Digital Morse Theory for scalar volume data

Jim Cox (cox@sci.brooklyn.cuny.edu)*
D. B. Karron (karron@casi.net)f

Nazma Ferdous (nferdous@sci.brooklyn.cuny.edu)¥

July 16, 2002

City University of New York

Computer Aided Surgery, Inc.

Abstract

We present a new method for preprocessing and organizing discrete
scalar volume data of any dimension on external storage. We describe our
implementation of a visual navigation system using our method. The tech-
niques have important applications for out-of-core visualization of volume
data sets and image understanding. The applications include extracting
isosurfaces in a manner that helps reduce both I/O and disk seek time, a
priori topologically correct isosurface simplification (prior to extraction),
and producing a visual atlas of all topologically distinct objects in the
data set. The preprocessing algorithm computes regions of space that
we call topological zone components, so that any isosurface component
(contour) is completely contained in a zone component and all contours
contained in a zone component are topologically equivalent. The algo-
rithm also constructs a criticality tree (independently developed [21],[20],
[17],[10]) that is related to the contour tree of [2], [3], [32], [31]. However,
unlike the contour tree, the zones and the criticality tree hierarchically
organize the data set. We demonstrate that the techniques work on both
irregularly and regularly gridded data, and can be extended to data sets
with nonunique values, by the mathematical analysis we call Digital Morse
Theory (DMT), so that perturbation of the data set is not required. We
present the results of our initial experiments with three dimensional vol-
ume data (CT) and describe future extensions of our DMT organizing
technology.

*Supported in part by ONR grant N00014-96-1-1057

fSupported by DARPA Contract DAAH01-98-C-R195 under DSO Dennis Healy and NIST
ATP Grant 70NANB1H3050 Jayne Orthwein and B.J. Lide

fSupported in part by ONR grant N00014-96-1-1057

1 Introduction

Many applications produce data in the form of a scalar function defined at
discrete points in space (called volume data). Examples include X-ray crystal-
lography, Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
and data from continuous field simulations such as computational fluid dynam-
ics. The data is visualized using either volume rendering ([22],[1],[23],[25],[30])
or isosurface extraction (See [24],[12],[8], [19],[9]). In volume rendering the data
is regarded as consisting of semi-transparent material and volume primitives are
directly projected onto the screen using ray casting.

Isosurface based methods are primarily used for filtered volume data. In
isosurface based methods the data is segmented by thresholding, that is, identi-
fying objects defined by the sets of points in space where a suitable interpolating
function f for the filtered data is greater than or equal to a real value 7, called
the isovalue or threshold. The topological boundary of these objects will gener-
ally correspond to the level sets of f, that is, the points p where f(p) = 7. The
data is either regularly gridded, that is, represents a function ¢ defined at points
of Z™ on the vertices of a hypercubic decomposition of space, or it is irregularly
gridded and ¢ is typically defined on the vertices of a simplicial decomposition
of R™. The simplices or (hyper)cubes are called cells. The isosurface extrac-
tion problem is to construct the level set of f, called the isosurface, for specific
isovalue 7. Individual connected components of this set are typically called the
contours, even when they are higher dimensional surfaces.

Many researchers have developed methods of organizing the data so that
the “active cells”, those cells that a given contour intersects, can be quickly
accessed from disk for out-of-core rendering. The three main methods include
geometric organization ([33], [34], [16], value based organization [11], [29], [37],
[7], [4, 6, 5], and recently the topology based organization using augmented
contour trees [2], [3], [32], [31]. The I/O optimal interval trees of [4, 6, 5] seem
to produce the least disk I/O and seek time, and input the minimal number of
blocks in active cell acquisition. Our organization is topology based.

Topological organization of the data uses Morse Theory. Morse theory stud-
ies the changes in the topology of the level sets of a Morse function f as the
parameter 7 is decreased. These changes occur at the values of critical points
of f, where the derivative vanishes. A Morse function has the property that
the critical points are isolated and the Hessian is nonsingular at each of these
points. Typically the data readings are given on a tetrahedral mesh and are
perturbed to insure that no two values are identical, and a simple (e.g. linear)
interpolant f is selected, to insure that f is Morse. The contour tree tracks the
topological changes of individual contours as the parameter 7 is varied. The
augmented contour trees of [32] are used to produce a seed cell set and active
cells for a given contour are acquired by local propagation from the seed cells.

We define a variant of the contour tree and use it to organize the data
into topological zones and topological zone components. We demonstrate that
the zones have important properties not satisfied by the augmented contour
tree, making them useful in a variety of visualization problems. For example,

the organization aids in active cell acquisition, and is superior to the seed cell
method.

Prior work on contour trees requires that regularly gridded data be regridded
onto tetrahedral cells. This has two disadvantages. It requires increasing the
data complexity (e.g. dividing each cubic cell into 5 tetrahedra) and further
requires an explicit representation of the tetrahedral cells and their adjacency,
which increases storage requirements and the complexity of dealing with the
data. Moreover, the data readings are then perturbed to insure that no two
readings are identical. In this way one insures that the data can be extended to a
Morse function. Our mathematical analysis, which we call Digital Morse Theory,
demonstrates that this treatment of regularly gridded data is not needed. The
contours produced by the most popular isosurface extraction methods (see for
example [27]) are sufficiently well behaved so that the topological changes, as
the isovalue is varied, are well defined and easily identifiable, without recourse
to Morse theory. We feel that this is important because sampled density data
associated with a physical phenomenon may contain regions of constant density,
and regularly gridded data does not require an explicit storage of cell adjacency
information. We give a combinatorial characterization of the topology changing
criticalities and state a related open problem.

The paper is organized as follows: In section 2 we briefly discuss typical
methods for isosurface extraction, so that we may identify the properties of the
surfaces produced by these methods. We also give a very simple algorithm that
computes contours in all dimensions for regularly gridded data. In section 3 we
give our mathematical analysis. We formally define the properties satisfied by
the above isosurface extraction methods, and demonstrate that these proper-
ties uniquely determine both the topology and the topological changes of the
contours. Alternatively, one can use the standard tertrahedral regridding of
regularly gridded data and perturbation of identical readings to insure that the
function is Morse. In either case, the zone organization is an important contri-
bution, and the rest of the paper may be understood independently of section
3, with the usual assumptions of a Morse function.

In section 4 give the formal definition of the topological zones and prove
certain of their properties. In section 5 we show how to compute the data cells
that intersect a topological zone component and disuss our implementation of
the algorithm. In section 6 we describe our initial implementation of a visual
navigation system for volume data, using the zone organization. We discuss
our experimental results using the navigation tool, with particular attention to
the I/0 efficiency of isosurface extraction using our technique. We also discuss
how we shall scale up the tool to handle very large data sets. In section 7
we discuss future applications of our technique, including topologically correct
volume data simplification, and efficient management of level of detail. Finally
in the appendix we give the proofs to our mathematical assertions of section 3.

2 Isosurface extraction

The isosurface extraction problem is often stated as follows. A scalar volume
data set consists of tuples (x, g(x)), where x is a point in 3 (or higher) di-
mensional space, and g is a scalar function defined over a discrete set of these
points. Given an isovalue q, the isosurface extraction problem is to compute
the (hyper)surface consisting of the points {z : f(z) = ¢}, where f is a func-
tion (interpolant) which extends g to all of space. A more mathematically
precise formulation is to say that we are computing the topological boundary
of {z : f(z) > ¢}, as the set of points of constant value ¢ may in fact include a
3D volume in the degenerative case, and we may have multiple surface compo-
nents, which, by an abuse of terminology, are called contours in the literature.
A further requirement is that the contours are oriented manifolds.

The data points are usually organized into cells, with the data readings given
at the vertices of the cells. Regularly gridded data is given on the vertices of
cubic cells and irregularly gridded data is typically given on the vertices of a
tetrahedral decomposition of space. The algorithms discussed below construct
the isosurface locally within each cell.

2.1 Marching Cubes

A classic algorithm, that is applied when the volume data is given on cubic
cells, was proposed by Lorensen and Cline [24]. It is called marching cubes and
it constructs a polygonal mesh to represent a 3D surface. In order to generate
an isosurface, corresponding to a user specified isovalue, the algorithm visits all
cubic cells created from eight adjacent pixels, four each from two adjacent slices,
and for each cell determines whether any surface intersects the cell, and then
moves to the adjacent cell. To determine surface intersection within a cube, the
algorithm examines all its vertices and assigns a High, if the data value is higher
than or equal to the isovalue, (i.e. these vertices are considered to be inside the
object) or Low, if the data value falls below the isovalue (i.e. these vertices are
outside the object).

A cube edge is intersected by the surface if and only if one of its two vertices
is inside, and the other is outside the region of space bounded the surface (the
isosurfaces are assumed to be oriented manifolds). The location of the inter-
section point can be approximated by linear interpolation. The topology of the
surface within a cube can be determined by the pattern of its vertex values
(High or Low). There are 256 ways to color 8 vertices with 2 colors, however,
by taking into account rotational and complementary symmetry there are only
15 topologically distinct patterns. A look-up table is built that includes all 15
patterns and a corresponding surface approximation for each. The surface ap-
proximation uses triangles that connect the intersection points. All the distinct
patterns of surface approximation are enumerated in figure 1. Each High is
illustrated by a dark dot at a vertex.

