Report no. 02/06

Neuro-Dynamic Programming for Radiation
Treatment Planning

Michael C. Ferris and Meta M. Voelker

Ozford University Computing Laboratory
Permanent address:
Computer Sciences Department, University of Wisconsin,

1210 West Dayton Street, Madison, Wisconsin 53706, USA.

(ferris,voelker@cs.wisc.edu)

In many cases a radiotherapy treatment is delivered as a series of smaller
dosages over a period of time. Currently, it is difficult to determine the
actual dose that has been delivered at each stage, precluding the use of
adaptive treatment plans. However, new generations of machines will give
more accurate information of actual dose delivered, allowing a planner to
compensate for errors in delivery. We formulate a model of the day-to-day
planning problem as a stochastic linear program and exhibit the gains that
can be achieved by incorporating uncertainty about errors during treatment
into the planning process. Due to size and time restrictions, the model
becomes intractable for realistic instances. We show how neuro-dynamic
programming can be used to approximate the stochastic solution, and derive
results from our models for realistic time periods. These results allow us to
generate practical rules of thumb that can be immediately implemented in
current planning technologies.

This material is based on research partially supported by the National Science Foundation
Grants ACI-0113051 and CCR-9972372, the Air Force Office of Scientific Research Grant
F49620-01-1-0040, Microsoft Corporation and the Guggenheim Foundation.

Oxford University Computing Laboratory

Numerical Analysis Group

Wolfson Building

Parks Road

Oxford, England OX1 3QD March, 2002

1 Introduction

In radiation therapy, ionizing radiation is applied to cancerous tissue, damaging the
DNA and interfering with the ability of the cancerous cells to grow and divide [22,
25]. Healthy cells are also damaged by the radiation, but they are more able to repair
the damage and return to normal function. Since both cancerous and healthy cells are
affected by radiation, dose distributions need to be designed that expose the tumor to
enough radiation for treatment while, at the same time, avoid excessive radiation to
surrounding healthy tissue and, in particular, nearby organs.

Given a particular delivery mechanism, a treatment plan corresponds to settings of
the machine that facilitate the delivery of the target dose distribution. Optimization
techniques can be used to design such plans [5,6,21,23]. Typically these problems are
complicated due to the ever increasing complexities of the delivery mechanisms [4] and
the large amount of data that needs to be manipulated to get sufficient detail of the dose
on the target area. While these problems remain at the forefront of cancer treatment
planning and many techniques have been proposed for the large varieties of machines
(for example, see [8,9,10,12,14,17,20]), many of which take from minutes to hours to
solve, we will not focus on this aspect of the problem. Instead, as we now describe, we
will look at the day-to-day planning problem and derive target distributions that hedge
against errors in the delivery process and assume the aforementioned planning tools will
be used on specific machines to approximate these target distributions.

The day-to-day planning problem arises since many cancer patients are treated by a
course of radiation over a period of days or weeks. For example, the full dose may be
delivered in 20 or so treatments, with 1/20-th of the total dose delivered at each stage.
This limits burning and gives the healthy tissue time to recover. As mentioned above,
particular planning tools approximate the idealized dose, leading to errors between the
planned and delivered dosage. Furthermore, in dividing the radiation dose over a series
of treatments, additional errors can be introduced. Many sources can contribute errors
to individual treatments, including the re-registration of the patient on the machine, the
movement of the patient during treatment, and machine error [11, 24].

At this time, we are unable to determine the dose actually delivered during individual
treatments. Imaging devices are currently being developed, though, that can measure
the dose as it is being delivered, highlighting where the delivered treatment may be
inaccurate. The purpose of this paper is to exploit this knowledge to improve the overall
treatment.

The paper aims to generate a deliverable plan for each treatment in the course that
compensates over time for movement of the patient and error in the delivery process. We
develop a control mechanism for the treatment course, leaving the implementation of the
daily dosage to a specialized planning tool. To find the control, we use neuro-dynamic
programming, particularly a rollout policy, to improve upon simple heuristic policies.

In the next section, we describe the mathematical framework in which we will be
working and techniques for solving the day-to-day planning problem. These techniques
include neuro-dynamic programming (NDP) ideas and heuristic policies, one of which is
currently in use. We next present examples and discuss their results, showing how the

NDP ideas can improve upon the heuristic policies. Finally, we define rules of thumb,
which allow for immediate practical implementations of solutions suggested by NDP
while still maintaining most of the improvements.

2 Model Formulations

To describe the problem more precisely, we introduce some notation and a simplified
model that captures the salient features of the process. Let Z be a collection of voxels
(pixels, points) and let T'(z), ¢ € Z represent the required final dosage (target). Suppose
the course lasts N periods (stages), and the actual dose delivered (the state) after k
days is z. This state evolves as a stationary discrete-time dynamic system:

Tg+1 — f(xk,uk,wk), k= 0, 1, e

Here wuy is the control to be selected from a collection U(xy), and wy is a random
disturbance drawn from a set W. In the application, we assume that these random
disturbances come from errors in the delivery process (such as patient movement) or
errors in the setup (such as patient registration errors). For this reason, we assume that
wy corresponds to a shift to ug. Further, since each treatment is delivered separately,
the errors that arise pertain only to a particular treatment and time stage, and so wy is
independent over stages. A key issue to note is that the controls are nonnegative since
dose cannot be removed from the patient.

At the end of NV stages, the state 2 should minimize a terminal cost G. For ease of
exposition we assume that G(z) is a linear combination of the differences between the
current dose and the target at each voxel, that is

Glx) = (i) len(i) — T(i)].
i€T
Here, the vector ¢ weights the importance of hitting the target value for each voxel. We
typically use similar values of ¢ for distinct areas in the target, such as the location(s) of
the tumor, sensitive structures like organs, and normal tissue. In practice, larger values

of ¢ correspond to tumor areas and/or sensitive structures. This gives us the following
mathematical model:

min, E(G(zn))
subject to zg41(?) = 2k (i) + up(? +wy), VieZ,k=0,1,...,N—1 (2.1)
Ug € U(ack),uk > 0,w, € W,

with z(given.

