
SBCL: a Sanely-Bootstrappable Common Lisp

Christophe Rhodes

Department of Computing
Goldsmiths, University of London
New Cross, London SE14 6NW

c.rhodes@gold.ac.uk

Abstract. This paper describes the development of an implementation
of Common Lisp with the peculiarity that it is bootstrappable neither
solely from itself, nor from some other language, but rather from a variety
of other Common Lisp implementations. We explain the motivation for
this bootstrap strategy, discuss some of the technical details involved in
achieving it, and attempt to assess the technical and social effects that
it has had on the development of the implementation and on Common
Lisp users in general.

1 Introduction

The Lisp family of languages has a long history, being invented (or perhaps
‘discovered’) by John McCarthy in the late 1950s. Of the languages still in use
today, only Fortran is older – though of course both modern Fortran and modern
Lisp are worlds removed from the versions used in the 1950s. A wide range of
dialects of Lisp were developed and disseminated in the following two decades,
until in the 1980s moves towards consolidation between the various Lisp fami-
lies occurred. The two most popular dialects of Lisp at the time of writing are
Scheme and Common Lisp, both of which have international standards docu-
ments associated with them [1,2] (though in the case of Scheme there are also
more lightweight community-led processes which have largely superseded the
international standard [3,4]).

This paper is primarily concerned with implementation strategies for Com-
mon Lisp, and how those strategies affect the ease with which development of
the implementations can occur. We do not address in this paper the implications
of the details for other environments, presenting instead a case study of the so-
cial and technical effects observed in this single domain. In particular, we do
not address the issues involved in cross-compiling Common Lisp for a different
machine architecture, as these have been discussed elsewhere (see for example
[5] and references therein).

Current Common Lisp implementations can usually support both image-
oriented and source-oriented development. Image-oriented environments (for ex-
ample, Squeak Smalltalk [6]) have as their interchange format an image file or
memory dump containing all the objects present in the system, which can be
later restarted on the same or distinct hardware. By contrast, a source-oriented

c.rhodes@gold.ac.uk

environment uses individual, human-readable files for recording information for
reconstructing the project under development; these files are processed by the
environment to convert their contents into material which can be executed.

It would be unusual to find a Common Lisp application programmer these
days working in an image-oriented manner; it is far more usual to work with
source code stored in files and loaded using compile-file, than to define func-
tions exclusively using the evaluator or read-eval-print loop and to store state
by saving memory images, though the functionality of saving images is retained
in contemporary Common Lisp implementations (despite not being part of stan-
dardized functionality) and is most often used as a deployment strategy.

Of course, Common Lisp application programmers are used to making in-
cremental modifications to their software; Lisp environments are renowned for
having the facilities to develop functions one at a time, coupled with the ability
to use the image’s introspective capabilities for finding information about callers
and callees of functions and where variables are bound, for providing views of
data structures (through an inspector or through more specialized browsers for
classes, generic functions and the like), as well as for rapid recompilation and
incorporation of modifications.

However, as image formats are not standardized, and indeed historically do
change between releases of Common Lisp implementations, the application pro-
grammer is used to verifying from time to time that their current sources compile
cleanly from scratch – that is, that no dependency on something which is only
present in the image has been introduced in the sources.1

In the sphere of Lisp implementations themselves, however, this picture is
reversed: it is somewhat unusual to find a Lisp implementation, written primarily
in Lisp, which does not have a flavour of this image-oriented development within
it. The typical build process in this case involves using a host lisp of the same
implementation (but an earlier version), then mutating it incrementally to the
point where it matches the new sources sufficiently to be able to compile those
new sources, and then dumping an image. The mutation is in general different
for each particular change at the source code level – many changes require no
mutation at all, while changes to compiler-internal data structures may require
very involved mutations: we give an example in section 4.1.

This paper discusses Steel Bank Common Lisp (SBCL), a Common Lisp
implementation which is largely written in Lisp, while limiting and containing
the image-based incremental modification of its own self as part of its build
process to a strictly manageable level: the outcome of the build does not depend
on the state of the host lisp compiler. The rest of this paper is organized as
follows: in section 2, we describe the history and current state of Steel Bank

1 A simple but real-world example of this comes from the abstraction of a syntactic
pattern into a macro which has uses before its definition, because the most expe-
dient place to put that definition was not in the first source file to be compiled
from scratch. SBCL has a number of source files with prefix early- (for example,
early-package.lisp and early-setf.lisp) for the purpose of holding definitions
which must be seen early in the build.

http://www.xach.com/clhs?q=compile-file

Common Lisp; then in section 3, we go into the detail of how SBCL is built,
comparing our approach with other Common Lisps. We discuss the benefits and
drawbacks of this build process in section 4, and draw conclusions in section 5.