It was later pointed out by Nielson [26], that the original marching cubes
produced tiling errors between cells, and he proposed an asymptotic decider to

remedy this. The problem occurs in what Nielson terms ambiguous faces, those
faces with 4 separate isosurface intersection points (which we term 4 hit faces).
Figure 2 shows one such case where triangles produced by marching cubes do
not produce a continuous surface.

For instance, if a cubic cell with configuration case 6 shares a face with a
voxel having a configuration 3, (which is the complement of case 3), triangles
produced by the marching cubes algorithm will create a hole in the resultant
isosurface. In order to correct this problem, a different triangulation can be
used. Figure 3 depicts two possible triangulations that will result in a topo-
logically consistent isosurface. The choice of triangulation can be made using
the proposed asymptotic decider which is based on bilinear interpolation of the
value of an interior point in the face.

The goal is obviously to divide each cubic cell by one or several surface
patches (up to 4 for 3 dimensional cells), each homeomorphic to a unit disk, so
that the induced cell regions each contain only connected sets of High and Low
vertices (above or below the isovalue resp.) Further each cell face contains 0,
1, or 2 curve segments that divide the connected High and Low vertices in the
face. The 5 possible patterns are shown in figure 9. As we shall see this goal
can be generalized to higher dimensional cubic cells.

2.2 Exploiting tetrahedral cells

Irregularly gridded data is typically organized into tetrahedral cells. The faces
of the tetrahedral cells can only be classified (or colored) in three distinct
ways, where the connectivity among the vertices can be resolved without any
ambiguity. A look-up table is thus not needed to find the approximated surface.
The three possible cases, described in figure 4, are the following:

e only vl is outside the object, the rest are inside.
e vl and v2 are outside the object, and v3 and v4 are inside.

e only v4 is inside the object, the rest are outside.

Decomposing cubic cells into five tetrahedral cells [12] can lead to an efficient
surface extraction, primarily because of the fact that this method does not
suffer from the well known inconsistency discussed above. However, Zhou et al
[36] showed that tetrahedral decomposition and linear approximation along the
introduced diagonals change the original function and may lead to incorrect,
though consistent topology. They proposed trilinear approximation across the
diagonal of the cells as a solution to this problem, rather than applying linear
approximation along all edges. This method has a disadvantage of increasing
five-fold the number of cells that have to be processed individually.

The surface construction for tetrahedral cells can be generalized to higher di-
mensions, where each cell is an n-dimensional simplex. In each case the vertices
above and below the isovalue in a cell can be separated by a single hypersurface
patch that is homeomorphic to an n — 1-dimensional closed ball. For cubic cells

in n dimensions we should similarly require that surface patches within the cell
are each homeomorphic to the n — 1 dimensional unit ball, and similarly divide
the cell into regions containing connected sets of High or Low vertices. The
following simple algorithm achieves this goal.

2.3 Spider Web

The Spider Web algorithm [9], [19], [18], determines a cell intersecting the iso-
surface and then determines hit points along the cell edges using linear inter-
polation. In the current implementation of the algorithm [10], the pair of hit
points on a voxel face with 2 hits are considered adjacent and a decision of pair-
wise hit adjacency on a voxel face containing 4 hits is made, using a strategy
similar to Nielson’s asymptotic decider.

The adjacency defines one or several connected sets of hits within the cell.
After that, the centroid point of all the hits within a connected set is calculated.
This point, called the articulation point (AP), is used as the cell interior triangle
vertex for all of the subsequently constructed triangles within that set of hits.
Each triangle consists of the AP and a pair of adjacent hits on a cube face (see
Figure 5). Hits on a cubic cell face are shared by the cell that shares this face,
and thus the algorithm can continue surface construction in the adjoining cells.

Though this algorithm has the advantage of not requiring a case table, it
produces more triangles than marching cubes. On the other hand, it is com-
pletely parallelizable, as each cell can be processed independently. The primary
cases where it produces more triangles are when the hit set consists of 3 or 4
hits. In the former case one can remove the articulation point to produce one
triangle. When there are 4 hits, marching cubes produces two triangles. How-
ever the inclusion of the interior AP and the subsequent 4 triangles produces a
better approximation of the small scale curvature of the surface.

Also, unlike the original marching cubes, it is easily proven correct. We
sketch the proof here since the ideas are used in the proof of theorem 1 (see
Figure 6). To prove that the surfaces produced are manifolds one establishes
two facts. Each traingle edge is shared by two triangles, and the set of triangles
incident on any triangle vertex are homeomorphic to a unit disk. The proof
uses the fact that each hit has a unique adjacent hit in each cell face on which
it occurs.

The triangle edge between an AP of a cell C' and a hit h is shared by two
triangles: one triangle for each for each of the two faces of C' that share this
hit. Fach triangle consists of the AP, h, and the unique adjacent hit in that
face. The triangle edge connecting two adjacent hits in a cell face is shared by
a triangle to an AP in the cell that shares this face.

The triangles incident on an AP form a triangulation of the circle, as starting
from any hit h in the connected set and following hit adjacency, one returns to
h and establishes that the hits form a cycle. Similarly, if A is any hit point, h
is incident to 8 triangle edges: 4 to the unique adjacent hit in each of the 4 cell
faces sharing the cubic cell edge on which A occurs, and 4 triangle edges, each

to an AP of each of the 4 cubic cells sharing the cell edge on which h occurs.
Again these 8 triangles will form a cycle.

The algorithm can be extended to higher dimensions. For an n > 3 dimen-
sional cell, recursively build the (hyper) surface patches in the n —1 dimensional
boundary cells. Each of these patches will consist of n—2 dimensional simplexes
and each patch will be homeomorphic to an n — 2 dimensional ball. Now for
each connected set of hits in the n dimensional cell select an AP. For each pair of
adjacent hits in the set construct 2”3 simplices, each consisting of the AP and
an n — 2 dimensional simplex that contains the pair in a boundary cell. Each
such simplex will consist of the pair of hits, the AP, and n — 3 lower dimensional
articulation points.

The simplices thus formed with the AP for the set will form a (hyper) sur-
face patch homeomorphic to an n — 1 dimensional unit ball. For example, in a
4 dimensional cell, the lower dimensional patches will be the normal triangular
meshes in the 3 dimensional boundary cubes. For a connected set of hits, these
patches will form a closed surface within the 4 dimensional cell, topologically
equivalent to a sphere (by the proof of correctness of the original Spider Web).
Tetrahedra will be formed from an interior AP to each triangle on the closed
surface, forming a 3 dimensional surface patch equivalent to a ball. This patch
will intersect the patches in neighboring hypercubic cells by completely shar-
ing a 2D surface patch in a 3D boundary cube, since this boundary cube will
be completely shared by two neighboring 4 dimensional cells. In this way a
collection of 3 dimensional manifolds is constructed.

Finally, analyzing this behavior of Spider Web (and marching cubes) led
its inventors to develop the new techniques (Digital Morse theory) summarized
below [21],[20], [17],[10].

3 Mathematical analysis: Digital Morse Theory
explains why regridding and perturbation are
unnecessary

The basic idea of the analysis is as follows. We characterize interpolants that
produce contours topologically equivalent to a corrected marching cubes (or
Spider Web for higher dimensions) or the standard techniques for tetrahedral
cells. For any isovalue one labels each data reading as either High (greater
than or equal to the isovalue) or Low (less than the isovalue). The topology of
the isosurfaces produced by the aforementioned algorithms is uniquely defined
by this binary image, up to the disambiguation required for 4 hit faces. The
behavior is such that the surfaces produced induce connected components of
space. We call the objects the components that are induced by (cell edge and
cell face diagonal) connected sets of Highs and complementary objects are the
components induced by connected sets of Lows (here connectivity is reminiscent
of digital topology [15]). Thus as the isovalue is varied so that it passes through
no data or disambiguation value the topology is invariant. As the isovalue is

decreased all that can happen is that at a data value, one or several Lows can
become High, or at a disambiguation value, two diagonally opposite Highs in a
cell face can become locally connected. Topological changes to the contours can
only occur in the following ways.

A new component of Highs can be created (a new object is formed) when
one or several Lows become High, or a component of Lows can vanish (comple-
mentary object destroyed). Two or more components of Highs can be merged
when one or several Lows become High or connectivity of Highs changes at a
disambiguation value, resulting in separate objects merging. Similarly, a compo-
nent of Lows can be split, resulting in complementary objects splitting. Finally
a change in the connectivity of a component of Highs (or Lows) can induce a
change in the topological type of one or more of the contours bounding the
object (or complementary object).

The important point is that one can infer these changes from the local pat-
tern of the data readings by analyzing the behavior of the isosurface algorithms,
without any recourse to Morse Theory. We can give a combinatorial character-
ization of the topology changes, without having to consider the analytic prop-
erties of the underlying interpolating function.

3.1 Definitions

Definition 1 We will assume the volume data set is given by a real-valued
function & defined on a discrete set of points V in R™. Regularly gridded data is
gwen by a function defined on Z™, where we form unit hypercubes in the natural
way. Irregularly gridded data is given on the vertices of a simplicial decomposi-
tion of R™ and we assume that vertex adjacency information is represented in
some form in external storage. We term both hypercubes and simplices, cells.
Without any loss of generality, we shall assume & is non-negative over the entire
domain, and that § > 0 on a finite sub-set of points. If § does not take the same
value on any two points, we say that it satisfies data uniqueness.