2.1 Stochastic Linear Programming

If W is a finite set, then the problem at hand can be formulated as a stochastic linear
program whenever the constraints u; € U(xy) are linear relationships. To explain this,

L ARRAARAAAAAY
Gisdsoddossuddasingis

stage 0 stagel stage2 stage N

Figure 1: Scenario tree S for the application.

assume that at each time stage k, one of || scenarios occurs. If we align the time stages
on a horizontal axis, the resulting scenario tree (S) can be depicted as in Figure 1, where
as an example we have taken |W| = 3. Let V (k) represent the nodes n in this tree S
belonging to time stage k, while p(n) denotes the predecessor node of n, i.e., if n € V (k),
then p(n) is the unique element of V' (k — 1) such that (p(n),n) € S. For this section of
the paper, we introduce a slight abuse of notation. We use z(n, -) and u(n,-) to denote
the state and control at a node n, whereas () and ux(-) denote the state and control
at time stage k.
Using this notation, at each node n in the scenario tree,

.’L’(TL, Z) = x(p(n), 7’) + u(p(n), i+ w(p(n), n))

where w(p(n),n) is the shift that is applied to u as we move from p(n) to n. Then,
model (2.1) can be reformulated as the following stochastic program:

min " Pr(n)) (i) |z(n, i) — T(i)]

nev(N) i€T
subject to z(n,7) = z(p(n),i) +u(p(n),i+w(p(n),n)), (2.2)
VneV(k),k=1,...,N,i €T
u(n,i) > 0, Vne S,ie€T

with Pr(n) depicting the probability of being at node n. Here we have taken just
simple nonnegativity on u; more complex linear relationships are also feasible. Standard
techniques can be used to reformulate (2.2) as a linear program. When N is small and
the number of possible shifts are small, then a wealth of techniques for such problems
can be applied [3, 16]. However, when Z or N becomes large, the size of the problem soon
becomes too great, and we have to resort to approximation schemes for the solution.
For the prototype examples of Section 3 where we have |I| =9 and N =4,5,6,10, 14
and 20, we attempted to solve model (2.2) exactly. We formulated the model in the

GAMS [7] modeling language and used the CPLEX [15] barrier method to obtain the
solutions (since this significantly outperformed all simplex options). Even with small
numbers of time stages, the problems became quite large. With 4 time stages, the model
consisted of 18271 equations, 14059 variables and 48250 nonzeros; solution times were
around 25 seconds. With 5 time stages, the model consisted of 91396 equations, 70309
variables and 241375 nonzeros; solution times ranged from about two-and-a-half minutes
to a little over 3 minutes. With 6 time stages, the model consisted of 457021 equations,
351559 variables and 1207000 nonzeros; solution times ranged from about one-half hour
to around 70 minutes. Due to the storage requirements, this became intractable for
more than 6 time stages. While more powerful machines would extend the number of
stages somewhat, the exponential growth precludes solutions for N = 10,14 or 20. It
may be possible to apply scenario reduction or sampling techniques to this model [13,
18], but this was not explored here.

2.2 Dynamic Programming

Dynamic programming is another method that can be used to solve model (2.1). Since
each decision impacts later decisions, the choice of control at each time stage contributes
to the final cost. Thus, to find the optimal control at each stage, we must consider future
states. Under dynamic programming, we apply backward recursion: start at the last
stage and determine the optimal control to apply for each state; then consider the
second-to-last stage, and so on, working backward through the stages.

As a means of determining the optimal control for a state, we consider the costs-
to-go of various policies from the current state. The cost-to-go for a particular pol-
icy is the optimal cost over all remaining stages, starting from the current state and
applying the given policy. Starting in stage k from state z; and using the policy
7w = {ug, u1,...,un_1}, the cost-to-go is [1]:

=2
L

Ji(zr) = E[G(zn) + g(@i, us(2:), w;)),

i

Il
B

where g(z;, u;(x;), w;) represents the immediate cost of applying control u;(z;). As noted
in [1, 2], the cost-to-go functions satisfy the dynamic programming recursion

Je() = Elg(z, up(z), w) + Jpa (f (2, up(2), w))] (2:3)

with initial condition
JIy(z) = G(x). (2.4)

However, since we are attempting to construct the optimal policy 7, the individual
controls % are not known a priori. These controls can be found by backward recursion
by considering the costs-to-go over all possible controls:

Uy(r) = arg UIEI}JI(I;‘) Elg(z,u, w) + Jgp1(f (2, u, w))]. (2.5)

If we wanted to use equations (2.3), (2.4), and (2.5) in the radiation treatment
application, we would need to calculate Ji(z) and uy(x) for every possible state = at
each stage k. A standard technique for doing this is to discretize the state space for x
and form a lookup table for J;, and wu,; over this discretization. For each voxel in the
target, we would need a minimum of N discretizations to allow for a simple heuristic
policy, the constant policy (described later in Section 2.4), to be implemented in the
lookup table. Even for the simple examples that we describe in Section 3, this becomes
unmanageable.

2.3 Neuro-Dynamic Programming (NDP)

Another technique to approximately solve (2.1) is to apply a rollout policy [1,2]. Rather
than starting at stage N, we start at stage 0 and work our way forward, determining
the policy 7 one stage at a time (we “roll” out the policy). This is much closer to the
way a decision maker would work in practice: only today’s decision is needed precisely;
the remaining decisions can be approximated. The rollout policy uses equation (2.5) to
find the control 4 to apply at each stage k, but using an approximation to Ji,; instead
of the actual function. This approximation is built by applying the particular control «
at stage k and a control from some base (heuristic) policy at all future stages. Then,
Jr+1 is calculated using these controls and methods such as simulation (which we use)
or neural networks.