2 Steel Bank Common Lisp

Although Steel Bank Common Lisp (SBCL) is a relatively new Common Lisp im-
plementation, it shares much code and a long development history with its clos-
est relative, Carnegie-Mellon University Common Lisp [7] (CMUCL). CMUCL
was a project funded by DARPA under CMU’s “Research on Parallel Comput-
ing” contract, and began life as SPICE Lisp. Under that contract, CMUCL was
developed continuously at Carnegie-Mellon University from the early 1980s un-
til funding was stopped in 1994; at that point, CMUCL support at CMU was
discontinued, but the project continues to this day, with a group of users and
developers collaborating over the Internet.

SBCL was announced as a CMUCL variant with a ‘clean’ bootstrap process,
in December 1999 by Bill Newman on the CMUCL developers’ mailing list [8].
Since then, it has been developed further, initially by Newman alone, then with
an increasing number of contributions from individuals, starting from the move
to public CVS hosting on SourceForge in September 2000. The number of con-
tributors has since risen significantly; at the time of writing, there are 23 people
with commit privileges to the master CVS repository, while over the course of
2007 code contributions from over 40 people were incorporated.

The system as of early 2008 contains approximately

– 90,000 lines of lisp code implementing the ‘standard library’, excluding the
Common Lisp Object System (CLOS);

– 60,000 lines of lisp code implementing the compiler (and related subsystems,
such as the debugger internals);

– between 10,000 and 20,000 lines of lisp code per architecture backend imple-
menting the code generators and low-level assembly routines;

– 20,000 lines of lisp code implementing CLOS;
– 20,000 lines of lisp code implementing contributed modules or ‘extras’;
– 35,000 lines of C and assembly code, for services such as signal handling and

garbage collection;
– 30,000 lines of shell and lisp code for regression tests.

It is perhaps worth discussing briefly why there is a substantial component
written in C and assembler: some 10% of the total. Partly this is because of
the large number of architecture/operating system pairs supported; each such
pair contributes some 200 lines of code implementing platform-specific opera-
tors (such as finding the faulting address from within a memory fault handler
function); additionally, each supported operating system (of which there five)
contributes 2000 lines, and each architecture (of seven) 2500 lines. The Garbage
Collector is about 8000 lines of code, and is written in C for essentially pragmatic
reasons: when the system is unstable enough for the GC to require debugging,

using an external debugger (such as the GNU debugger, gdb) removes some
uncertainty in the debugging process: and such external debuggers are better
tailored to debugging C than Lisp.

We discuss the technical details of SBCL’s build process in more detail in the
next section; to give a high-level overview, SBCL’s build achieves independence
from the host lisp used to build it by embedding an SBCL compiler within the
host, before using that embedded compiler to generate a fresh, standalone SBCL
image. These two compilers, embedded and standalone, are generated from the
same source code files; this works because we have effectively done the same as
is commonly described as idiomatic Common Lisp programming style: to write
a domain-specific language for solving one’s problem, then solving the problem
in that language – but in our case, the domain-specific language happens to be
Common Lisp itself.

3 The SBCL Build Process

3.1 Build processes of other Lisps

We discuss the build processes and implementation strategies of other contem-
porary Common Lisps, in order to put SBCL’s strategy in context. For more
general information about these Lisps, see a recent survey of implementors con-
ducted in late 2007 [9].

We can briefly summarize the implementation strategies of current Common
Lisp implementations by dividing them into two categories: those which have
significant portions implemented in languages other than Lisp, and those which
are primarily Lisp-based. (The key to the division is whether there is enough
implemented in the other language to implement an interpreter, or whether all
Lisp evaluation is written in Lisp).

– Other-language based:
• C implementation, C compiler: GCL, ECL (Kyoto Common Lisp deriva-

tives)
• C implementation, bytecode compiler: GNU CLISP
• Java implementation, Java bytecode compiler: ABCL
• C++ implementation, native compiler: xcl

– Implemented primarily in Lisp:
• only buildable in themselves, using image-based techniques: Allegro Com-

mon Lisp2, LispWorks2, CMUCL, Scieneer CL2, Clozure CL;
• buildable in several Common Lisps: SBCL.