For simplicity, we will first describe our algorithm for volume data that
satisfies data uniqueness. Later we will extend it for non-unique data, where
identically valued spatially proximate data readings imply isovolumes.

Definition 2 A continuous real valued function f interpolates § if it extends
0 to all of R™ and is nonzero only on the finite subset of cells for which § is
nonzero.

We denote by f~1(> 7), the set of p € R" such that f(p) > 7, for f that
interpolates . The topologically connected components of this set are called
objects. The components of the complement of this set are called complemen-
tary objects, and they of course share common boundary. Similarly, —1(> 7)
denotes the set of p € V such that §(p) > 7. Clearly if f interpolates ¢ then
d71(> 1) C f~Y(> 7). The points p € V whose function value is above or equal
to (respectively below) the threshold are termed Highs (respectively Lows).

Definition 3 The isosurface construction problem is to compute the contours
of the boundary of the set f~1(> 7), for specific real number 7. We use the
notation B(f~1(> 7)) to denote the topological boundary of set f~1(> 1), which
encloses all the Highs of the data region for isovalue T.

The commonly used isosurface extraction methods discussed in the previous
section construct B(f~!(> 7)) with the simplest topology, consistent with the
data. These methods interpolate a single contour intersection point, called a
hit, along a cell edge, if and only if the two end points are identified as High
and Low, respectively. Objects are defined by connected set of Highs. For
irregularly gridded data, connectivity between the Highs is defined solely by
cell edge adjacency. However for regularly gridded data, cell edge adjacency is
not sufficient, as observed above. The disambiguity occurs when for a range
of thresholds a cube face F' contains diagonally opposite Highs and diagonally
opposite Lows. We call F' a 4-hit face, because there are hits on each edge. We
will assume that a consistent disambiguation method is chosen.

Definition 4 The Disambiguation value ¢ with respect to a function f is the
mazimum threshold for which the diagonally opposite Highs in F are locally
connected through the interior of a cell sharing the face.

Note that once the data points are path connected they will remain con-
nected for all threshold less than ¢. We associate a disambiguation point with
F, having the value ¢, which may actually be in the cube interior, and extend
0 to this point. For isovalue 7 > ¢ we create a pseudo-edge connecting the
two diagonally opposite Lows. For any isovalue 7 < ¢ a pseudo-edge connects
the two diagonally opposite Highs. We extend the definitions of adjacency and
connectivity of Highs and Lows to include the pseudo-edges.

3.2 Properties of admissible interpolating functions

We restrict the class of interpolants to those whose contours behave in a manner
consistent with standard isosurface extraction methods discussed in the previous
section. The following are the properties satisfied by admissible interpolants.

Let 7 be an isovalue not in the range of the extended § (not a data value or
disambiguation value).

e For n dimensional data the contours of B(f~1(> 7)) form a finite collec-
tion of disjoint, compact and oriented n — 1 dimensional manifolds embed-
ded in R™. These contours divide R into disjoint n dimensional connected
components, each of which contains either a single non-empty connected
component of Highs or Lows. An example for the 3 dimensional case is
shown in figure 8, where the space is divided between disjoint 3 dimen-
sional connected components of Highs and Lows, by their 2 dimensional
boundary manifolds.

e The intersection of the contours with any d-dimensional cell C' (d < n),
B(f~Y(> 7)) N C, is a finite set of (d — 1) dimensional components called

surface patches. These surface patches are bicontinuously mappable to a
(d — 1) dimensional unit disk (ball) and the intersection divides C into
disjoint d dimensional contractible components, each of which contains
precisely the vertices from a single non-empty connected component of
Highs or Lows.

For 7 in the range of § we require that B(f~1(> 7)) = B(Ng<rf (> z)).
This insures that the boundary encloses all the data readings precisely equal to
T.

Definition 5 A function f is admissible if and only if it interpolates d and
satisfies the properties listed above.

Property 1 merely expresses the goal of isosurface construction from a global
point of view, and property 2 expresses the type of local non-degeneracy assumed
by isosurface construction algorithms. For example, Figure 9 illustrates all
possible intersection of an isosurface with a cubic cell face and the associated
division of the cell face. For a tetrahedral cell of any dimension there is always
single patch that intersects the cell. For cubic cells, the number of distinct
surface patches can go up to four. This situation occurs when there exists a
particular threshold for which all cell faces are 4-hit faces and the given isovalue
is above the disambiguation value of all faces. Each of the 4 High vertices will
be part of a disjoint component of Highs.

3.3 Admissibility uniquely defines topology

We now show that these properties are sufficient to uniquely define the topol-
ogy of irregularly gridded data. For regularly gridded data, the disambiguation
values of 4-hit faces are also required to uniquely define the topology of the
contours. For regularly gridded data the theorem is really just a tautology;
isosurfaces topologically equivalent to SpiderWeb or Marching Cubes are topo-
logically equivalent. More precisely,

Theorem 1 If f and f' are admissible and additionally, for regularly gridded
data, both have the same disambiguation values, then the boundary contours
(manifolds) of B(f~'(> 7)) and B(f'~*(> 7)) are homeomorphic.

Proof:

We prove this theorem by a series of lemmas (see appendix).
Here is an outline of the proof. We first observe that no cell face can
have a odd number of hits. The dual of data reading connectivity is
the hit connectivity. We identify each hit by the cell edge on which
it occurs. Hits are adjacent if they are connected by a curve segment
of the contour in a cell face. Property 2 ensures that a pair of hits
on a cell face with 2 hits are adjacent. For a 4-hit face the hits will
be divided into 2 adjacent pairs (see figure 7). Since both f and

10

f' are admissible and have the same disambiguation value for all 4-
Hit faces, they will have the same hit set and the same connectivity
between the hits for any isovalue. Let M and M’ be manifolds of
B(f~1(> 7)) and B(f'~*(> 7)), respectively. We form a graph from
the surface patches of a manifold where the nodes of the graph are
patches and the edges connect intersecting patches. Since intersect-
ing patches must share a common hit and the patches intersect by
sharing lower dimensional patches, it follows from property 2 that
we can iteratively construct a continuous bijection from M to M'.
In other words, one can show that the graphs G and G’, formed from
M and M', are isomorphic.
O

3.4 Ceritical values for volume data satisfying data unique-
ness

For the rest of the discussion we refer to components of f~1(> 7) as objects
and components of f~1(< 7) as complementary objects. Topology changes
occur when the isovalue becomes equal to a critical value. Let us first look at
the possible critical values and the associated changes in topology before arguing
how the admissibility uniquely defines topology changes.

Let us assume that § satisfies data-uniqueness. A critical value ¢ is a value
at which the topology of the contours of f change as the threshold is de-
creased through ¢. Each such change has an associated critical point p for
which f(p) = ¢. We use the term critical point in analogy to Morse theory, but
we are not actually using any differential properties of the function. We use the
admissibility properties of the function to identify the topology changes.

Let p € V. Let N be the set of points in V adjacent to p by cell edge or
pseudo edge. Let Ny (respectively Nz,) |be the Highs in N (respectively Lows)
with respect to the value of p. Compute the connected components of Ny and
Ny, within the cells that share p but excluding p itself. For example, two Highs
are connected if they are connected within the cells that share p by a path that
does not include p. Note that the fourth type of criticality only occurs in cubic
cells.

1. If N = N, meaning p has a higher value than all its neighbors, then p is
a local maximum critical point and f(p) is a local maximum critical value.
A new contour emerges at each of these critical points (see figure 10)

2. If N = Ny, meaning p has a lower value than all its neighbors, then p is
a local minimum critical point and f(p) is a local minimum critical value.
An existing contour vanishes at each of these critical points (see figure 11)

3. If either Nj, and Ny consists of more than one connected component then
p is saddle critical point and f(p) is a saddle critical value. Two or more
contours may merge into one, contours may split into two or more pieces
or a change to the topological type of one of the contours (genus change

11

in 3D) can occur at these critical points. Figure 12 gives an illustation of
these topological changes at saddle critical points.

4. Let p be the disambiguation point of a cell face F' with disambiguation
value c¢. If the Highs of F' (respectively Lows) are not part of the same
same component within the cells that share F' above (respectively below)
the disambiguation value then p is saddle critical point and ¢ is a saddle
value.

Critical points of type 1, 2 and 3 can be encountered both for simplicial and
regularly gridded data, whereas critical points of type 4 can occur only for the
latter data type. Topology changes to the contours can only occur at critical
values.

Theorem 2 Let f be admissible and & satisfy data uniqueness. If [11,7] is a
critical value free interval then B(f~*(> 1)) and B(f~'(> 7)) have the same
topological type (homotopy type). The converse holds in 3-dimensions.

See the appendix for the proof. Note that we have not proved the converse
for dimensions n > 3, as it is beyond the scope of this paper.

3.5 Critical isosets when data does not satisfy uniqueness

If the data does not satisfy data uniqueness then the properties of the admissible
functions imply that connected sets of data points (as Highs) of identical value ¢
will be enclosed in isovolumes at thresholds ¢ —e. As the threshold is decreased
through ¢, an object can merge with the isovolume containing these points.
Complex topology changes can occur at the value ¢ of these sets, termed isosets.
Let S be an isoset with value cand N, Ng and Ny, be defined as previous section.
For an admissible function f, in addition to the point criticalities described
above there are set criticalities.

