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Abstract

We present a method for generative modeling of audio content that performs mappings between minimum
entropy hidden Markov models learnt from audio data. By training with a minimum entropy prior, compact,
low-complexity models of the latent structure in audio source samples are obtained. Synthesis of new audio
content is achieved by mapping the state sequence of a nominatedstructuremodel onto a nominatedcontent
model. The mapping is chosen such that the cross-entropies between the state variables of the nominated
models are minimised. This creates an analogy between the models’ structures, even when the specific content
of the models varies significantly. The re-mapped content state sequences are inverted to yield spectral vectors
that consist of the higher-order pattern information of the structure model and the low-order spectral features
of the content model. To illustrate the methods, we present examples of mapping audio structure and content
between drum beat samples in different styles.

1 Introduction

Audio content repurposing has a significant presence in
musical culture. Much of the electronic music currently
being produced is based on transforming sampled materi-
als in some way, and there exist a number of commonly-
used signal processing approaches for such transforma-
tions. Notable amongst them is thephase vocoder, (Port-
noff, 1976), which uses the short-time Fourier transform
for analysis and modified resynthesis of spectral data and
has been used by composers for creating new acous-
tic content by spectral blending of two or more source
sounds. Phase vocoding is a remarkably effective tool that
enables a degree of independence between temporal and
spectral transformations not possible with looping and re-
sampling techniques. However, as with most signal pro-
cessing transformations, it is agnostic to any patterns that
exist in the audio data, thus the transformations are struc-
turally naive. In this paper, we describe a structured cross-
synthesis technique that maps higher-order structural fea-
tures between audio samples; with structure determined
automatically using minimum entropy learning methods
for Bayesian models.

Hidden Markov models are widely used for acoustic
modeling in speech and for classification of audio, (Ra-
biner, 1989) (Casey, 2002). This is due, in large part, to
the Baum-Welch algorithm for maximum likelihood in-
ference of model parameters. However, little work has
been undertaken on using HMMs to synthesise audio con-
tent outside of the speech synthesis literature, (Yoshimu-
ray and Tokuday, 1998). We use HMMs to extract latent

structure from audio signals and use this structure for gen-
erating novel audio content that exhibits a blend of salient
features from two source samples.

2 Structure Discovery HMMs

A large number of algorithms, and heuristics, exist for
fitting models to data. But one must normally spec-
ify the structure of the model; for example, the number
of states to use and the linkage of the transition matrix
for hidden Markov models. To automatically learn such
structure from features, we use a minimum entropy prior
on the form of the internal variables for an HMM. This
strategy combines the problem of model structure esti-
mation with the problem of optimal parameter estima-
tion from data and is solved using maximuma-posteriori
(MAP) estimation. A hidden Markov model consists of
multinomital parameters representing an initial state dis-
tribution, πi = P (s1 = i) and between-state transition
probabilities,Tij = P (st+1 = i|st = j), for states
i, j ∈ {1, . . . ,K} and timet ∈ {1, . . . , T}. States are
parameterised by multidimensional Gaussian probability
distributions over the space of observations. To compute
the entropy of an HMM, the model parameters are con-
catenated into a stochastic vectorθ = [θ1, . . . , θN ], thus
creating a multinomial over the model’s parameter space.
The conditionalposteriordistribution , with respect to the
model parametersθ and observable evidencex, can be
factored according to Bayes’ rule:

P (θ|x) ∝ P (x|θ)Pe(θ) (1)



with entropic priorPe(θ) of the form:

Pe(θ) ∝ exp−H(θ) = exp
[ N∑

i=1

θi log θi

]
(2)

Brand (1999) provides a method for maximuma-
posteriori (MAP) estimation using the entropic prior, in
Equation 2, that yields models that are biased towards rep-
resenting the structure, sparsity and determinism inherent
in the training data. Figure 1 shows a minimum entropy
HMM of a 16-bar Latin percussion sample. Only the first
two dimensions of the probability space are shown.
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Figure 1: A 10-state hidden Markov model with sparse
transition structure. Elipses represent Gaussian probabil-
ity isocontours and lines represent transition probabilities
between states. The size of ’X’in each state denotes the
probability of self-transition.

Figure 2 illustrates the structure that is represented by
the HMM state variables. Noisy low-level spectral audio
features are converted into a representation that encodes
the higher-order event structure in the data. It is easy to
’pick out’ the states that correspond to onset and sustain
phases of the percussive timbres in the figure.

2.1 Audio Feature Extraction

Log spectral features were extracted according to the
specifications of the MPEG-7 low-level audio descriptors
standard, see ISO (2001). Below, we also extract lin-
ear basis functions and low-dimensional projection coeffi-
cients using the MPEG-7 specification. Thus the feature-
extraction and acoustic Markov modeling methods pre-
sented herein constitute an application of the MPEG-7
standard to structured content repurposing. We briefly de-
scribe these feature extraction methods in this section.