In effect, this is an example of an on-line policy choice. In the practical setting,
we approximate the future by simulation and choose the policy to apply right now by
optimization. After applying this policy, we wait for time to elapse and repeat the same
process at the next stage. For a particular radiation therapy, the choice of the current
control may itself involve a lengthy optimization, and the error produced in delivery
will be provided to the decision maker automatically by the machines that are currently
under development.

In the radiation treatment application that is expressed in model (2.1), we assume no
immediate costs in applying individual controls and so Ji(zx) = E[G(zy)]. To apply the
rollout policy, we begin by choosing the base policy for the calculation of the costs-to-go
Jr+1. As the base policy is applied at all later stages, it should be a heuristic policy that
performs well (we use the reactive policy, described in Section 2.4). Then we simulate
the effects on the system as time advances. In principle, we calculate for each one-stage
control u € U(xy) the Q-factor,

Qr (T, ur) == Elg(x, u, w) + Jet1 (f (2, u, w))]

using simulation by applying u, at stage k£ and the reactive policy at all later stages.
The (approximated) @-factor for each control is then the expected terminal cost from
the simulation using that control at the current time stage.

To choose between controls, we need to evaluate differences between Qy(xy,u) for
each u € U(xg). Since simulation is involved, this will be prone to errors. These errors
can be alleviated somewhat using the same realization of w when calculating all Q-factor

differences [1]. Thus, we calculate the average differences in the expectations for every
u € U(xy). Note that all the controls can be compared directly like this as individual
controls are only applied at the current time stage. By applying the base policy at all
future time stages, we can test the effectiveness of each control against the others for
the current stage. In addition, since the controls are applied simultaneously, they are
applied under the same shifts and so the comparison is done for the same realization of
w.

2.4 Heuristic Policies

One approach to overcome the computational burden outlined above is to apply heuristic
policies. Besides offering an alternative to the techniques described above, we also use
heuristic policies to define the (finite) set U(xzy) for the NDP rollout approach.

Several heuristic control techniques immediately spring to mind. First, there is the
simple plan to deliver

at each stage and not account at all for disturbances in the delivery. This plan can be
used when treatment errors cannot be measured directly, and is currently the method
of choice. We refer to this plan as the constant policy. Note that the implementation
on a particular machine of this policy only needs one optimization to be performed at
the start of the process. However, even when a voxel has been overdosed at stage k,
the constant policy continues to add dose at subsequent time stages. An alternative
is to only add dose if the current dose is less than the target dose. We refer to this
modification as the constant-plus policy. Surprisingly, the simulations show that this
has little effect on overall error.

An alternative to the constant policies is to attempt to compensate for the error
delivered in the previous time by spreading the error over the remaining time stages. At
each time stage, we divide the residual over the remaining time stages:

ug = max(0, T — zx)/(N — k).

We refer to this plan as the reactive policy. Since the reactive policy takes into consid-
eration the residual at each time stage, we expect that the reactive policy will perform
better than the constant policies. Note, though, that the reactive policy requires knowl-
edge of x; and replanning at every stage k.

We show later in this paper how the constant and reactive heuristic policies perform
on a variety of examples. We also show how the NDP rollout approach improves upon
these results.

To apply the NDP rollout approach, we require a rich collection of heuristics for the
finite set U(zy). We use the constant, constant-plus, and reactive policies, but we also
use what we refer to as categorical policies. For these policies at stage k, we calculate
the residual target for each voxel i by max{0, T (i) — xx(i)}. Then, the voxels are divided
into three categories by comparing their residual target to the maximum residual:

max max{0, 7 (i) — zx ()}

The three categories correspond to voxels whose residual target is less than 40% (low
residual), between 40% and 70% (medium residual), and greater than 70% (high residual)
of this maximum value. In each category, we apply one of three controls. Either we apply
0 dosage, 0.4 of the residual target, or 1/(/N — k) of the residual target. This yields an
additional 26 policies (as the reactive policy is the categorical policy with 1/(N — k)
applied in each category).

Note that the practical implementation of a policy generated by NDP using these
controls for U(xzy) is exactly the same as that of the reactive policy. First of all, knowl-
edge of x; is required. Given this information we can calculate the actual dose that
should be delivered at each voxel ¢ € Z by determining which category the voxel resides
in, and then multiplying the residual 7'(¢) — x (i) by the categorical multiplier. Knowing
the dose at every voxel i is all the data that is required to specify a plan optimization
that determines how to implement that particular dose on a specific machine. As men-
tioned in the introduction, we allow existing planning tools to perform this step, and we
believe this is a key advantage of our approach.

In actual treatment plans, individual doses are subject to an upper bound, applied
in order to limit burning and allow for healthy tissue to recover between treatments. For
this reason, we assign a cutoff value that restricts the dose prescribed by each control to
such an upper bound. For testing purposes, we set the cutoff to be 27},.x/N, which is
double the dose prescribed by the constant policy in the worst case. Such a value allows
for a large dose to be prescribed, while still ensuring that the dose is not unreasonably
large. Although this is chosen for the application, very little changes if this upper bound
is not applied.

3 Examples and Results

We consider two simple, one-dimensional targets under different weighting and proba-
bility distributions, pictured in Figure 2.

For both targets, Z = {1,2,...,9} and we allow a maximum shift of 2 voxels. In
both targets, the “spikes” of dose 0.8 represent tumor locations. Thus, it is important
that these areas receive as much of the 0.8-prescribed dose as possible, and so these
areas will have a relatively high weighting in the objective. The 0.1 areas can represent
sensitive structures (which should be exposed to a minimum amount of radiation) or
normal tissue, depending upon the particular weighting scheme employed. We apply 3
different weighting schemes to the spike target. Moving from easiest to hardest, these
schemes are:

e the smooth weighting:
c=11,1,1,1,10,1,1,1,1],

which only enforces the 0.8-dosage, allowing for more variation in the other voxels
(including a “building” up to the spike);
e the nonsymmetric weighting:

c=1[1,1,1,1,10,5,5,1, 1],

(a) Spike target

(b) Double spike target

Figure 2: Example targets

which allows for a build-up to the spike on the left-hand-side, but enforces the

spike structure rigidly on the right-hand-side; and

e the spike weighting:

¢c=11,1,5,5,10,5,5,1, 1],

which enforces the spike structure rather rigidly.