For the implementations where there is an evaluator in a non-Lisp language,
the bootstrapping strategy is straightforward: building enough of an environment
in that other language to be able to evaluate Lisp, and then build up the rest
2 The closed-source nature of these implementations prevents the author from mak-

ing any authoritative statement, but anecdotal evidence suggests that placing these
implementations in this category is correct.

through successive evaluation. Note that this build strategy does not necessarily
involve very much code in the ‘other’ language (see for example Lisp5003, which
has 500 lines of highly-obfuscated C); however, for systems intended for real-
world usage, the figure is significantly higher: GNU clisp has 180,000 lines of ‘D’
– which is then preprocessed into C; gcl has 75,000 lines of C code implementing
the compiler core, along with another 1,000,000 lines of C code from libraries
for binary creation and accurate multiprecision arithmetic: binutils and gmp.

Part of our motivation for working on SBCL rather than other implementa-
tions is that we believe that Lisp is a good language for general programming,
including the writing of interpreters and compilers and for manipulating com-
plex data structures, and that therefore it would be a shame not to use it to the
full in the development of a Lisp implementation: but the determinism granted
by SBCL’s build procedure as described in this paper is also important.

3.2 Building SBCL itself

The SBCL build process is not greatly dissimilar to the build process of com-
pilers such as gcc [10, chapter 11]; there is an extra dimension to it, however,
thanks to the accumulation of state during a compilation and loading process,
which is not present in static C-like languages: this is the underlying reason for
having namespaces beginning sb! in the cross-compiler (corresponding to sb- in
a running SBCL); we discuss this further in section 3.3. The following diagrams
illustrate the build process; in them, files either produced or used in the process
are represented as ellipses, while Lisp processes themselves are rectangles.

host
cl
sb-int
sb-pcl

cl:compile-file cl:load

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

src/code/
src/compiler/
src/assembly/

src/runtime/genesis/*.h

Fig. 1: The host-1 build stage

The first step (figure 1) involves using the host compiler to compile and load
SBCL’s source files, which produces a cross-compiler (denoted by xc) running as
3 Available at http://www.modeemi.fi/∼chery/lisp500/. Lisp500 is not intended to

be more than a ‘toy’ Common Lisp; its implementation is such that eval is written
in C.

http://www.modeemi.fi/~chery/lisp500/
http://www.xach.com/clhs?q=eval

an application inside the host. This step also builds other applications, including
sb!fasl:genesis, which will be used later. It is then possible to introspect over
the definitions of the data structures for the target lisp, and produce a set of C
header files describing Lisp data structure layouts.

These C header files, along with the C source and assembly files, are then
used (figure 2) to produce the sbcl executable itself. The executable is as yet
not useful; while it provides an interface to the operating system services, and
a garbage collector, it requires a compatible Lisp memory image (produced in
the next steps) to function. Additionally, a small C program is compiled and
executed, generating Lisp source code describing system constants and types.

src/runtime/*.[chS]
src/runtime/genesis/*.h cc ld

src/runtime/sbcl

tools-for-build/
grovel-headers.c cc ld ./a.out

output/stuff-
groveled-from-
headers.lisp

Fig. 2: The target-1 build stage

Next, the cross-compiler version of compile-file is used to compile the
SBCL sources again, along with the generated Lisp source file from the previous
stage (figure 3). This produces a set of object files (‘FASL files’ in Lisp termi-
nology, here given the filesystem extension .lisp-obj). Although in figure 3 the
host and cross-compiler are displayed as though unchanged, in fact there are
some fine differences between the cross-compiler at the start and the end of this
process: the cross-compiler will have acquired new constant definitions (from
the generated lisp file, for example). However, the functions and data structure
definitions on the host, including those of the cross-compiler application, are
unchanged by this process.

The next stage (figure 4) simulates the act of loading the FASL files and
saving a memory image, using the genesis application. We cannot simply load
those FASL files using the standard Common Lisp load function, because load
uses the host compiler’s FASL file format, not SBCL’s format. Nor can we use
the load function of the target image, because that target image does not yet
exist: indeed, its creation is the purpose for wanting to load these FASL files in
the first place.