We recorded a set of 20 audio samples from a high-
quality drum machine. Each sample consisted of a unique
drum pattern in one of two styles (Latin or Techno) with
a tempo of 75bpm and 16 bars duration in4

4 metre. Each
sample was therefore 1280 spectral frames in duration and
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Figure 2: (Top) A constant-Q spectrogram of a Latin per-
cussive sample lasting 6.4 seconds (10ms frames). (Bot-
tom) Segmentation of the sample into 5 discrete states by
a content-specific hidden Markov model.

the ensemble of training samples consisted of a total of
256 seconds of audio.

The signals were reduced to 16kHz mono 16-bit lin-
ear PCM samples and segmented by 30ms hamming win-
dows, with a 10ms advance per frame, and transformed to
the spectral domain using a 512-point FFT. The FFT ele-
ments were then converted to power spectrum coefficients
and re-binned into18 th-octave bands, taking care to pre-
serve the total power. The resulting log-spectral frames
were 39-dimensional and preserved the power of the sig-
nal over the analysis window. These frames were stacked
row-wise into observation matrices,X, with the ensemble
of stacked matrices representing all source samples,{X}.
Vectors were re-scaled to decibels and normalised by their
L2-norm coefficients to yield unit-length spectral-shape
vectors. The L2-norm coefficients were pre-pended to the
ensemble vectors to create 40-dimensional vectors con-
sisting of the RMS of spectral power coefficients in the
first element and normalised spectral shape vectors in the
remaining elements.

2.2 Audio Probability Space

To cross-synthesise audio data from multiple HMMs, one
must ensure that the parameters of each model are defined
over a common probability space. To do this, we first
extracted short-time spectral features from each source
audio sample, then we computed a linear basis over the
spectral space.

The spectral linear basis was extracted by computing
the singular value decomposition (SVD) over the ensem-
ble of observation matrices,{X}. The first five basis
functions,V, were retained and used to project observa-
tions into a low-dimensionality probability space:



Y = XV (3)

This approach to audio feature extraction is described
in detail, along with quantitative test experiments, in
Casey (2002) and ISO (2001).

3 Content Repurposing

3.1 Structure, Content and Style

Methods for mapping between Bayesian models for style
and content repurposing have previously been proposed
in the fields of machine vision and computer graphics,
(Brand, 2000) (Freeman and Tenenbaum, 1997). Brand’s
method uses learning to capture structure and style in bi-
pedal motion performed by human subjects. Style hid-
den Markov models are used to synthesize new motion
sequences by interpolating parameters between sample-
specific models thus creating novel animations from exist-
ing content. Freeman and Tenenbaum (1997) use bi-linear
models to separate style and content in images thereby
enabling independent control over stylistic aspects of the
data, such as the effects of lighting and pose in images
of faces. There has also been some work in the area of
speech synthesis on controlling HMM state variables for
expressive articulation, (Yoshimuray and Tokuday, 1998).

We adopted a similar framework for music and general
audio repurposing. As such, this represents a departure
from usual audio signal processing practices in that higher
order structure is considered along in addition to the low-
order spectral structure.

3.2 Structure Mapping

Since the models were constrained to exist in a compati-
ble probability space, by projection onto the linear basis
V , the state parameters in different models could, mean-
ingfully, be computed. Starting with two content-secific
models trained on audio samples, we nominate one as the
structure model,S, and the other as the content model,
C. The best structural analogy was selected to be the
map that minimised the sum of cross-entropies between
all pairs of between-model states:

M(i) = arg min
j

HX(pi; qj) (4)

The cross entropy,HX(p; q), between probability dis-
tributionsp(x) andq(x) overX is defined as:

HX(p; q) = H(X) + D(p||q)
= −

∑
x∈X

p(x) log(q(x))

with entropy H(X) and relative entropyD(p||q).
Given two Gaussian states,pi in modelS andqj in model

C, with mean and covariance parameters(m1,K1) and
(m2,K2) respectively, and dimensionalityd, the cross
entropy calculated by:

HX(pi; qj) =
1
2
[d log 2πe + log |Ki|]

+
1
2
[log |Ki| − log |Kj |

+
∑
mn

(Ki
−1)mn(Kj

−1)mn

+ (mi −mj)T Ki
−1(mi −mj)− d]

We define a map,M : S 7→ C, using Equation 4, and
denote it using the functionalct = M(st) for statesc in
C ands in S with time indext. Applying the map to the
structure state sequence,(s1, s2, . . . , sT ), returns the new
content sequence,(c?

1, c
?
2, . . . , c

?
T ), which has the higher-

order patterning of the structure model but the low-level
spectral features of the content model.

To maximize the structural analogy between models we
initialized the training process for modelsC andS with
a generic model,G, learnt from the ensemble observa-
tion probability space,P ({X}), and minimized the cross-
entropies between corresponding states in each model
during MAP estimation. Therefore the models were con-
strained to exhibit as much structural similarity as possi-
ble whilst capturing the specific content of the individual
samples from which they were trained.