For the double spike target, we apply the double spike weighting scheme:

c=[1,1,10,5,5,5,10,1, 1],

which enforces high dosage on the target edges and the low dosage in the center. The
examples have been chosen to simulate practical cases of interest in the application area.

For the targets above, we also consider three different probability distributions for

the shifts. The low volatility examples have

wp=4 0

with probability 0.02
with probability 0.08
with probability 0.8

with probability 0.08
with probability 0.02.

10

for every stage k. The medium volatility examples have

—2 with probability 0.05
—1 with probability 0.15
wry =4 0 with probability 0.6

1 with probability 0.15
2 with probability 0.05.

\

for every stage k. The high volatility examples have

[_92 with probability 0.05
—1 with probability 0.25
wry =14 0 with probability 0.4
1 with probability 0.25
with probability 0.05.

\

for every stage k. While it is hard to estimate the volatilities present in the given
application, our results of Section 4 are fairly insensitive to these choices.

As described in Section 2.3, we use a simulation code at every stage to determine the
optimal @, € U(xy) by calculating differences in QQ-factors under the same realizations w.
The simulation code we use generates 10000 paths through the simulation tree between
stage k and stage N. For each path, the Q)-factor differences are calculated; at the end,
the average of these differences determines ;. The same code can be used to simulate
the costs of the individual heuristic policies. Essentially, for this we ensure that U(zy)
is the appropriate singleton.

While we described how to develop the rollout policy in an on-line fashion in the
previous section, we also need to evaluate the effectiveness of our procedure. To effect
this, we apply an outer simulation that simulates paths through the scenario tree. The
outer simulation evolves one stage at a time, therefore assuming that x; is known at each
stage k. We use the inner simulation (for Q)-factor differences) to determine @. The
outer simulation then generates wy and thus forms z;. ;. After N stages, xy is known
and the terminal cost can be evaluated for this particular path through the scenario tree.
The outer simulation generates 20000 paths to form an expected value for the terminal
cost.

Running the outer simulation (with repeated inner simulations needed inside), results
in a great deal of computation and long running times. To deal with this efficiently, we
submitted the outer simulations to Condor [19], a network resource manager. Once
a job is submitted to the Condor queue, Condor searches for idle network machines.
If one is found, then the simulation starts executing on that machine; otherwise the
simulation is held until sufficient resources are freed. In addition, Condor migrates
jobs or checkpoints them (for later continuation) when the machine’s owner returns or
resources become scarce.

11

Figures 3, 4, and 5 display simulated results for each example under the three proba-
bility distributions. For each graph, the constant policy, reactive policy, and NDP rollout
policy results are displayed, as well as the optimal results for time stages 4, 5, and 6.
The optimal results come from solving model (2.2) exactly, as explained in Section 2.1.
Note the change of vertical scale between the three figures.

Comparing Figures 3, 4, and 5, we note the remarkable similarities. While the vertical
scales are larger as the volatility increases, general conclusions are easy to draw. Firstly,
the alphabetic ordering of targets (a) to (d) are increasingly difficult and lead to larger
errors, independent of the optimization scheme chosen. Secondly, in all cases and for all
optimization schemes, as volatility increases, so does the error.

Common to all examples is the poor performance of the constant policy. The reactive
policy performs better than the constant policy, but not as well as the NDP rollout
policy. The level of improvement, though, depends upon the difficulty of the target and
the volatility. In the low and medium volatility spike examples, the NDP results are
much closer to the optimal results than in the high volatility examples, particularly in
the double spike example (Figure 5(d)). However, the NDP results decrease at a faster
rate than the optimal results. Thus, more time periods are beneficial. These decreases
level off at later time stages, exhibiting decreasing returns for more time stages.

Focusing on the low volatility examples of Figure 3, we see that the reactive pol-
icy gives a large improvement over the constant policy — the error is nearly halved.
NDP does even better, yielding about a 50% drop in the reactive policy error at larger
time stages (the exact improvements over the constant policy are given in Table 7), and
achieving near-optimal results at smaller time stages. As time advances, the improve-
ment for both the NDP and reactive policies becomes greater: where constant remains
almost level, reactive and NDP continue to drop as we move to later time stages. Fur-
ther, NDP decreases faster than the optimal results do, suggesting that it may become
optimal at later time stages.

The medium volatility examples of Figure 4 show less improvement in the NDP
results. Although the constant policy appears level, the reactive policy gives slightly
less improvement — not quite 50%. We also see slightly less than a 50% drop in the
NDP results over the reactive policy results at later time stages, due to its faster rate of
decrease. Although the NDP results are not as close to the optimal results as in the low
volatility examples, again we see that the NDP error decreases faster than the optimal
error, suggesting that the NDP policy may be close to the optimal error at some later
time stage.

The high volatility examples of Figure 5 show the greatest errors of all of the ex-
amples. Again, the constant policy appears to be level and is much larger than in the
previous examples. We see less improvement in the NDP results: in Figures 5(b) and
5(d), the NDP improvement is approximately one-third over the constant policy; Fig-
ure 5(a) is better (about one-half improvement), but Figure 5(c) is worse (the constant
results, though, are much closer to optimal here). Apart from this latter case, the NDP
results are far from the optimal results, lying closer to the reactive policy than to the
optimal policy. We see that the NDP results do improve faster than the reactive results
so this may change at later time stages.

1

Expected Error

Expected Error

2

4
constant
—©- reactive
—— NDP
351 — optimal [
3F |

N

51

-

sk

osKS\S\e\Q%
m

4 T
constant
—©- reactive
—— NDP
351 — optimal [
3F |
250 R

Expected Error
~
T

-

51

1F N
05i\9\6\<

—
% c s n I m m 1 20 % c s n I m m 1
Time Periods Time Periods
(a) Spike target with smooth weighting. (b) Spike target with nonsymmetric
weighting.
4 T T T T T T 4 T T T T T T T
constant
—©- reactive
—— NDP
asf — optimal_f{ 3sf 1
constant
—©- reactive
3l 4 3k —— NDP i
— optimal
25F b 25F b

Expected Error

4 6 8 10 12 14 16 18
Time Periods

(c) Spike target with spike weighting.