Instead, we effectively build up the memory image by pseudo-loading each
FASL file in the specified build order: we represent the memory areas of the
target lisp as vectors of bytes, and perform the actions that would occur on
loading the FASL file, not on the host lisp’s data structures but rather on the
representation of the appropriate memory area. There are actions that cannot
be simulated in this way – these actions are deferred until the initial function of

http://www.xach.com/clhs?q=compile-file
http://www.xach.com/clhs?q=load
http://www.xach.com/clhs?q=load

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

sb!xc:compile-file

src/code/
src/compiler/
src/assembly/

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

obj/from-xc/**/*.lisp-obj

Fig. 3: The host-2 build stage

the target image is run – but in particular function definition can be performed,
so that the initial function is capable of calling other, named functions.

Once all of the FASL files has been processed in this way, the memory areas
are saved to file in the format expected by the sbcl binary created earlier,
producing a ‘cold core’; there is a special case for dumping symbols of the sb!xc
package, which are dumped as though they were in the cl package.

host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

sb!fasl:genesis

obj/from-xc/**/*.lisp-obj host
cl
sb-int
sb-pcl

xc
sb!xc
sb!int

sb!fasl:genesis

output/cold-sbcl.core

Fig. 4: The genesis-2 build stage

The sbcl binary is run with the ‘cold core’ as its memory image: this core
has a particular entry point or ‘toplevel’, which performs a sequence of actions
to allow the processing of Common Lisp code. For instance, in the genesis
sequence, no top-level forms from the FASL files have actually been run, because
there is no way that they can be run using only the host lisp’s facilities. Instead,
they are deferred to this time. There are many other similar kinds of fixups
which need to be performed at this time, and in a particular order; this ‘cold
init’ phase is probably the most fragile portion of the SBCL build currently, and

it is also the hardest to debug (because if it goes wrong, there will be no helpful
Lisp debugger).

Finally, after the ‘cold init’ phase, the packages can be renamed to their final
names (so that sb! prefixes are converted to sb-), and the specialized version of
Portable Common Loops (PCL) for SBCL compiled and loaded; finally, a new
memory image is saved as output/sbcl.core, and the build process is complete
(figure 5).

output/cold-sbcl.core

src/runtime/sbcl

‘cold init’

target
cl
sb!int

src/pcl/

‘warm’

target
cl
sb-int
sb-pcl

output/sbcl.core

Fig. 5: The target-2 build stage

3.3 Separation of host and target

During the SBCL build process, there needs to be a clear separation of the host
and target worlds. In particular, if the SBCL build host is another version of
SBCL, the build must neither use any properties of the host SBCL, nor mutate
any of its structures.

To a large extent, this is achieved through one simple mechanism: packages
which in a fully-built SBCL have prefix sb-, during the build have names be-
ginning sb! – so that, for example, the package named sb!kernel during the
build corresponds to the sb-kernel package in a running SBCL. This package
name transformation occurs very early during the initial ‘cold’ boot of the lisp
image dumped by the genesis phase of the build process.

The handling of the *features* variable is conceptually similar. The stan-
dard facility for conditional compilation in Common Lisp (really conditional code
inclusion, somewhat like the C preprocessor’s #ifdef construct) dispatches on
the host’s value of *features*, including or commenting out code based on fea-
ture expressions following #+ and #- reader macros. The SBCL build provides
analogous #!+ and #!- reader macros for conditional reading of forms based on
the target value of *features*, so that (for example) the cross-compiler can

http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=*features*

include architecture-specific optimizations or operating system specific system
calls.

There is a complication, however, for handling routines that will be part of
the common-lisp package in the target lisp: we clearly cannot overwrite any
of the host compiler’s functions or constants, but we need to be able to refer
to target versions of these: for instance, so that the cross-compiler can compile
defmacro forms. The solution there is to have a shadow common-lisp package
named sb!xc, which only exists during the build process: operators which are
needed for the build but which collide with common-lisp operators in the host
lisp are placed there, and genesis has a special case for dumping symbols from
the sb!xc package, so that the cold boot phase runs with all the necessary
common-lisp operators already present.

To give a concrete example, the operator cl:defconstant, when evaluated
by the host compiler, will define a constant in the host’s world. The opera-
tor sb!xc:defconstant, when evaluated by the cross-compiler, will define a
constant in the cross-compiler; further, when a call to sb!xc:defconstant is
compiled by the cross-compiler, it will be as if cl:defconstant has been run,
once the compiled call has been ‘evaluated’ during the genesis and cold boot
phase.