1. If N = Ny, then S is a maximum isoset and ¢ is a maximum critical value.
A new contour emerges at each of these critical isosets.

2. If N = Ny , then S is a minimum isoset and ¢ is a minimum critical value.
An existing contour vanishes at each of these critical isosets.

3. If either N, or Ny consists of more than one connected component, then
S is a saddle isoset, and c is a saddle critical value. Two or more contours
may merge, contours may spit into two or more pieces, or a genus change
may occur at these critical isosets

4. If Ng and Np each consist of a single nonempty component then S is
called a regular isoset. In some cases the addition of the isoset to an
object (or removal from a complementary object) may cause a change in
the topological type of a contour. We call this a critical regular isoset. In
3 dimensions this can cause a genus change in an object or complimentary

12

object O if, when it merges with O it adds or destroys a handle. This
occurs if there exists a loop through Ny or Ny and a loop through S so
that the loops are interlocked.

Note that a new object of arbitrary topological complexity with possibly
multiple boundary manifolds is created at a maximum isoset. One or several
manifolds vanish and multiple objects can merge at a minimum isoset. Ex-
tremely complex merges, joins, splits, and Betti number changes can occur at
saddle isosets. At a regular isoset, in 3 dimensions for example, a genus change
can occur. The conditions are that the structure of the isoset itself, when sur-
rounded by isosurfaces, is topologically complex (not simply connected), and
additionally it is joined with an object in an appropriate way. For example,
consider a donut-shaped critical regular isoset with flat bottom and sides. Sup-
pose this critical set merges with a solid cube object. If the merge is such that
the donut rests flat on top of the cube, then no topological change occurs be-
cause boundary of the resultant object is still homeomorphic to a sphere. But
if the merge is such that it is glued to the top of the cube resting on its side,
then a new handle will be formed causing a genus change. Both of these cases
are depicted in figure 13.

We leave it as an open problem to develop a efficient combinatorial algo-
rithm for recognizing critical isosets in all dimensions. Note that since one can
construct a simplicial complex representing the isosurfaces one can in fact de-
termine algorithmically whether a regular isoset is critical (and indeed compute
both the homotopy groups and the homology groups for our contours!) but this
is far from an efficient way of determining criticality. This is not a practical
problem as we will regard regular isosets above a specific size as critical. This
will only serve to possibly increase the number of zones that we compute (see
below) but will not change our results. The important point is that topological
changes can only occur at our defined critical values and our initial experiments
with CT data indicate large regular isosets are rare.

With the addition of the critical isosets we can drop the data uniqueness
requirement and theorem 2 can be revised as follows (see appendix for proof):

Theorem 3 Let f be admissible, if [11,72] is a critical value free interval then
B(f~Y(> 7)) and B(f~'(> 7)) have the same topological type. The converse
holds in three dimensions.

Hence amissibility uniquely determines the topological changes that occur
as the isovalue is varied.

4 Topological zones and the criticality tree

4.1 Criticality tree

The criticality tree is a search structure that hierarchically organizes the data
cells into zones based on value and proximity, and traces the topological evolu-
tion of objects in the data as the isovalue is varied. Each node in the criticality

13

tree is a criticality. As the threshold is decreased from the value of a critical
point p, if g is the first critical point encountered in the same object that con-
tains p, then ¢ is made the parent of p (see figure 14). More formally, let O,(7)
be the object containing p at threshold 7. For any 7 that is equal to a data
value define O,(7) to be the closure of Ne«,Op(c).

Definition 6 The nodes of the tree are the criticalities. Let p be a criticality and
let g be the criticality of mazimum value so that f(q) < f(p) and g € Op(f(q)).
Then q is the parent of p.

If the data does not satisfy the data uniqueness, ¢ may not be unique, and
thus the object containing p may meet several criticalities at the same time. We
just arbitrarily order the parentage of these to break ties.

4.2 Topological zones

The intuition behind the topological zones is quite simple. As the threshold is
decreased from the value of a critical point p, the object containing the criticality
grows and deforms with topologically invariant boundary until it encounters
another criticality ¢, which in some manner changes the topology of the contours
bounding the object. The topological zone of criticality p is the volume swept
by the topological boundary of this object until it encounters q. Each connected
component of this zone is the volume swept by an individual boundary manifold
(contour) of the object. Figure 14 gives a visual representation of the zones.

We define the zones by a set difference so that no assumption that the
contours vary continuously is required, because if the data contains an isoset
the contours will not vary continuously. The topological zone for criticality p is
defined as follows:

Definition 7 Let p be a critical point with critical value x, and parent q. The
topological zone of p, denoted ((p), is the set difference Op(f(q)) — Op(f(p)).
The topological zone components are the connected components of ((p).

4.3 Properties of the topological zones

Theorem 4 Let p be a criticality with parent ¢ with a = f(p) and b = f(q).

1. For each 7 satisfying a > 7 > b, B(O,(7)) is contained in ((p) and each
component M of B(O,(7)) is contained in a single component of {(p). The
means for any isovalue between the value of a node that represents the
critical point and that of its parent, the contour is completely contained
with the zone for that criticality.

2. For an pair [m, 7], if a > 1 > ™ > b, B(Op(11)) and B(Op(m2)) are
topologically equivalent.

3. For all 7, if O is any component of f~!(> 7) not containing p, then B(O)
and ((p) are disjoint.

14

4. For all 7, such that 7 > a and 7 < b, B(f (> 7)) and ((p) are disjoint.

Proof:

A point r € ((p) if and only if f(q) < f(r) < f(p) and r €
O,(f(g)). For any 7 such that f(p) > 7 > f(g), each point r €
B(O,()) satisfies f(r) = 7 by continuity of f. Also, because each
such r € O,(f(q)), B(Op(7)) is contained in {(p) by monotonicity
of f~1(> 7). The connectivity of the manifolds insures that it is
contained in a single component of {(p), establishing claim 1. By
definition, {(p) contains no critical point with a value between f(p)
and f(g), which establishes the second claim. Claim 3 follows from
the connectivity of the O, (7) and the fact that boundary manifolds
are pair-wise disjoint by property 1 of admissible functions. Claim
4 follows immediately from the proof of claim 1.

O

The criticality tree and zones organize the data set in a hierarchical fashion,
in the following sense:

Corollary 4.1 The union of all zones in the subtree rooted at mode p is com-
pletely contained in the class of objects corresponding to p. That is, for any
isovalue T in the range of ((p), Op(T) consists of a portion of ((p) and the
union of all zones in the subtree rooted at p.

4.4 Criticality tree vs. contour tree

There are some essential difference between the criticality tree and the contour
tree [2], [3], [32], [31]. The two search structures are contrasted and compared
below.

e The contour tree traces the evolution of individual contours while the
criticality tree traces the evolution of the objects the contours bound.

e The contour tree does not record a change in the homotopy type (genus
in 3D) of an individual contour, while the criticality tree records both a
change in the topological type of any contour bounding an individual ob-
ject, as well as a change in the number of contours bounding an individual
object.

e Leaf nodes in the contour tree can be maxima or minima where contours
are created or destroyed, as the threshold is decreased, while leaf nodes in
the criticality tree are all maxima, where objects are created.

e In a contour tree a node with multiple children can occur when two or
more distinct objects merge or when a contour of an object splits. In a
criticality tree multiple children only occur when objects merge. Objects
cannot split as the isovalue is decreased, though complementary objects
can split, resulting in an increase in the number of contours bounding an
object.

15

o As one descends the criticality tree from the root the isovalue is strictly
increasing. The root of the criticality tree is the single object that encloses
the entire data set. Following a path from the root to a leaf traces the
evolution of a single object as the isovalue is increased. All the objects
in the subtree of a node p are completely contained in the root object
corresponding to p. There is no particular order when following a path in
the contour tree.

e The seed cell method [32], which uses the contour tree for finding the
active cells, extracts each contour by searching for a seed cell known to
have intersected the isosurface in the corresponding super-arc first and
then locally propagates from the seed cell. However, for an extremely
large data set this local propagation can incur excessive disk seek time.
The zone organization method uses a more sophisticated method to re-
duce I/O operations. Since a zone component file contains all the active
cells for a contour, they can be extracted by reading the zone component
sequentially, reducing disk seek time to finding the start of the component.

Let us illustrate the difference between the contour tree and the criticality
tree through an example. Figure 15 shows the level set of a function f as the
parameter 7 is decreased, and figure 16 shows the corresponding contour tree
and the criticality tree. Initially there are four objects created at maxima 7
through 10. These merge at saddles 5 and 6. Then the contours bounding each
of the objects undergo two genus changes, changing from sphere to torus to
sphere again at saddles 5’ and 5” (at saddles 6’ and 6” respectively).

These changes are not reflected in the contour tree. Then the two objects
merge at saddle 4, the boundary of the this object becomes toroidal at saddle 4’
and a inner boundary is created at saddle 3 by a split. At this point the object
comes to enclose a hollow. Note that the contour tree has two edges coming
out of node 3, which represents the outer and inner boundary manifolds of the
object, respectively. Finally the bubble is closed at minima 2 and this node
represents the single object containing the entire data set.