20

L
4 6 8 10 12 14 16 18 20
Time Periods

(d) Double spike target with double spike
weighting.

Figure 3: Examples under low volatility.

20

Expected Error

Expected Error

13

Expected Error

=

w

Time Periods

(c) Spike target with spike weighting.

2L 4
constant
-e- reactive
L] L —%— NDP |
—— optimal
I I I I I I I 0 I I I I I I I
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20

Time Periods

(d) Double spike target with double spike
weighting.

Figure 4: Examples under medium volatility.

constant constant
—©- reactive —©- reactive
—— NDP —— NDP
r — optimal [s — optimal [
L i s i
L i s i
g
L] Bal]
g
L 4 s i
|) i\g\e\e*\—@\(
)\6\9\9\9\6 [T —
— 1 1
4 o s 0 12 1 1 1 20 % o s 0 12 1 I 1 20
Time Periods Time Periods
(a) Spike target with smooth weighting. (b) Spike target with nonsymmetric
weighting.
: 8
constant
—©- reactive
— NDP
r — optimal_{ 7+ 1
L i 6 i

14

12 T
constant
—©- reactive
- N
— optimal
101 B
sl 4

Expected Error
@
T
I

Expected Error

12 T
constant
—©- reactive
—%- NDP
— optimal
101 B
sl 4
6k 4

\)‘\\ﬂ\ﬂ(\; —
2 q 2 1
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18
Time Periods Time Periods
(a) Spike target with smooth weighting. (b) Spike target with nonsymmetric
weighting.
12 T T T T T T 12 T T T T T T T
constant
—©- reactive
—— NDP
— optimal
10} B 10 1\9\9\6\6\;
o | . *
3 6F 4 2 e6F 4
I — g
o] o
ar 1 4 g
2 1 2 B
constant
—&- reactive
—— NDP
—— optimal
04 6 8 10 12 14 16 18 20 04 6 8 10 12 14 16 18 20
Time Periods Time Periods

(c) Spike target with spike weighting.

(d) Double spike target with double spike

weighting

Figure 5: Examples under high volatility.

20

15

The high volatility examples are the most difficult of the examples; in these examples,
we are more likely to see an error shift than not. As a result, although we use information
regarding earlier errors, it is difficult to account for future errors. The optimal results
show that, given unlimited possibilities for policy choices, we can often improve greatly
upon the currently-used constant policy. However, as NDP is limited by a finite number
of policy choices — in particular, a choice between 0, 1/(N — k) or 0.4 of the current
target residual — it is more difficult for the NDP policy to achieve such substantial
improvements.

In addition to three-category policy choices, we also experimented with two-category
policy choices. Under these policies, the voxels were classified as either less than 50%
of the maximum residual or more than 50% of the maximum residual. To maintain
approximately the same number of policies, we allowed five choices for each category
(resulting in a total of 27 policies, including the constant policies). In one experiment,
we allowed for small multiples: 0, 1/(N — k), 0.01, 0.1, or 0.4. In another experiment,
we allowed for large multiples: 0, 1/(N — k), 0.1, 0.4, or 0.6. Applying these policies to
the double spike example (the hardest example), we found very little change in the NDP
results. The small-multiple category choices returned approximately the same results
as the three-category choices, while the large-multiple category choices returned slightly
better results but nothing visually significant on the plot.

These results suggest that significant improvements over the presented NDP results
cannot be achieved while choosing from among approximately 30 policies. Enriching
the policy set by combining the two-category policies with the three-category policies,
or moving to five-category policies (for example) seems to be the only way to improve
upon the NDP results. Other policies may come from previous real-life plans or other
planning systems.

Note that in addition, we also experimented with many more examples, including
different targets, different weighting schemes, and larger targets. The results from these
other examples were qualitatively the same. We did find, though, that for high volatility
examples, constant weighting (c(i) = 1,Vi € Z) resulted in significantly underdosing the
target. This strongly suggests that the use of an appropriate weighting scheme to focus
the treatment is imperative.

4 Off-Line Planning

While building simple models and analyzing their properties can lead to great insight
into the application at hand, it is important to draw definitive conclusions that are
applicable to the real problem. In this section, we endeavor to derive policies that are
directly implementable in the radiation treatment planning arena.

Besides testing the NDP model, the real-life (outer) simulation is also useful for
off-line planning. In Section 3, we compared the on-line planning schemes, that is, we
assumed that the controls were determined in between treatments as we moved to the
next stage. Only at the end of the treatment period would we have a complete policy.
Off-line planning, on the other hand, assumes that a policy is pre-defined, prior to the

16

Stage | Low Volatility | Med. Volatility | High Volatility | Simple Rule
1-2 (0,0,0.4) (0,0,0.4) (0.4,0.4,0.4) (0,0,0.4)
3 constant-plus (0.5,0.5,0.5) (0.5,0.5,0.5) | (0.5,0.5,0.5)
4 (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table 1: Rules of thumb for 4 time period examples.

beginning of treatment.

To find pre-defined policies, we look for policies that are good for most, if not all, of
the examples. For a particular example, the outer simulation gives a series of possible
policies to apply. By counting the number of times each control is chosen at each time
stage, we have an idea of how important that control is for that example at that time
stage. Averaging these control counts across examples with the same volatility and
choosing the ones with the largest counts at each time stage, we determine a generalized
policy for each volatility. We refer to this generalized policy as the “rule of thumb”
policy for that volatility. These rules of thumb allow us to remove the target dependence
from the simulation and also provide us with a pre-defined plan to use for a particular
volatility.