As well as those simple special cases of host and target separation, there
are a couple of slightly more complicated cases that nevertheless need some
care. One is eval-when, which can cause confusion in even seasoned Common
Lisp programmers. The eval-when operator allows the programmer to spec-
ify that certain forms should be executed when the file containing the form is
file-compiled (:compile-toplevel) or when the resulting FASL file is loaded
(:load-toplevel), or both – as well as when in a normal execution context
(:execute, which is never active in the SBCL build process itself). In the con-
text of phase separation and maintainability, the eval-when operator may not
be the best solution [11], but it is available in conforming Common Lisps, so the
SBCL build process can rely on it.

Consider the following example fragment:

(eval-when (:compile-toplevel :load-toplevel)
(defun foo (x) (+ 7 x)))

Since the cross compiler cannot run any code of its own, for the :compile-
toplevel case it must use cl:defun (i.e. the host’s defun) here, not sb!xc:defun.
However, for the :load-toplevel case, we are compiling a call that would even-
tually be executed by the target, so the cross-compiler’s version of the macroex-
pander for defun must be used.

The other case revolves around make-load-form. The build process makes
use of make-load-form extensively, for dumping compiler structures into FASL
files. However, care must be taken here, because the host compiler’s implemen-
tation of make-load-form-saving-slots is not necessarily compatible with the
cross-compiler’s – and yet the same code must be capable of dumping both com-
patibly for the host, while building the cross-compiler, and compatibly with the

http://www.xach.com/clhs?q=defmacro
http://www.xach.com/clhs?q=eval-when
http://www.xach.com/clhs?q=eval-when
http://www.xach.com/clhs?q=eval-when
http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=make-load-form-saving-slots

target, while building the target compiler. This is achieved by having a make-
load-form method which dispatches on the presence of the :sb-xc-host on the
host’s lisp’s *features* variable, which indicates which phase in the build is
currently being executed.

3.4 Lisp library differences

There are other non-portabilities in the SBCL build process that are addressed
at the time of writing to a greater or lesser extent.

Constant-folding and, potentially, type derivation in the cross-compiler will
interfere with correct operation if the host Lisp’s model of float subtypes is
not the same as the target’s. SBCL divides the float type into two subtypes:
single-float (the same as short-float) for IEEE single floats, and double-
float (the same as long-float) for IEEE doubles. Compiling from a host
lisp which had different interpretations of single-float and double-float to
SBCL’s would be challenging, though note that SBCL’s code is not sensitive to
the host lisp’s interpretation of short-float and long-float.

One observation remains: it is surprisingly difficult to write theoretically
portable code for handling a large block of memory. Common Lisp provides
the abstraction of a vector, of course, but the standard only specifies that the
maximum size of a vector offered by the implementation must be 1024 elements
or greater. While the author has not encountered a system where that limit is
quite so low, implementations with an array-total-size-limit of the order
of 224 (on a 32-bit implementation where vectors are represented in memory
with a header word consisting of an 8-bit type tag and 24 bits for the vector
length) prompted a rewrite of the genesis phase to use ‘big vectors’, so that
an in-memory data structure representing the bytes of the target lisp image
(typically 20MB in size) could be built without falling foul of the array limit.
The current ‘big vector’ implementation, representing linearly-addressible space
as a vector of vectors of bytes, is in principle not sufficient, as the maximum space
portably representable with such a data structure is 1MB (though in practice
no implementation has an array-total-size-limit as low as 1024, and so our
vector-of-vectors implementation is sufficient).

4 Discussion

4.1 Advantages

The immediate benefit of a straightforwardly reproducible build process is that
no-one need learn the intricacies of the build process to contribute small, non-
invasive patches. To a large extent, the author believes that this single fact is
responsible for the current relative popularity of SBCL among Common Lisp
implementations, and perhaps has even contributed to the increase in interest
of Common Lisp as a whole.