5 Zone organization algorithm

5.1 Computing zones

The input to the preprocessing algorithm is a volume data set. For regularly
gridded data the data set is organized as a stack of two-dimensional slices.
Each slice contains a two-dimensional array of real numbers. The output is a
criticality tree and a direct access file containing a sorted list of the cells (voxels)
intersecting each zone. The criticality tree indexes the zone file, with each node
containing pointers to the components for the corresponding zone. The pre-
processing of the volume data to compute the tree and the cells that intersect
each zone component is performed in three phases, which are described below.

16

The zone computation algorithm proceeds by assigning a label to each data
point, which corresponds to the zone that includes that particular point.

e Phase 1:

In the first phase the data is scanned and critical points (and critical
isosets) are identified by computing the connected components of Highs
and Lows in the neighborhood of each point and identify isosets by depth-
first search. One assigns the label [(p) = p, where p is a critical point (or
representative point of a critical isoset). A zone file is created for each
criticality p The critical points are then placed on max-heap ordered by
value, with priority given to criticalities to break ties.

e Phase 2: One then iterates the following step until the heap is empty.
Remove the maximally valued point 7 from the heap with label I(r) = p.
Point r can either be a critical or non-critical point. We elaborate the
actions taken in both the cases below.

— Non-Critical Point: For a non-critical point r # p, examine the neigh-
bors of r. If a neighbor g of r is unlabelled then assign a tentative
label to ¢ from the label of r (i.e. I(q) = I(r) = p) and place ¢ on
the heap. The label of r is now finalized and it is placed in the file
for criticality p.

— Critical Point: For a critical point » = p, examine the neighbors of
r. If there is any unlabelled neighbor assign the tentative label as
before. If there is a neighbor ¢ that has a finalized label different from
the label of 7, or in other words I(¢) = a, such that a # p, then make
the node that corresponds to the criticality a the parent of the node
that corresponds to the criticality . The flooding of the zone for
criticality r is now over. The points that are still waiting in the heap
with a tentative label p are relabeled tentatively by a, and each one of
them are also placed in the file for criticality r (see discussion below
for efficient relabeling). Critical disambiguation points are regarded
as adjacent to all the four vertices of the ambiguous cell face.

e Phase 3: One creates a single direct access file for all the zones. One
next iterates through the original zone files dividing each zone file into
its connected components using a standard depth first search. After the
zone components are computed for a zone, a cell list is computed for each
component and output to the direct access file. Each zone component
stores the cell information (e.g. coordinate, values at all vertices, local
maximum and local minimum) of all the cells that intersect the compo-
nent. The cell information is sorted by the local maximum first followed
by the local minimum values in order to able to scan fewer cells during
isosurface extraction.

Observe that the algorithm labels the entire data set by highest value first
order. That ensures that a zone is expanded as much as possible, by expanding

17

the zone boundary in the shallowest descent direction, before it is terminated.
Also, at any point in time, all points greater than or equal to a particular 7 have
been labeled. These are precisely that points that comprise the components
of f~1(> 7). Whenever a zone labeling for a point p terminates, the points
remaining in the heap with a tentative label p are the ones that lie in the cells
that contain the boundary of this zone, and the data points with the finalized
label of p are precisely the points contained in ((p). Cells that straddle one or
several zone boundaries are placed in each such zone.

5.2 Implementing the zone organization algorithm

Our primary focus is limiting the I/O and maintaining as little in-core data as
possible throughout the execution. The most expensive step is the relabeling of
the boundaries of a zone from phase 2. Instead of immediately relabeling the
points we use a lazy approach that results in correct but efficient relabeling. The
points that have to be relabeled are left on the heap. When a point is removed
from the heap, we trace the parent pointer of the node that corresponds to its
current label, up to the root node in the partially built criticality tree, and give
a finalized label that corresponds to the root node. While following the parent
pointers, the point is also placed in all the zone files corresponding to the nodes
on the path. The cell in which this point lies straddles the boundary of each
such zone. The algorithm thus runs in time O(knlogn), where n is the number
of data cells and k is the longest path traversed in the tree during relabeling (our
experiments with CT data have shown this number to be 3 or less in practice).

During phase 1 the maximum number of slides that are read into main
memory at any point in time is restricted to three. Suppose that currently
(i —1),i,(i + 1) are read into memory. All critical points in the it* slide are
detected and then the next slide, (i+2), is read into the same space as (i —1). If
the data includes an isoset then additional data needs to be read from arbitrary
slides. In that case only the necessary data points are brought into memory,
not the whole slide. Execution of any phase can be carried out independently
given that the previous phases have been completed. We have implemented
the zone preprocessing on a 14 processor Sun Enterprise UltraSparc, and it has
been parallelized. The implementation is done in an out-of-core fashion, so that
it may be scaled up to larger volume data sets. During Phase 1, only portions
of at most 3 slices are kept in memory at one time. During Phase 2 only the
data readings on the heap are kept in memory. The amount of in-core data is
proportionate to the contour size. We also have a mode where we label only one
zone at a time for further space efficiency. If we find that when we go to gigabyte
scale datasets, the memory requirements for the heap grow too large (which we
don’t anticipate, see below) we can use an external memory implementation
of the heap. Phase 3 requires marking of visited vertices during depth first
search and marking of cells during cell list construction. We presently use an
in-core boolean array. However further space efficiency (at the cost of time)
could be achieved by using an external array or sparse matrix technology for
this marking. The sorting of the cells within each zone is done by an efficient

18

sort. The sorting time dominates the phase and thus the total time for Phase
3 is bounded by O(knlog kn), where k is (as above) the maximum number of
zones any point appears in.

Since we do not have a exact procedure to identify critical regular sets we
assume all regular isosets above an arbitrary size to be critical. However in
that case, some zones may be divided by regular isosets that are not actually
criticalities. This will not change the properties of the zones that we have
defined, but may segment the zone unnecessarily and make it smaller. Again
we have found large regular isosets to be rare, even in unfiltered CT data.

6 Applications of the zone organization: A vi-
sual navigation tool

We have implemented a visual navigation tool using the criticality tree as a
search data structure, with pointers to the zones and the zone components on
disk. It allows us to visualize volume data, varying both the isovalue and the
spatial viewpoint in real time. This tool is used to construct the contours at
any given isovalue 7. The tool first uses the criticality tree to find the active
zone components. The program scans through the cell list for each component.
Because the cell lists are sorted, as soon as a cell with a max value maz(C) < 7
is encountered, the search for active cells is terminated for that zone component.
The SpiderWeb algorithm contructs the surface patches within each active cell
independently, and thus the construction can be parallelized.

The zone organization allows us to produce a visual atlas of all topologically
distinct objects in the data set together with the range of isovalues that reveals
each object. A common criticism of the isosurface extraction methods is that
they obscure the underlying structure of the scalar field. The zones reveal it.
The visualization tool also allows us to increment or decrement the isovalue by
any value entered by the user. The tool reconstructs the isosurface from the
loaded zone, and only loads a new zone when critical values are passed. The
tool can also be used to animate the evolution of the objects as the isovalue is
decreased from the global maximum to global minimum by a small increment.
Figure 17 shows few snapshots of such an animation done on a simulated data
set that has a similar structure to the data set shown in figure 15. The system
also allows the user to rotate the objects generated at any isovalue, thus the
user can interactively search for the isovalue that reveals a structure of interest.
The toolkit loads and visits only a small percentage of the total cells. This is
done on a low-end SGI workstation.

6.1 Experimental results

We have experimented on simulated data, and both filtered and unfiltered CT
data taken from the Visible Human data set. Unfiltered data produces many
more zones. We need to make modifications to reduce the number of zones for
unfiltered data. If the zone is small enough (e.g. the size of the zone is less than

19

Exp. 1 Exp. 2 Exp. 3
Data description Simulated Data | Filtered Medical Data | Filtered Medical Data
Size (Row x Col x Slide) 40 x 40 x 40 20x 20 x 20 100 x 100 x 100
Zone Size (as %) 13.95 16.27 3.09
% of active cells 28.83 11.66 2.21
% of cells loaded 42.6 15.49 2.94
Load utility (%) 67.67 75.28 75.17
Travel utility (%) 82.07 94.87 96.08

Table 1: Experimental Results

or equal to one disk block) we can read this single zone into memory using one
disk seek.

Experiment 1 was conducted on simulated data that modeled the objects
in the screen snapshots shown in figure 17. In this way we could verify by
hand the correctness of the zone computation. Experiment 2 was conducted
on a small portion (20 X 20 X 20) of unfiltered medical data, followed by a
filtered (standard Gaussian) version of the same data set. We iterated through
the isovalue range by a variety of small increments, and verified that all active
cells for each contour (for each isovalue) were contained in a zone component.
Experiment 3 was conducted with a larger portion of the filtered CT data set
(100 X 100 X 100). We found that the unfiltered data produced too many
zones. We did not count the I/O used to read the criticality tree file into core,
as this is done once at the start of the program. Additionally, as we iterated
through the isovalues, in many cases no I/O was performed, as the necessary
zone was already loaded. Nevertheless, for experimental purposes we counted
the I/O that would be performed in loading the zone. For these preliminary
experiments we recorded the average zone component size as a percentage of
the data set size, the average number active cells (over the range of isovalues)
as a percentage of the data set, and the average percentage of cells that were
actually brought into memory. Note that for the simulated data the average
number of active cells exceeds the zone size, as at most thresholds several zones
were needed to render the objects (a zone contains a single object).