We can take the generalization further and remove dependence on the volatility by
averaging the control counts across volatilities as well. We refer to the resulting policy
as the “simple rule of thumb”. Since the total number of time stages N affects which
controls are chosen and when, we define rules of thumb and simple rules of thumb for
each N. The rules of thumb and simple rules of thumb for N = 4,5,6,10,14 and 20
are given, respectively, in Tables 1, 2, 3, 4, 5 and 6. In these tables, the categorical
policies (including the reactive policy) are given as triplets. In these triplets, the first
entry corresponds to the low residual areas; the second entry corresponds to medium
residual areas; and the third entry corresponds to the high residual areas. These entries
correspond to the multiplier of the residual that is used at all voxels in that area.

Note that if the policy pool U is changed, the simulations must be rerun and this
process must be repeated on the new results in order to determine appropriate rules of
thumb and simple rules of thumb.

Examining the tables, we notice some general trends in the control choices. First
of all, within each table, the controls become more aggressive as we near the final time
stages, generally moving from controls in which only the high residual areas are dosed, to
controls in which all areas are dosed. Typically, we use the first half of the time periods
to work aggressively on the high residual areas and ignore the other areas. Exceptions
to this are the high volatility rules for small time stages (4,5,6); in these cases, we apply
dose to all areas. This probably comes from the fact that we are likely to make an error
and we have very little time to correct it.

Controls in the middle stages vary but tend to focus on both the medium and high
residual areas first. Later stages focus on all three categories, ending in every case

Stage | Low Volatility | Med. Volatility | High Volatility | Simple Rule
1-2 (0,0,0.4) (0,0,0.4) (0.4,0.4,0.4) | (0,0,0.4)
3 constant-plus (0,0,0.4) (0.4,0.4,0.4) constant
4 constant-plus (0.5,0.4,0.5) (0.5,0.5,0.5) | (0.5,0.4,0.5)
) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Table 2: Rules of thumb for 5 time period examples.
Stage | Low Volatility | Med. Volatility | High Volatility | Simple Rule
1-4 (0,0,0.4) (0,0,0.4) (0.4,0.4,0.4) | (0,0,0.4)
5 (0.5,0,0.5) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.5,0,0.5)
6 (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Table 3: Rules of thumb for 6 time period examples.
Stage | Low Volatility | Med. Volatility | High Volatility | Simple Rule
1-5 (0,0,0.4) (0,0,0.4) (0,0,0.4) (0,0,0.4)
6 (0,0,0.4) (0,0.2,0.4) (0,0.2,0.4) (0,0.2,0.4)
7 (0,0.25,0.4) (0,0.25,0.4) (0,0.25,0.4) (0,0.25,0.4)
8 (0,0.33,0.4) (0,0.4,0.4) (0.4,0.4,0.4) | (0.4,0.33,0.4)
9 (0,0.4,0.5) (0.5,0.4,0.5) (0.5,0.5,0.5) | (0.5,0.4,0.5)
10 (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table 4: Rules of thumb for 10 time period examples.

17

18

Stage | Low Volatility | Med. Volatility | High Volatility | Simple Rule
1-9 (0,0,0.4) (0,0,0.4) (0,0,0.4) (0,0,0.4)
10 (0,0.4,0.4) (0,0,0.4) (0,0.4,0.4) (0,0,0.4)
11 (0,0.4,0.4) (0,0.4,0.4) (0,0.4,0.4) | (0,0.4,0.4)
12 (0,0.4,0.4) | (0.4,0.4,0.4) | (0.4,0.4,0.4) | (0.4,0.4,0.4)
13 constant-plus | (0.5,0.5,0.5) (0.5,0.5,0.5) | (0.5,0.5,0.5)
14 (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table 5: Rules of thumb for 14 time period examples.

Stage | Low Volatility | Med. Volatility | High Volatility | Simple Rule
1-9 (0,0,0.4) (0,0,0.4) (0,0,0.4) (0,0,0.4)
10 (0,0.09,0.4) (0,0.09,0.4) (0,0.09,0.4) (0,0.09,0.4)
11 (0,0.1,0.4) (0,0.1,0.4) (0,0.1,0.4) | (0,0.1,0.4)
12 | (0,0.11,0.4) | (0,0.11,0.4) (0,0.4,0.4) | (0,0.11,0.4)
13 (0,0.4,0.4) | (0,0.125,0.4) | (0,0.4,0.4) | (0,0.4,0.4)

14-17 | (0,0.4,0.4) (0,0.4,0.4) (0,0.4,0.4) | (0,0.4,0.4)
18 | constant-plus | constant-plus (0.4,0.4,0.4) | (0.4,0.4,0.4)
19 constant-plus | constant-plus (0.5,0.5,0.5) | (0.5,0.5,0.5)
20 (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table 6: Rules of thumb for 20 time period examples.

19

aggressively with the reactive policy (to attempt to apply all of the remaining dose).
An interesting question arises as to whether the low volatility rules for N = 4,5,14
and 20 follow this general trend. In these three cases, the rule of thumb makes use of
the constant-plus policy in the middle and/or later time stages. While 1/N-th of the
original target dose is a seemingly rather small amount, we claim that it is very likely
to be an aggressive control at the later time stages. This is because most of the earlier
controls will have hit the target correctly (because of the low volatility), resulting in
the remaining residual being small, and hence the small fraction of the original dose is
in fact a large dose in comparison to the required residual. Clearly, in this case, the
removal of overdosing (the difference between constant and constant-plus) is important.

Focusing on the rules of thumb, the policies either use the same or more aggressive
controls for the same time stages as the volatility increases. The simple rule policies
use either these same controls or combinations of the controls. An exception occurs in
the simple rule for N = 5, at stage 3. In this case, we find a rather strange choice, the
constant policy, which does not even adjust for overdosing. In this case, the controls used
in the rules of thumb varied so greatly that the only control the three had in common
was the constant policy and we therefore believe this is a statistical anomaly.