Additionally, the straightforward build process, and in particular the clear
separation between the build host and the target, allows for a smoother path

http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=make-load-form
http://www.xach.com/clhs?q=*features*
http://www.xach.com/clhs?q=float
http://www.xach.com/clhs?q=float
http://www.xach.com/clhs?q=single-float
http://www.xach.com/clhs?q=short-float
http://www.xach.com/clhs?q=double-float
http://www.xach.com/clhs?q=double-float
http://www.xach.com/clhs?q=long-float
http://www.xach.com/clhs?q=single-float
http://www.xach.com/clhs?q=double-float
http://www.xach.com/clhs?q=short-float
http://www.xach.com/clhs?q=long-float
http://www.xach.com/clhs?q=vector
http://www.xach.com/clhs?q=array-total-size-limit
http://www.xach.com/clhs?q=array-total-size-limit

for more invasive patches. As a simple example, there is no difficulty at all in
renumbering the tags for type information, which is useful to allow more efficient
assembly sequences for type checking.

In several cases the clear separation has resulted in bug fixes that were both
cleaner and more straightforward to develop when compared to the more image-
based Lisp implementations. For instance, there was a bug in both SBCL and its
parent CMUCL in the handling of accessors for structures when name clashes
occur through inheritance: a corner case to be sure, but one that was detected
and fixed in December 2002 (SBCL) and January 2003 (CMUCL), by adding
a slot to record inherited accessor information to the structure representing
descriptions of defstructs.

It is in dealing with this kind of circularity that the simplicity of SBCL’s build
truly wins. In the case of SBCL, the fix was simple to implement: the slot was
added to the sources, and then the sources were recompiled using the standard
build procedure. In the case of CMUCL, however, in addition to changing the
sources, two ‘bootfiles’ were necessary, and the system needed to be built at least
twice: once loading the first bootfile beforehand (and interactively choosing a
particular restart from an error condition); and once loading the second. The
fix for the bug, which was very simple conceptually, was developed for SBCL
by someone not in the development team; for CMUCL, it required an expert in
the CMUCL build process itself to implement the bootfiles, demonstrating the
principle that there can be a large impedance to contributions from newcomers.

Empirically, we can also say that SBCL as a whole, including its approach
towards buildability, supports a community of users and developers which spans
the gamut between experimentation with language and environment (examples
include modular arithmetic, sequences [12], generic specializers [13]) and indus-
trial use (as in ITA Software’s QPX and RES products [9]). It should of course
be noted that we cannot point to cause and effect here: there were all sorts
of other factors allowing the SBCL (and Common Lisp) community to grow
in number and scope, notably the development of a test suite for standardized
functionality [14] and success stories from other Lisp vendors (see references in
[9] for information current as of late 2007).

4.2 Downsides

The most obvious downside to the reworking of the build process described here
is that each build inherently takes twice as long as in simple image-based systems:
the compiler must effectively be built twice. These days, thanks to ubiquitous
fast processors, this problem is much less evident than when the project started
in 1999; the author remembers typical builds of upwards of an hour for SBCL,
where its close relative CMUCL took on the order of 10 minutes (there were
other factors for the more-than-doubling, including peak higher memory usage).
Over the years, as processors have become faster, available memory has become
greater, and SBCL’s compiler has been optimized, there is only a small difference

in build time4: and of course there is no need to think about how to build SBCL,
or whether some kind of bootstrap script is needed – it can simply be set off.

Although a working model of SBCL is built as the cross-compiler, this is
an incomplete model, and in particular it does not include CLOS (but it does
include some hand-rolled object systems, in particular for implementing sub-
typep). SBCL’s implementation of CLOS is derived from the Portable Com-
mon Loops [15] package, with many modifications to improve conformance with
the description of the Metaobject Protocol for CLOS [16]. In particular, the
implementation of CLOS has inherent metacircularities, and representing this
metacircularity in a host-independent way has not yet been addressed. Allowing
CLOS to be part of the cross-compiler would probably simplify some portions
of the logic within SBCL’s compiler and type inferencer, at the possible cost of
making the bootstrapping procedure rather more complex.

5 Conclusions and Further Work

We believe that Common Lisp itself is well suited to the domain of Common
Lisp compilers, and as such it is an appropriate technique to use Common Lisp
as the implementation language for a Common Lisp implementation. We have
further shown that it is possible to avoid a circular dependency: SBCL is written
in Common Lisp, not in its own dialect.

We have presented evidence that this has some positive effects; the removal
of the cognitive overhead in working out whether any given change to the sys-
tem requires special measures to build allows both for more rapid development
by individuals and for an easier path for newcomers to get involved with the
system – a particularly critical requirement given the relative lack of popularity
of Common Lisp these days, and the fact that the CL implementation market
is fragmented.