Finally the two most important statistics, in analyzing the performance of
our active cell acquisition, are the load wutility and the travel utility. The load
utility records the average percentage of active cells among those brought into
memory. In other words, it records the percentage of loaded cells that were
actually utilized to construct the isosurface. The travel utility records the per-
centage of active cells among those actually examined. This is perhaps the most
important measure of efficiency. Since the zones are sorted, we stopped exam-
ining cells in a zone once the next cell was out of range for the isovalue. Since
our goal was to reduce disk seek, we read the entire zone component. However
the travel utility indicates the percentage of active cells among those actually
examined; we can load into memory only these examined cells if we choose. As

20

we can see both utility factors turned out to be quite high. It will be interesting
to compare these statistics with the other search structures, particularly the
interval trees of [4].

The average percentage of in-core data is around 20% for small portions of
data, which is quite reasonable, because on average 15% of the total cells are
active cells that we actually need to produce the isosurface. When we increase
the sample size to 100 by 100 by 100 (for filtered data) the percentage drops far
below 10For filtered CT data the percentage of the cells actually examined that
were active (part of the surface) averaged between 94.87 and 96.08 percent. As
we increase the data set size we expect that the zone size will grow at about
n?/3. When we increased the data set from about 8000 cells to about 1,000,000
we found that the percentage of data readings in a zone dropped more than
five-fold.

For both filtered and unfiltered medical data set, many of zones included
fewer than 0.1 percent of the total data points, Such zones do not really reflect
any significant change in the topology and can be culled without significant
loss of information. A good heuristic for culling would be the number of new
data points included in a zone, as opposed to the total zone size, which can
include many points on the boundary of several zones. It will be interesting
to experiment with using the zone algorithm to reduce noise, as opposed to
Gaussian filtering, which may obscure essential features (see Figure 18).

6.2 Scaling up the visualization tool

The topology of the boundary manifold of a zone component remains invariant
for any isovalue that lies within the range of that component. This means that as
long as we retain the criticalities we can coalesce cells within a zone component
up to the limits given by the zone structure without changing the topology
of the resulting contours. In this manner we can reduce the tiling complexity
either prior to or during extraction, based on the users’ demand. Thus, we
can have finely rendered surfaces in the area of interest, and coarsely rendered
surfaces in other areas. This is different from simplification after construction,
see for example [28],[14]). The prospect of dynamic multiresolution (as opposed
to preprocessed multiresolution [13]), for cubic cells is particularly exciting for
the following reason. Once one has read all the cells from a zone into memory,
refining the resolution can be done without further I/O penalty. For example
one can form larger cubic cells (say 64 by 64 by 64) from the original cells. To
refine the rendering detail recursively, one only needs to include an interior data
reading in the larger cell, dividing it into 8 smaller cells. Since this reading is
already in memory no I/O is required. For static multiresolution, one can store
each zone component at several scales. If the zone component is small enough,
all the scales can be brought into memory initially. If not, each scale can be
read as needed. Figure 19 shows an example of the different scales. We have
not yet employed these multiresolution methods, but they will be essential in
producing a very large data set visualization tool with real time capabilities.

21

7 Future applications and conclusion

It will be very interesting to explore the potential use of topological zones in
applications such as multi-modal image registration (see [13], [14], [35] for good
surveys of these problems). Note that the criticality tree is invariant with re-
spect to rotation, scaling, translation and uniform value translation of the data
set. Two images with same contents rotated at different angle, scaled differently
or translated will result in similar or partially similar criticality trees. The crit-
icality trees can be compared to verify whether or not the images have the same
content. The image registration problem can then be reduced to registration of
relevant portions of the two trees, and the corresponding critical points.

The zone segmentation provides a very natural and efficient way of organizing
the data set since the organization is based on the contents of the data set.
The whole procedure of the preprocessing is automatic and does not need any
user intervention. The zone segmentation preprocessing results in efficient I/0
operation which provides a great starting point for overcoming the bottleneck
that remains one of the unresolved challenges of visualization and animation
of very large data sets. Since the zone segmentation is hierarchical and the
criticality tree traces the evolution of objects we believe it can be used as a
modelling tool for volume data. The nodes of the subtree rooted at any node p
of the criticality tree contain all the cells in the interior of the object associated
with p. Thus the tree itself provides a topologically complete model of all
threshold defined objects in the data set.

We have demonstrated the feasibility, correctness and utility of the zone
organization in visualizing volume data sets. We believe that we have provided
a basis for exploiting this powerful technique that will ultimately result in the
ability to visually navigate extremely large volume data sets in real time without
special purpose hardware.

8 Appendix

Proof of Theorem 1:

Lemma 1 Let e be a cell edge. Then e has a single intersection point (hit)
with B(f~Y(> 7)) if and only if the incident end points are High and Low,
respectively.

Proof:
This follows immediately from property 2.
O

Lemma 2 Fach 2 dimensional hypercube face F' (square) has 0, 2, or 4 hit
points. Each 2 dimensional simplex face F' (triangle) has 0 or 2 hits.

Proof:
This follows from a simple parity argument or by examining the
4 possible arrangements of Highs and Lows on the 4 vertices of a

22

cube face. 1, 2 or 3 edge adjacent Highs give 2 hits and a pair of
diagonally opposite Highs gives 4 hits (See figure 9). O

Definition 8 Two hits are adjacent in o face F if they are connected by a
curve segment of B(f~1(> 7))NF. Connectivity of sets of hits is defined by the
transitive closure of adjacency. Connected components are defined accordingly.

Lemma 3 FEach hit point h of face F is connected by a curve segment of
B(f~Y(> 7)) N F to a unique hit point h' in F, that is adjacent to h.

Proof:

The result follows from the previous lemma, the disambiguation
rule and property 2 (See figure 9).

O

Definition 9 We uniquely identify a hit point by the cell edge on which it oc-
curs.

Lemma 4 B(f~1(> 7)) and B(f'~1(> 7)) have the same hit sets and hit con-
nectwity if f and f' are both admissible.

Proof:

Changing the interpolation function does not change whether a
vertex is High or Low. For regularly gridded data, f and f' both
have the same disambiguation values resulting in the same hit con-
nectivity.

O

Definition 10 Two surface patches are adjacent if they intersect.

Lemma 5 Two d—1 dimensional surface patches of M, o € C and o' € C' are
adjacent if and only if their intersection is a set of d — 2 dimensional surface
patches of M in the d—1 dimensional boundary cell shared by C and C'. Further,
if o and o' are adjacent then they share at least one hit point in each component
of their intersection.

Proof:

The fact that they must intersect in some lower dimensional
patch follows from the fact that the d — 1 dimensional boundary
cell is completely shared by C' and C" and property 2 of the admissi-
ble function. The fact that they share a hit point in each component
of their intersection is due to the fact that their intersection must
occur on at least one cell edge, and thus they share the hit along
this cell edge.

O

Lemma 6 FEach connected component of hits in cell C' is a member of a unique
surface patch 0 € B(f~Y(> 1)) N C. Conversely the hits contained in each
surface patch o € B(f~1(> 7)) N C, form a unique connected component of hits
in C.

23

Proof:

By definition of hit adjacency and connectivity, each pair of hits
in a connected component of the hits within C' is connected by a
path within B(f~1(> 7)) N C. By the path connectivity of the
surface patches, this path must be a part of the same patch. Thus
the connected set of hits all lie in a single patch o of C.

For the other direction, we must show that the hit points of o
form a connected set within C. The proof is by induction on the
dimension d. The result is clearly true for d = 1 and d = 2. For
inductive hypothesis, we assume that for all j < d — 1, the hits of
each patch of a j dimensional cell C' is a connected set within C.
Let h and h' be any two hit points of ¢. Since ¢ is homeomorphic
to the unit ball, its boundary g is connected and contained in the
d — 1 dimensional boundary cells of C. Then there is a path 7 € 8
from h; to ho such that this path 7 passes through a sequence,
01,02, ..,0m, of adjacent d — 2 dimensional patches in the d — 1
dimensional boundary cells of C. Let h; be any hit point in ¢; and
hi+1 be a hit point in 0,41, where 1 < 7 < m. We claim that h; and
hi+1 are part of the same component of hits of C.

To prove the claim we first observe that since o; and o;41 are
adjacent, by lemma 5 they share at least one hit point. By the
induction hypothesis, the hits of ¢; and o;41 are each connected
individually within their respective boundary cells. Thus the union
of the hits of o; and ;41 must be part of the same connected set
of hits in C. This also implies that h; and h;;1 are part of the
same connected component of hits in C', thus establishing the claim.
Any two hit points in ¢ are part of the same connected set. In other
words, the hit points contained in any surface patch ¢ form a unique
connected component of hits within the cell C.

O

Lemma 7 Each connected component of hits is contained in a unique compo-
nent manifold M of B(f~1(> 7)) and conversely the hits contained in each such
manifold M form a unique connected component of hits.

Proof:

A connected component of hits is contained in a single manifold
M Dby the definition of hit adjacency and hit connectivity. This
manifold is unique, since by property 1 the manifolds are pair-wise
disjoint.