Since they are generalizations, we expect that the rules of thumb and the simple rule
of thumb for each N will give perform worse than the (on-line) NDP rollout policy. This
is the case, although the differences tend to be so small that they are not noticeable.
Figure 6 compares the NDP rollout results to the rules of thumb and simple rules of
thumb for each example. In addition Table 7 shows the percentage decrease achieved by
the reactive policy, the NDP rollout policy, rules of thumb and simple rules of thumb
over the currently-used constant policy at 20 time stages.

The rules of thumb and simple rules of thumb are almost always indistinguishable
from one another. Exceptions occur with small N, where we do not have enough time
periods to make up for error from the generalization. We also see a difference in the
high volatility smooth weighting example of Figure 6(a). It is not surprising that one
target suffers under a generalization built from considering all targets. The smooth
weighting, in being the easiest target, probably does not require the same controls as
the other targets, and so suffers particularly in the high volatility case where things are
more likely to go wrong.

Table 7 verifies the results shown in Figure 6. In all cases, the NDP, rules of thumb
and simple rules of thumb improved upon the reactive policy results significantly. How-
ever, their percentage decrease over the constant policy varies very little between the
three of them. This suggests that very little is sacrificed in moving to the generalized
simple rules of thumb.

An interesting case arises for the NV = 20, medium volatility rule of thumb. Perhaps
not noticeable in Figure 6, but seen from Table 7, is the fact that the simple rule of thumb
slightly outperforms the medium volatility rule of thumb. Since the simple rule of thumb
is a generalization of the rules of thumb for all of the volatilities, we would expect just
the opposite (in the other examples, the two actually are tied). Upon investigation,
we found that this comes from the difference between the magnitudes in the errors for
the rule of thumb and the simple rule of thumb. At stage 18, the constant-plus policy

20

3 el

o
Q A

op

o
A

N
o
T

Expected Error
~
T

Simple Low
NDP Medium |
Thumb Medium
Simple Medium
NDP High
Thumb High
Simple High

Time Periods

(a) Spike target with smooth weighting.

op

Expected Error
w
T

-

A
o
A

O
A

T
NDP Low
Thumb Low
Simple Low
NDP Medium
Thumb Medium
Simple Medium
NDP High
Thumb High
Simple High

Time Periods

(b) Spike target with nonsymmetric

weighting.

T 12 T
—— NDP Low
— NDP Low
i Thumb Low —©- Thumb Low
AL Simple Low —A— Simple Low
— - NDP Medium — - NDP Medium
° Thumh Med!um 108 © - Thumb Medium
A Simple Medium 6 A Simple Medium
GQ 8 8 NDP ngl’_| a NDP High
O Thumb High e, ©- Thumb High
- SO A Simple High g A Simple High
P R a 8 0 R >
sl]
% i
B4t 41 B sk
8 °
2 2
£ &
[[T
A~ S 7 S&
Soel 4k Sal
oL “-e-.-_=_= e LR,
R AT P | B TR
oL]
4
A D
I I I

I
4 6 8 10 12 14 16
Time Periods

(c) Spike target with spike weighting.

4 6 8 10 12 14 16 18
Time Periods

(d) Double spike target with double spike
weighting.

Figure 6: Rules of thumb and simple rules of thumb results for the examples.

21

Target Volatility | Reactive | NDP | RoT | SRoT
Smooth Spike Low 76% 94% | 94% | 94%
Smooth Spike Medium 51% 83% | 81% | 83%
Smooth Spike High 24% 51% | 47% | 47%
Nonsymmetric Spike | Low 70% 89% | 89% | 89%
Nonsymmetric Spike | Medium 44% 1% | 69% | 71%
Nonsymmetric Spike | High 15% 30% | 29% | 29%
Spike Spike Low 66% | 85% | 85% | 85%
Spike Spike Medium 38% 61% | 60% | 61%
Spike Spike High 8% 17% | 16% | 16%
Double Spike Low 68% 86% | 86% | 86%
Double Spike Medium 43% 69% | 67% | 68%
Double Spike High 17% 31% | 31% | 31%

Table 7: Percentage decrease over the constant policy at 20 time stages, calculated for
the reactive policy, the NDP rollout policy (NDP), the rules of thumb (RoT) and the
simple rules of thumb (SRoT).

22

was chosen most often; however, when the (0.4,0.4,0.4) policy was chosen, its error was
much smaller than that given for the constant-plus policy. So, although the constant-
plus policy appeared more often, its average (-factor over the outer simulation was
actually worse.

This result suggests that we should base the rules of thumb on the magnitude of error
over the outer simulation, rather than on the number of times a policy is chosen. Doing
so would require obtaining additional information from the inner simulation during the
calculation of the NDP rollout policy, namely the Q-factors for every policy. We believe
that if this additional information is provided, then the resulting rules of thumb could
provide more uniform generalized policies.

5 Conclusion

Day-to-day treatment planning is a complex problem that can significantly benefit from
knowledge of the errors that occur during the delivery process. While dynamic pro-
gramming and stochastic optimization would undoubtedly lead to better plans, they are
currently intractable for application problems of realistic size and complexity.

This paper proposes a solution based on neuro-dynamic programming, coupled with
heuristic policies that are based on the particular application.

We found that the NDP approach offers significant improvement over the currently-
used (constant) policy. For most examples, we saw a significant improvement, with the
error generally being cut at least in half. Further, this improvement was maintained
when we removed the dependence upon the target structure and applied a simple rule
of thumb. Because of this, the NDP approach can be useful for both on-line planning,
where the plan is reoptimized between each treatment (NDP rollout), and for off-line
planning, where the plan is determined in advance (rule of thumb or simple rule of
thumb).

The results show that the simple rules of thumb, once determined, are almost as
favorable as the NDP results. In practice, we believe that the simple rule of thumb
will be effective for large complex target shapes, and we strongly recommend its usage
over both the constant and reactive policies. Certainly, the simple rule of thumb is
no more costly than the reactive policy to implement and is shown to be much more
effective at dealing with the errors that can arise in the planning process. If the resulting
improvements are not sufficient for the treatment planning problem, then two further
policies are suggested by the results of this paper. The first technique chooses a particular
control structure and simulates to determine a simple rule of thumb, which can then be
applied during the treatment process. A second more costly (but even more effective)
approach is to generate the control policy using optimization within the on-line procedure
of Section 2.3. In this setting, the treatment planner is also able to choose a particular
control structure. Under the second approach, the reoptimization need not be done at
every time stage; for those time stages at which the reoptimization is not done, we can
use the simple rule of thumb.