One straightforward improvement to the self-sustainability of the system
would be a compilation mode which would remove all non-deterministic ele-
ments from the FASL files produced by the cross-compiler (for example, the
corresponding source code pathnames, or a build timestamp); this would al-
low for more straightforward testing of Common Lisp implementations which
are currently not capable of building the system, and determining whether the
problem lies in those implementations or an as-yet unidentified unportability in
SBCL itself.

4 On an Intel Pentium-M with clock speed 1.7GHz, building SBCL 1.0.16 using SBCL
1.0.15 took 541 seconds of user time, while building CMUCL 19d p2 (without any
extras such as CLX, the Motif bindings or Hemlock) with CMUCL 19d took 485
seconds of user time. Note that the CMUCL build involves three compilation phases:
given sources corresponding sufficiently closer to the CMUCL compilation host, some
of those phases may be unnecessary – but the default is to compile three times.

http://www.xach.com/clhs?q=subtypep
http://www.xach.com/clhs?q=subtypep

Acknowledgments

Thanks are due first and foremost to Bill Newman, who began the process of
producing Steel Bank Common Lisp in 1999, and who encouraged and restricted
further development with impeccable taste. The many other collaborators on
that project, too numerous to name here, have provided a superb community
within which to do interesting and meaningful work. We also thank the reviewers
for their helpful suggestions. The author acknowledges the support provided by
a PPARC studentship and EPSRC research projects, which have allowed the
indulgence of an enjoyable hobby.

References

1. IEEE: IEEE Standard for the Scheme Programming Language. Technical Report
1178-1990, IEEE (1990)

2. Pitman, K., Chapman, K., eds.: Information Technology – Programming Language
– Common Lisp. Number 226–1994 in INCITS. ANSI (1994)

3. Kelsey, R., Clinger, W., Rees, J.: Revised5 Report on the Algorithmic Language
Scheme. Higher-Order and Symbolic Computation 11(1) (1998)

4. Sperber, M., Dybvig, R.K., Flatt, M., van Straaten, A.: Revised6 Report on the
Algorithmic Language Scheme. Technical report, r6rs.org (2007)

5. Brooks, R.A., Posner, D.B., McDonald, J.L., White, J.L., Benson, E., Gabriel,
R.P.: Design of an Optimizing, Dynamically Retargetable Compiler for Common
Lisp. In: Lisp and Functional Programming. (1986) 67–85

6. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the Future: The
Story of Squeak, A Practical Smalltalk Written in Itself. ACM SIGPLAN Notices
32(10) (1997) 318–326

7. MacLachlan, R.: CMUCL User’s Manual. Technical Report CMU-CS-92-
161, Carnegie-Mellon University (1992) (updated version available at http://

common-lisp.net/project/cmucl/doc/cmu-user/).
8. Newman, W.H.: It’s alive! (SBCL, a CMUCL variant which bootstraps cleanly).

Message-ID: 19991214185346.A1703@magic.localdomain on cmucl-imp@cons.

org; (December 1999)
9. Weinreb, D.L.: Common Lisp Implementations: A Survey. Available at http:

//common-lisp.net/∼dlw/LispSurvey.html (2007)
10. von Hagen, W.: The Definitive Guide to GCC. Apress (2006)
11. Flatt, M.: Composable and Compilable Macros: You Want It When? In: Interna-

tional Conference on Functional Programming. (2002) 72–83
12. Rhodes, C.: User-extensible Sequences in Common Lisp. In: International Lisp

Conference Proceedings. (2007)
13. Newton, J., Rhodes, C.: Custom Specializers in Object-Oriented Lisp. In prepa-

ration (2008)
14. Dietz, P.: The GNU ANSI Common Lisp Test Suite. In: International Lisp Con-

ference Proceedings. (2005)
15. Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., Zdybel, F.: Com-

mon Loops: Merging Lisp and Object-Oriented Programming. In: OOPSLA’86
Proceedings. (1986) 17–29

16. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press (1991)

r6rs.org
http://common-lisp.net/project/cmucl/doc/cmu-user/
http://common-lisp.net/project/cmucl/doc/cmu-user/
19991214185346.A1703@magic.localdomain
cmucl-imp@cons.org
cmucl-imp@cons.org
http://common-lisp.net/~dlw/LispSurvey.html
http://common-lisp.net/~dlw/LispSurvey.html

	SBCL: a Sanely-Bootstrappable Common Lisp
	Christophe Rhodes

