero histogram value, indicating that the state is active during the segment.
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This lexeme symbol indicator function returns all segments in the histogram match,
but it also admits many more sequences because the precise counts are not matched.
Motivated by the overlap between the result lists of the histogram matching methods,
in our experiments we used the histogram indicator matching method rather than the
more restrictive matching symbol count method.

Lexeme String Distance

A third and final approximate matching scheme was to compute a distance
between the query string and lexeme strings stored in the database. The canonical
distance metric that is used for strings is the Levenshtein distance, or string-edit
distance (Sankoff & Kruskal, 1983). This quantity can be computed in a number of
ways: we used a dynamic programming method to implement the Levenshtein
distance.

SELECT segID,medialD FROM LexemeTable WHERE
stringDist(lexemes, ‘TjTjZjz3’") <2

ORDER BY abs(duration-queryDuration) ;

Results

The retrieval experiments reported below are for randomly chosen sub-segment
queries from the set of 108 complete electroacoustic works that formed our testing
set. We used indexing on the columns to be matched. Indexing is a technique to
explicitly represent the relationships between data in relational tables by pre-sorting
the data entries into an efficient data structure. We used a B-Tree index on each
column that appears in the queries described above. Use of a one-dimensional key
representation for indexing audio is analogous to an Internet search engine that uses
pre-computed indexes over the content of all webpages to efficiently locate
documents containing a given text.

Figure 10 shows the results of performing 100 queries with randomly chosen
segments from the database. The query excluded the source documents from which
queries were drawn. The evaluation of the result is given in terms of the mean
distortion between the query and the 1-best result drawn from the database of
1.6 million segments. Distortion was computed using a probabilistic measure of the
divergence between query and retrieved spectrograms. We can see there is a
significant difference between the six proposed algorithms.

The most significant difference is between the anchored substring algorithms and
the rest. Anchored substrings were chosen as 4-grams. The task was to retrieve a
segment that matched the query 8-gram using only the first 4 symbols for the match.
Thus the divergence is high because there are no constraints on the last four symbols.
The difference between the Levenshtein distance approximate match methods and
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Query-Retrieval Spectral Distortion by String Matching Algorithm
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Figure 10 Evaluation of string-matching algorithms by spectral distortion between 100
query segments and corresponding retrieved. The Levenshtein distance was applied to a
list of duration constrained row in order to minimize distance computations. These
results show that histogram matching performs as well as approximate string matching
using the Levenshtein distance; substring matching does not perform well.

the histogram exact match method are insignificant. Thus we have shown that lexeme
approximate matching can be computed efficiently using un-ordered, un-counted
histogram representations that yield similar spectral divergence properties to approxi-
mate string matches but are far more efficient. The temporal efficiency of the search
methods is illustrated in Figure 11. Matching by Levenshtein distance was the most
time-consuming method even though the database was pre-filtered in this case to
include only those segments with durations within a factor of two of the query
segment. The most time-efficient method was the histogram indicator exact match
method, which, as stated above, also yielded good spectral distortion performance.
The retrieval times for our queries using the lexeme histogram approximate
matching methods benefited from the B-Tree indexing scheme, which is known to
have a theoretical retrieval performance of order O(log(N)) in the number of segments
N. This means that retrieval times will grow by, approximately, the log of the number
of segments in the database. For example, in our experiment we recorded retrieval
times of 0.01s for 600 minutes of audio. We can extrapolate this result to the estimated
size of Internet audio, 10210 minutes of audio; all else being equal, the retrieval times
would scale to approximately 0.5 seconds with a conservative allowance for estimation
errors in our calculations. This result demonstrates that our methods are scalable with
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0.06 Retrieval Times by String Matching Algorithm
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Figure 11 Evaluation of string-matching algorithms by mean retrieval times for 100
queries to the audio database. These results show that the histogram exact match method
was the most time-efficient algorithm.

reasonable time complexity to sound-object searches within extremely large audio
databases such as those that archive all Internet content.

Conclusion

In this article we have proposed a framework for articulating the internal materials of
audio documents, regardless of their content and duration, in relational database
management systems via the use of a new mid-level audio representation called
‘acoustic lexemes’. We discussed the importance of sub-document indexing at the
sound-object level and proposed a machine-learning framework to automatically
derive a vocabulary of audio archetypes from a corpus. We demonstrated how the
archetypes can be used to automatically segment audio into spectromorphological
sequences represented by N-grams of acoustic lexeme symbols.

We proposed a number of query strategies that use the lexeme N-gram
representation in a relational data model using the structured query language and
evaluated these strategies by the distortion of the retrieved segments and the time
efficiency of the retrieval. We demonstrated that the best performing method in our
framework also scales well in the size of the database having logarithmic search
complexity in the number of segments in the database.
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In the next few years we are likely to witness new modes of creativity that extend
concepts such as the meta music models described herein, drawing on vast extant
resources using sophisticated search and retrieval methods. Such systems draw from
decades of knowledge from diverse intellectual disciplines. It is hoped that the
bringing together of such knowledge sources into a unified computational creative
framework will encourage future exploration by both artists and scientists, and will
act as a catalyst for collaboration. Our future research plans include further develop-
ment of automatic segmentation methods, exploring the emergence of sound objects
and gestures in different corpora, and the development of intelligent performance
systems that respond to input in real time by drawing on vast extant musical
knowledge represented in an efficient database such as the one reported herein.
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