For the other direction, suppose that M contains two hit points
hy and hs. There is clearly a path 7 in M from h; and hs. This path
passes through some sequence of patches of M, g1, 09, ..., 0, of cells
C1,C,,...,Cy, where hy € 01 and hs € 0,,,. Foreach 1 <i <m, o;
contains a unique connected component of hits within C; by lemma
6. For each such ¢ , 0; and ;1 intersect in a shared boundary cell of

24

C; and C;11 and share at least one hit point by lemma 5. Thus the
hit points of ¢; and 0;41 are part of the same connected component
of hits, which means h; and ho are part of the same connected set
of hits as well.

O

From the previous lemma we get

Lemma 8 If f and f' are both admissible, B(f~'(> 7)) and B(f'~'(> 7))
consist of the same number of components.

Let H be a connected component of hits. Let M and M’ be the components
of B(f~*(> 7)) and B(f'~*(> 7)) containing H.

Lemma 9 Let M and M' consist of the patches ¥ = 01,04,...,0; and X' =
o'1,0'9,...,0'y, respectively. There exists a one-to-one mapping) of ¥ onto
Y so that for all 1 < i < j < k, 0; is adjacent to o, if and only if Y(o;) is
also adjacent to ¥(o;). In addition their respective intersections have the same
number of components.

Proof:

The mapping 1 associates two patches if the share the same
hit set. The mapping is one-to-one and onto by lemma 6. If o; is
adjacent to o, then from the above lemmas, they share at least one
hit in common. Suppose they share a hit on cell edge e. Then ¥(o;)

and 1) (o;) also share a common hit one cell edge e and are adjacent.
O

In other words if we represent the patches and their adjacencies by graphs in
the natural way, then the graphs representing M and M' are isomorphic. Using
the above fact we can prove

Lemma 10 M and M' are homeomorphic.

Proof:

We can construct a global homeomorphism from M and M’
piece-wise via their patches. From property 2, both patches o; and
1 (0;) are bicontinuously mappable to a unit disk. From lemma 9
we know that o; is adjacent to o; if and only if ¥(0;) is also adja-
cent to ¢(0;). Also by lemma 5 and property 2 we know that the
intersections of the corresponding pair of the adjacent patches are
bicontinuously mappable. We can thus bicontinuously map o; to
¥ (o;) and extend the mapping for each adjacent patch recursively.
Thus we can define the homeomorphism iteratively on each o; and
extend it to define a global homeomorphism from M to M’, proving
the lemma.

O

25

Theorem 1 now follows immediately from lemma 7 and 10.
Proof of Theorem 2:

Proof:

Now the contours that we consider are all manifolds and each
can be given by a simplicial complex. For our simple case weak
homotopic equivalence implies homotopic equivalence: it is sufficient
to know that the homotopy groups of two contours are isomorphic
to give topological equivalence. What this means is that we need
consider two types of topological changes to our contours: change in
the number of contours or change in one of the homotopy groups (and
corresponding Betti number) of a contour. Observe that objects and
sets of Highs are monotonic in the sense that, as the threshold is
decreased, High data readings remain High, and points that were
part of the object, remain a part of the object throughout. The
Lows becomes High after certain time and new points are added to
the objects. Further, from the proof of Theorem 1 we know that
no topological changes (in the strong sense of homeomorphism) can
occur as the isovalue is varied in an interval that does not contain a
data or disambiguation value.

Topological changes to B(f~1(> 7)) can thus occur in several
ways and of course, several changes can occur at the same time.
First of all a new object can be created as the threshold 7 is de-
creased through a value ¢, and hence a new contour is created. It is
straightforward to see from property 1 of admissible functions that
this can only happen if a new component of Highs is created, and
thus ¢ is a local maximum critical value. In this case there is no
object in some region of space for all thresholds 7 > ¢, but a new
object exists in the same region for 7 < ¢. By admissibility and
data uniqueness, this new object must contain a single data point p
and must be comprised of a single connected component of Highs.
Thus p is a local maximum critical point. Similarly a contour can
vanish at ¢, and by monotonicity this can happen only if ¢ is a local
minimum critical value, where the associated point p comprises a
single connected component of Lows for 7 = c + €.

Two or more separate contours can merge at value ¢. From
property 1 and monotonicity this means that there exist two separate
components of Highs at threshold 7 = ¢ + €, that are merged into
one component of Highs at 7 = ¢ — e. This can only happen if ¢ is a
saddle critical value of type 3 and a point p becomes High at ¢ and
unites the two components, or ¢ is a critical saddle point of type 4
and the change of the connectivity of Highs in a 4-hit face unites the
two separate component of Highs.

One or several contours can split at ¢. From admissibility prop-
erty 1 and monotonicity this will happen only when a complementary
object (the region containing a component of Lows) is separated by

26

a change in connectivity at ¢. This can happen only of ¢ is a saddle
critical value of type 3 or 4.

In 3 dimensions a contour can change in genus at ¢, when a class
of incontractible loops is created or destroyed. In higher dimensions
either a homotopy class of incontractible k-spheres (k < n) is created
or destroyed. Monotonicity, data uniqueness and admissibility imply
that an increase in a Betti number of a contour can only occur in
the following way. As the threshold is decreased through a value c,
separate portions of the same object that exist in a neighborhood of a
point p at threshold c+¢, are merged at threshold c—e, so that a new
class of incontractible loops or k-spheres is created. The fact that the
object is locally separated in the cells containing p at ¢ + € implies
from admissibility that there must be at least two components of
Highs in these cells, thus insuring that p is a saddle critical point.
Symmetrically, from admissibility a decrease in a Betti number can
occur only when a complementary object is locally separated. Again
this means that a component of Lows is locally separated at a value
¢. From admissibility and data uniqueness this means that either a
single Low becomes High or there is a change in connectivity in a
4-hit face. In the former case the data point that changed will be a
saddle critical point, and in the latter case the disambiguation point
of the 4-hit face will be a saddle.

We now demonstrate that topological changes do occur at criti-
cal values in 3 dimensions. By admissibility, a new object is created
at a local maximum and a complementary object vanishes at lo-
cal minimum. Multiple changes can occur at saddles, including any
combination of contour merges, splits, and handles created or de-
stroyed. We argue that at least one of these changes occur at a
saddle value. First of all the saddle point p, with value ¢ is part
of the same global component of Lows at threshold ¢ + ¢ and at
threshold ¢ — €, when p becomes High, the component is separated.
By property 1 a boundary contour has split at ¢. Similarly if two
globally separate components of Highs are merged at ¢, at least one
pair of the corresponding boundary contours has merged.

To demonstrate that changes to topological type (genus of a con-
tour) occur at saddle values when objects are not merged (respec-
tively complementary objects are not split), note that the cells N
sharing saddle point p (with value ¢) are homeomorphic to unit ball
B, with p at the center and the other data points on the spherical
boundary of the ball. Suppose that there are at least two compo-
nents of Highs of Ng, N1 and Ny, on the boundary of B at thresholds
above ¢ (the argument for Ny, is symmetric). By assumption both
N; and N, are part of the same object 0. We claim that one can
find a loop L on the boundary of B (on the cell faces) that sepa-
rates N; and N, on the boundary of B so that L is exterior to O.
The definitions of connectivity of Highs and Lows insure that we can

27

construct L as a loop consisting of cell edges and cell face diagonals
connecting adjacent Lows. O will intersect the boundary of B in at
least two components O; and Os containing Ny and N, respectively.
By connectivity of O and its boundary contours, one can find a path
7 in the boundary of O from O; to O so that 7 never intersects the
interior of the cells B, and so that at ¢ — €, 7 can be extended to a
loop L' by a path from O; to O, through the interior of B. Clearly
L' is incontractible as it will be interlocked with the above loop L.
O

Proof of Theorem 3:

Proof:

As in the proof of Theorem 2, from admissibility a new object
can only be created at the value of a maximal isoset or point and
a complementary object can only be destroyed at the value of a
minimal point or isoset. A change in a Betti number of a contour
can now occur in two ways. In the first way two locally separate
portions of an object can merge at a value (resp. a complementary
object is locally separated at a value) in such a way that a new
homotopy class of incontractible loops or k-spheres, k < n is created
(resp. destroyed) on its boundary. From admissibility this means
that a globally connected component of Highs is merged at a point
or isoset (respectively component of Lows is locally separated) and
this implies that the isoset or point is a saddle criticality as we
have defined. The second way that the change can occur is caused
when an isoset is merged with another object (or removed from a
complementary object) so that the structure of the isoset itself adds
a homotopy class of incontractible loops (or spheres) to the boundary
of the object (or destroys a class of incontractible loops or spheres
in the boundary of the complementary object). The isoset in this
case is a critical regular isoset.

We now argue that topological changes do indeed occur at criti-
cal values in 3 dimensions. A change in topological type occurs, by
definition, at the value of a critical regular isoset. A new compo-
nent of Highs is created at the value of a maximal isoset and hence,
from admissibility, a new object is created with at least one new
boundary contour. Similarly, a component of Lows vanishes at the
value of a minimal isoset and thus a complementary object and at
least one boundary contour is destroyed. If two separate compo-
nents of Highs are merged at a saddle isoset then the corresponding
objects are merged with a corresponding change in the number of
contours. If a component of Lows is split by a saddle isoset then
a new complementary object is created and hence the number of
contours changes.

