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Some classes of medical images can be represented by meshes of discrete polygons that are
portions of discrete planes, while the polygon edges are segments of discrete lines. Classically, the
discrete planes and lines are defined algorithmically. While being quite satisfactory regarding var-
ious practical purposes, these definitions are not always easy to use for obtaining deep structural
results. Moreover, storing big volumetric images might be problematic. This may happen, for in-
stance, if a 3D object is represented “slicewisely” (similar to the “Visible Human” representation).
Furthermore, sometimes it may be non-trivial to perform certain elementary image processing oper-
ations, such as verifying if a voxel (or a set of voxels) belong to a discrete plane, or to the intersection
or the union of several discrete planes, etc.

A promising approach which may help overcome some of the above mentioned difficulties is
the one based on the analytical description of an object. In 1991 Reveilles proposed an analytical
definition of a discrete straight line [1], which extends to a discrete plane. According to it, a discrete
line L(a, b, � , � ) is the set of integer points satisfying a double linear Diophantine inequality of the
form 0 � ax + by + � ��� . Here ��� �� is an internal translation constant measuring the shift of
the line with respect to the origin, while � ��� is the arithmetic thickness of the line. Respectively,
a discrete plane P(a, b, c, � , � ) is a set of integer points with 0 � ax+by+cz+ � �	� , where the
parameters �
� �� and � ��� have similar meaning. L(a, b, � , � ) and P(a, b, c, � , � ) can be
regarded as a discretization of a line (resp. plane) with coefficients a, b (resp. a, b, c). It can be
shown that if ��� max(  a  ,  b  ) (resp. ��� max(  a  ,  b  ,  c  ), the above definitions are equivalent
to other well-known classical definitions of lines and planes (see [2] for getting acquainted with
different approaches to defining digital straightness, and [3] for a study on digital flatness).

The main advantage of an analytical definition seems to lie in the fact that one can study an object
in terms of a few parameters that define it. Along with ensuring a very compact object encoding,
this may significantly facilitate the geometric and analytic reasoning and help describe theoretical
results in a more rigorous and elegant form. For example, one can easily show that a discrete plane
P(a, b, c, � , � ) has tunnels if and only if ��� max(  a  ,  b  ,  c  ). Analytic definitions may also
help raise new theoretical questions, whose rigorous formulation would be difficult by other means.
For instance, given three integers (plane coefficients) a, b, and c, one can look for the maximal
value � for which the discrete plane P(a, b, c, � , � ) is disconnected, i.e., one can define plane
connectivity number as � (a, b, c) = max ����� the discrete plane P(a, b, c, � , � ) is disconnected � . Thus
the notion of discrete plane connectivity can be properly formalized and studied. This problem is
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important since, on the one hand, discrete plane is a very fundamental primitive in volume modeling
(in particular, in medical imaging) and properties of digital flatness are of a wide interest from
theoretical perspective. On the other hand, connectivity is a principal topological characteristic,
crucial for the deeper understanding the properties of a given class of objects and, possibly, for
designing new more powerful visualization techniques.

Discrete plane connectivity, however, cannot be characterized by a condition as simple as the one
above characterizing tunnel-freedom. To our knowledge of the available literature and according to
our personal communications, this problem is still open, although within the last ten years or more,
several researchers (including Reveilles, among others) have attempted to resolve it. So it becomes
a challenge to achieve certain progress towards its solution.

With this talk we will present a solution to the discrete plane connectivity problem in terms of
the analytical discrete plane definition. In some cases the problem admits an explicit answer. Thus,
for example, we show that if the plane coefficient satisfy the inequality c � a + 2b, then � (a, b,
c) = c-a-b+gcd(a, b)-1. One can also determine other classes of instances admitting equally simple
answer. In other cases the solution may be more complicated.

Our approach is based on study of various properties of discrete planes, some of which may be
of interest in their own. We believe that some of these properties may not only serve as a theoretical
background for constructing new discretization algorithms, but might also have direct application
to designing sophisticated methods that will allow one to simultaneously visualize and study the
surface of a given human organ and its interior.
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