For immediate use, we suggest the simple rule of thumb as given for example in

23

Table 6. On a day-to-day basis, the treatment planner, knowing x, can calculate the
dose required at each voxel in the manner outlined in Section 2.4, accounting for the
stochastic errors that have occurred. Once this dose distribution is known, existing
planning tools can be used to implement this on particular machines. We believe our
results show this will significantly improve the final dose distribution that is delivered
to the patient.

References

[1] Dimitri P. Bertsekas, 1997. Differential training of rollout poli-
cies. In Proceedings of the 35th Allerton Conference on Communi-
cation, Control, and Computing. Available as PDF document from

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

http://www.mit.edu:8001//people/dmitrib/Diftrain.pdf.

Dimitri P. Bertsekas and John N. Tsitsiklis, 1996. Neuro-Dynamic Programming.
Athena Scientific, Belmont, Massachusetts.

J. R. Birge and R. Louveaux, 1997. Introduction to Stochastic Programming.
Springer, New York.

T. Bortfeld, 2001. Current status of IMRT: physical and technological aspects.
Radiotherapy and Oncology, 61(2): 291-304.

T. Bortfeld and W. Schlegel, 1993. Optimization of beam orientations in radiation
therapy: some theoretical considerations. Physics in Medicine and Biology, 38(2):
291-304.

A. Brahme, 1995. Treatment optimization: Using physical and radiobiological ob-
jective functions. In A. R. Smith, editor, Radiation Therapy Physics, pages 209-246.
Springer-Verlag, Berlin.

A. Brooke, D. Kendrick and A. Meeraus, 1988. GAMS: A User’s Guide. The
Scientific Press, South San Francisco, California.

P. S. Cho, S. Lee, R. J. Marks, S. Oh, S. Sutlief and H. Phillips, 1998. Optimization
of intensity modulated beams with volume constraints using two methods: cost

function minimization and projection onto convex sets. Medical Physics, 25(4):
435-443.

M. C. Ferris, J.-H. Lim and D. M. Shepard, 2001. Optimization approaches for
treatment planning on a gamma knife. Data Mining Institute Technical Report 01-
12, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin.

M. C. Ferris, J.-H. Lim and D. M. Shepard, 2001. Radiosurgery treatment plan-
ning via nonlinear programming. Data Mining Institute Technical Report 01-01,
Computer Sciences Department, University of Wisconsin, Madison, Wisconsin.

24

[11] E. E. Fitchard, J. S. Aldridge, P. J. Reckwerdt and T. R. Mackie, 1998. Registration
of synthetic tomographic projection data sets using cross-correlation. Physics in
Medicine and Biology, 43: 1645-1657.

[12] H. W. Hamacher and K.-H. Kiifer, 1999. Inverse radiation ther-
apy planning — a multiple objective optimisation approach. Tech-
nical Report 12, Institute for Techno- and Econo-Mathematics
(ITWM) and Department of Mathematics, University of Kaiser-
slautern, Kaiserslautern, Germany. Available as PDF document from

http://www.itwm.uni-kl.de/zentral/download/berichte/bericht12.pdf.

[13] H. Heitsch and W. Rémisch, 2001. Scenario reduction algorithms in stochastic pro-
gramming. Preprint 01-8, Institut fiir Mathematik, Humboldt-Universitit, Berlin.

[14] T. Holmes and T. R. Mackie, 1994. A filtered backprojection dose calculation
method for inverse treatment planning. Medical Physics, 21(2): 303-313.

[15] ILOG CPLEX Division, 889 Alder Avenue, Incline Village, Nevada. CPLEX Opti-
mazer. http://www.cplex.com/.

[16] P. Kall and S. W. Wallace, 1994. Stochastic Programming. John Wiley & Sons,
Chichester.

[17] K-H. Kiifer, H. W. Hamacher and T. Bortfeld. A multicriteria op-
timization approach for inverse radiotherapy planning. Symposium on
Operations Research (OR 2000). Available as PDF document from
http://www.uni-duisburg.de/FB5/BWL/WI/0or2000/sektion01/kuefer.pdf.

(18] J. T. Linderoth, A. Shapiro and S. J. Wright, 2002. The empirical behavior of
sampling methods for stochastic programming. Optimization Technical Report 02-
01, Computer Science Department, University of Wisconsin, Madison, Wisconsin.

[19] M. Livny. PI, the Condor project, high throughput computing.
http://www.cs.wisc.edu/condor.

[20] T. R. Mackie, T. Holmes, S. Swerdloff, P. Reckwerdt, J. O. Deasy, J. Yang, B. Pali-
wal and T. Kinsella, 1993. Tomotherapy: a new concept for the delivery of dynamic
conformal radiotherapy. Medical Physics, 20(6): 1709-1719.

[21] A. Niemierko, 1992. Optimization of 3D radiation therapy with both physical and
biological end points and constraints. International Journal of Radiation Oncology,
Biology and Physics, 23: 99-108.

[22] W. Schlegel and A. Mahr, editors, 2001. 3D Conformal Radiation Therapy - A
Multimedia Introduction to Methods and Techniques. Springer-Verlag, Berlin.

[23] D. M. Shepard, M. C. Ferris, G. Olivera and T. R. Mackie, 1999. Optimizing the
delivery of radiation to cancer patients. SIAM Review, 41: 721-744.

25

[24] L. J. Verhey, 1995. Immobilizing and positioning patients for radiotherapy. Semi-
nars in Radiation Oncology, 5(2): 100-113.

[25] S. Webb, 1997. The Physics of Conformal Radiotherapy: Advances in Technology.
Institute of Physics Publishing Ltd.