We now consider a saddle in which neither of these two things
happens. So assume without loss of generality that Ny consists of

28

at least two connected sets of Highs (the case of Lows is symmet-
ric) that are globally part of the same object O above the critical
threshold ¢. As in the previous proof, let N be the cells containing
the saddle set. Divide N into its connected components by cell edge
adjacency. If the components of Highs, N; and N, occur within
different components of N then two distinct objects are merged at
¢, a contradiction. So assume they are contained in one connected
component of N. One can then find a loop L, consisting of cell edges
and cell face diagonals connecting adjacent Lows on the boundary
faces of N, that lies completely exterior to O. As in the proof of
Theorem 2 this loop can be chosen so that a new loop L' formed
when these two object portions merge at the threshold ¢, will be in-
terlocked with the loop L. This shows that loop L is incontractible
and thus a change in the fundamental group of one of the contours
occurs at the saddle value.
O

29

P i

Figure 1: Distinct patterns of surface intersection

30

\/

Figure 2: An example illustrating flaw in marching cubes

Figure 3: Two possible triangulations which produce correct isosurfaces

‘
vd w vé

Figure 4: Surface intersection within tetrahedral cells

31

'Articulation
Point

Figure 5: Constructing isosurfaces using Spider Web

Figure 6: A- The triangle edge from an AP to a hit shared by 2 triangles. B-
The edge across a face shared by 2 triangles. C- A hit is locally a triangulation
of the circle.

32

3
> 92 2/9
< 92 2/9
c=922/9
- * .
> 92 2/9 < 92 2/9
4
A=94 D=30
-4
Separated Not Separated

at isovalue above c at isovalue below c

Figure 7: 4-hit face

>

Figure 8: Connected components in 3D

33

L L L L
n =
L B

H L = L

Figure 9: Possible isosurface intersections with cube face.

10

Figure 10: Local maximum critical point

34

b
N\

Y%
. - \\\

t of f as the parameter x decreases

3

Figure 16: Contour and Criticality Tree

37

CaaCuaCrgl

Figure 17: Snapshot of the level set of a function f as the parameter 7 is
decreased

38

Depr ecat ed
Zone

Figure 18: Rearrangement of the criticality tree when a zone is tagged depre-
cated

Figure 19: Coarsely rendered or finely rendered without changing the topology

39

References

[1] R. Avila, T. He, L. Hong, A. Kaufman, and et. al. Volvis: A diversified
volume visualization system. In Proceeings of the IEEE Conference on
Visualization 1994 (Visualization ’94), NJ, October 1994. IEEE, IEEE.

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring for im-
proved interactivity. In Proc. 1996 IEEE Symposium on Volume Visual-
ization, pages 39—46, October 1996.

[3] Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing Contour Trees
in All Dimensions. Symposium on Discrete Algorithms 2000, page to ap-
pear, 2000.

[4] Y.-J. Chiang and C. T. Silva. I/O Optimal Isosurface Extraction. IEEE
Visualization 1997, pages 293-300, 1997.

[5] Y.-J. Chiang and C. T. Silva. External memory techniques for isosurface
extraction in scientific visualization. External Memory Algorithms (AMS-
DIMACS Book Series), 50:247-277, 1999.

[6] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core
isosurface extraction. In IEEE Visualization, pages 167-174, 1998.

[7] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speeding
up isosurface extraction using interval tree. IEEE Transcations on Visual-
ization and Computer Graphics, 3(2), April-June 1997.

[8] Harvey. E. Cline, William. E. Lorensen, S. Ludke, and Bruce. C. Teeter
C. R. Crawford. Two Algorithms for the Reconstruction of Surfaces from
Tomograms. Medical Physics, 15(3):320-327, May 1988.

[9] James L. Cox, Daniel B. Karron, and B. Mishra. The SpiderWeb Algorithm
for Surface Construction from Medical Volume Data: Geometric Proper-
ties of its Surface. Innovations Et Technologie en Biologie et Medecine,
14(6):634-656, November 1993.

[10] Nazma Ferdous. Volume Data Set Visualization using Topological Zone
Segmentation. PhD thesis, City University of New York, 2001.

[11] R.S. Gallagher. Span filter: An optimization scheme for volume visual-
ization of large finite element models. Proceedings of Visualization 91,
1991.

[12] A. Guezic and R. Hummel. Exploiting triangulated isosurface extraction
using tetrahedral decomposition. JEEE Transactions on Visualization and
Computer Graphics, 1(4), December 1995.

[13] P. Heckbert and M. Garland. Multiresolution modeling for fast rendering.
Proceedings Graphics Interface 94, 1994.

40

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

P. Heckbert and M. Garland. Survey of polygonal surface simplification
algorithms. SIGGRAPH 97 course notes, 1997.

Gabor T. Herman. Oriented Surfaces in Digital Spaces. CVGIP: Graphical
Models and Image Processing, 55(5):381-396, September 1993.

T. Itoh and K. Koyamada. Automatic isosurface propagation using an
extrema graph and sorted boundary cell lists. IEEE Transactions on Vi-
sualization and Computer Graphics, 1(4), December 1995.

D. Karron and J. Cox. Digital morse theory for anatomic modeling. Pro-
ceedings of IEEE BMES-EMBS first joint conference, 10 1999.

Daniel Karron and James Cox. The spiderweb algorithm for extracting
3D objects from volume data. In Nicholas Ayache, editor, Computer Vi-
sion, Virtual Reality and Robotics in Medicine, number 905 in Lecture
Notes in Computer Science: Proceedings of the First International Confer-
ence, CVRMed’95, pages 481-486, Berlin, 1995. INRIA-Sophia Antipolis,
Springer-Verlag.

Daniel Karron, James Cox, and Bud Mishra. System and Method for Sur-
face Rendering of Internal Structures within the Interior of a Solid Object.
. United States Patent 5,898,793, April 1999.

Daniel B. Karron and James Cox. Extracting 3D objects from volume
data using digital morse theory. In N. Ayache, editor, Computer Vision,
Virtual Reality and Robotics in Medicine, number 905 in Lecture Notes in
Computer Science, pages 481-486, New York, NY, 1995. INRTA, INSERM,
ECV net, Springer—Verlag.

Daniel B. Karron, James Cox, and Bhubaneswar Mishra. New findings from
the spiderweb algorithm : Toward a digital morse theory. In Richard A.
Robb, editor, Visualization in Biomedical Computing — ’94, number 2359
in SPIE Proceedings, pages 643-657. SPIE, SPIE, October 1994.

Arie Kaufman, Reuven Bakalash, Daniel Cohen, and Roni Yagel. Introduc-
tion to Chapter 6: Architectures for Volume Rendering. In Arie Kaufman,
editor, Volume Visualization, IEEE Computer Society Press Tutorial, pages
311-320. IEEE Computer Society Press, Los Alamitor, California, 1991.

Marc Levoy. A Taxonomy of Volume Visualization Algorithms. SIG-
GRAPH 91 Volume Visualization Course Notes, May 1991.

William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Res-
olution 3D Surface Construction Algorithm. ACM Computer Graphics,
21(4):163-169, July 1987.

N. Max. Optical models for direct volume rendering. IEEE Transcations
on Visualization and Computer Graphics, 1(2), June 1995.

41

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Gregory M. Nielson and Bernd Hamann. The Asymptotic Decider: Resolv-
ing the Ambiguity in Marching Cubes. In Gregory M. Nielson and Larry
Rosenblum, editors, Proceedings of Visualization 91, volume 2, pages 83—
91, 1991.

W. Schroeder, K. Martin, and W. Lorensen. The Visualization Toolkit.
Prentice-Hall, 1996.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Dec-
imation of triangle meshes. ACM Computer Graphics, 26(2):65-70, July
1992.

H. Shen and C.R. Johnson. Sweeping simplices: A fast isosurface extraction
algorithm for unstructured grid. Proceedings on Visualization ’95, 1995.

C. Silva and A. Kaufman. PVR: High Performance Volume Rendering.
IEEE Computational Science and Engineering 1996, 1996.

S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3d in o(n
log n) steps. Proceedings 14th Ann ACM Symposium on Computational
Geometry, pages 68-75, 1998.

M. vanKreveld, R. vanOostrum, C. Bajaj, V. Pascucci, and D. Schikore.
Contour Trees and Small Seed Sets for Isosurface Traversal. Proceedings
18th Ann ACM Symposium on Computational Geometry, pages 212-220,
1996.

K.Y. Whang, JJW. Song, JJW. Chang, J.Y. Kim, W.S. Cho, C.M. Park,
and I.Y.Song. Octree-r: An adaptive octree for efficient ray tracing. IEEE
Transactions on Visualization and Computer Graphics, 1(4), July 1995.

Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface gener-
ation. ACM Transactions on Graphics, 11(3):201-227, July 1992.

G. Wolberg. 2d and 3d image registration and warping. SIGGRAPH 99
Conference Course Notes, 08 1999.

B. Chen Y. Zhou and Z. Tang. An elaborate ambiguity detection method for
constructing isosurfaces within tetrahedral meshes. Computers and Graph-
ics, 19(3):355-364, 1995.

Y.Livnat, H.W. Shen, and C.R. Johnson. A near optimal isosurface extrac-
tion algorithm using the span space. IEEE Transactions on Visualization
and Computer Graphics, 2(1), March 1996.

The authors wish to thank Nosson Yanofsky for many helpful discussions of

algebraic topology and Bud Mishra for his invaluable assistance.

42