Figure 3 illustrates structural analogy using the min-
imum cross-entropy map between two models of drum
beat patterns. The top model was trained on aLatin style
sample and the bottom was trained onTechnostyle sam-
ple. Using such maps we computed new audio sequences,
by mapping the states of one model onto the states of the
other.

3.3 Model Inversion

To invert the new state sequence,(c?
1, c

?
2, . . . , c

?
T ), we

used the means of the Gaussian states inC. Whilst this
is clearly a simplication, constraining the emitted obser-
vations to visit only the centre of each state, it is suffi-
cient for generating an approximation to the inverse of
an HMM given a state sequence. New sequences of spec-
tral acoustic vectors were generated by first projecting the
mean vector of each state onto the inverse linear basis,
V T :

x? = mc?V T (5)

then taking the first RMS power element fromx?, mul-
tiplying it with the remaining elements, and inverse deci-
bel scaling. The resulting log-frequency power spectrum
coefficients were used to drive a filterbank for synthesis
of an acoustic waveform.



0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

−0.2

−0.1

0

0.1

0.2
−1

0
1

Structure HMM

x1
x2

0.4
0.5

0.6
0.7

0.8
0.9

1

−0.2

−0.1

0

0.1

0.2
−1

0
1

Content HMM

x1
x2

   Minimum 
Cross−Entropy
      Map 

Figure 3: Structural analogy between two sample-specific
models of aLatin drum sample (top) and aTechnodrum
sample (bottom). The arrows between-models depict the
minimum cross-entropy mapping between the Gaussian
states of each model.

Figures 4, 5 and 6 show the results of structure mapping
and model inversion for combinations of drum patterns in
different styles. In each case, two source samples were
used to generate new hybrid state sequences. The entire
process was automatic so the results reflect the ability of
structure discovery methods to find salient higher-order
structure in acoustic data without supervision.
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Figure 4: Generation of new structured audio content
by remapping structure between source models (Top L)
Cross entropy map of between-model states (Top R) spec-
trum of structure source [Latin:1] (Bottom L) spectrum of
content source [Techno:1] (Bottom R) new spectrum.
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Figure 5: (Top L) Cross entropy map of between-model
states (Top R) spectrum of structure source [Latin:2] (Bot-
tom L) spectrum of content source [Techno:1] (Bottom R)
new spectrum.
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Figure 6: (Top L) Cross entropy map of between-model
states (Top R) spectrum of structure source [Latin:1] (Bot-
tom L) spectrum of content source [Techno:2] (Bottom R)
new spectrum.

4 Summary

To summarise the method of content repurposing by
structural analogy we enumerate the steps for training,
mapping and inverting sample models.

1. Extract audio features from an ensemble of source
samples, generating observation matrices{X}.

2. Extract an ensemble linear basis,V , by singular
value decomposition of{X}.

3. Train a hidden Markov model on the ensemble ob-
servation matrix to produce a generic modelG.

4. Train an ensemble of sample-specific hidden



Markov models, initialised toG, on individual observa-
tion matricesXj. Optionally constrain the models to have
minimum cross-entropies between model states after each
training epoch. This step produces a set of source models
{S}.

5. Nominate a structure source model and a content
source model,S, C ∈ {S}. Then, map the state trajec-
tories for modelS onto the modelC by finding the min-
imum cross-entropies between model states thereby cre-
ating a structural analogy. This step creates a new state
sequence inC, see Equation 4.

6. Invert the new state sequence with respect toC to
obtain a series of observation vectors and invert the ob-
servation vectors to generate a series of spectral frames.
Invert the spectral frames via filterbank resynthesis to pro-
duce an audio signal.

5 Conclusion

In this paper we presented new techniques for automat-
ically discovering structure in audio sample data using
learning in Bayesian models with minimum entropy pri-
ors, and for repurposing such structure to create novel
audio content. The methods were shown to capture
salient event and pattern information in complex au-
dio data. Structural analogy mapping between content-
specific models, using the minimum cross-entropy be-
tween states, was introduced as means for generating new
state sequences from trained models. Methods for invert-
ing such sequences, and examples of novel content gen-
eration, were also presented.

We conclude that the methods presented herein are
a good starting point for exploration of creativity by
Bayesian inference. Whilst the methods produced good
results for representing macrostructure, the current model
inversion methods could be improved for generating spec-
tral vector sequences with morphologies that better rep-
resent the micro-temporal structures in the training data.
One such extension is to use a Bayesian method that maps
smooth state trajectories in a structure model onto smooth
state trajectories in a content model by learning the dy-
namic between-model relationships from pairs of training
examples. Due to the additional complexity this has not
yet been implemented, but will be the subject of future
extensions to our methods.
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