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Abstract

This paper proposes a novel method for global registration
based on matching 3D medial structures of unorganized
point clouds or triangulated meshes. Most practical known
methods are based on the Iterative Closest Point (ICP) al-
gorithm, which requires an initial alignment close to the
globally optimal solution to ensure convergence to a valid
solution. Furthermore, it can also fail when there are points
in one dataset with no corresponding matches in the other
dataset. The proposed method automatically finds an initial
alignment close to the global optimal by using the medial
structure of the datasets. For this purpose, we first compute
the medial scaffold of a 3D dataset: a 3D graph made of
special shock curves linking special shock nodes. This me-
dial scaffold is then regularized exploiting the known tran-
sitions of the 3D medial axis under deformation or pertur-
bation of the input data. The resulting simplified medial
scaffolds are then registered using a modified graduated as-
signment graph matching algorithm. The proposed method
shows robustness to noise, shape deformations, and varying
surface sampling densities.

1. Introduction
Registration plays an important role in 3D data processing,
matching, and recognition. Applications in world modeling,
manufacturing, object recognition, part inspection, reverse
engineering, archaeological reconstruction, and medical ap-
plications all require accurate registration. Registration can
be classified into two major types: global (crude) registra-
tion and local (fine) registration [21]. There are good meth-
ods available for local registration which often require that
the initial pose is close to the optimal solution. On the other
hand, global registration is considered to be more difficult.
Although it can be done manually, this becomes a tedious
job when the number of candidates to be matched is large,
or the features are not perceptually obvious. In this paper,
we consider the global registration of surface datasets repre-
sented by unorganized point clouds where no a priori rela-
tionship is known between the points. Such point samplings

Figure 1: The medial scaffold matching of two scans of David’s
head [13] result in a global registration. Matching scaffold curves
are shown in identical colors; one dataset is shown with red dots,
and the other with blue dots.

are the most common form of 3D input data from modern
scanning technologies, such as laser sensing and Computer
Tomography (CT).

The local registration problem has been considered ex-
tensively in the past twenty-five years, and a good sur-
vey can be found in [5], while more recent work can be
found, e.g., in the proceedings of the 3D Digital Imaging
and Modeling Conference series [12]. Most local regis-
tration techniques are variants of the well-known Iterative
Closest Point (ICP) algorithm, originally proposed by Besl
and McKay [2], known to share many problems commonly
associated with local search techniques. First, it is sensitive
to local extrema, with immediate consequence that when the
initial pose is relatively different from the optimum or when
multiple nearby local extrema exist, the algorithm may not
converge to the correct solution. Second, it is sensitive to
noise and may converge slowly if the noise complicates
the landscape of the energy profile. Third, it may be dif-
ficult to detect whether convergence is reached or not, espe-
cially when trying to register partially overlapping datasets.
Fourth, due to the lack of a surface representation — since
only sample points are considered — errors are expected in
the final solution.

Global registration approaches which rely on shape typ-
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ically use either
�����

surface-based features or
�������

skeletal
graphs. Allen et al. [1] target the particular case of ar-
chitectural datasets where, e.g., the straight lines of walls,
windows, doors, etc., can be used as robust large-scale sur-
face features to find the global pose. Wyngaerd and van
Gool rely on surface landmarks in the form of bitangent
curve pairs [21]. A major drawback is then that CAD-like
objects, made of flat or quadric patches, cannot be mod-
eled as they are seen as degenerate shapes without bitan-
gency. These two recent representative of “surface-based
feature” methods underline a lack of genericity preventing
their application to free-form objects. Brennecke and Isen-
berg use an internal skeletal graph (or 3D curve skeleton)
for the object [4]. They require a polygonal mesh which
is iteratively simplified using the edge-collapse algorithm
until only edges not attached to any surface polygons are
left. H. Sundar et al. also use 3D skeletal graphs [19], com-
puted by thinning a volumetric representation (i.e., voxel-
based) via a distance transform. A related set of techniques
is based on the construction of a Reeb graph, a globally
oriented 3D curve skeleton dependent on the choice of an
height function applied to a volumetric object representa-
tion [11]. In these recent techniques the resulting skeletal
graphs are often over-simplified and do not always capture
essential geometric features such as surface ridges, which,
e.g., may lead to match a sphere with a cube or with a
bust [4]. They also often require a well-segmented 3D ob-
ject (with a closed surface mesh). Furthermore, their is no
clear understanding of how to deal with skeletal graphs hav-
ing different local topologies yet representing perceptually
similar shapes. Even when matching the same shape under
different acquisition modes, such as obtained from two dif-
ferent scans at different resolution, such techniques lack a
clear understanding of the dynamics of their skeletal repre-
sentations. Our approach does not rely on a particular set
of surface features, it does not require a mesh, voxelization,
or an extrinsic reference direction, and, furthermore, it is
based on a comprehensive analysis of the dynamics of the
local topological changes under shape perturbations.

The primary contribution of our work is aimed at the au-
tomation of the global registration. We propose to match
medial structure — in the form of a 3D graph derived from
Blum’s classical medial axis — using graph matching tech-
niques as a remedy for both local and global registration for
the following reasons. First, a global hierarchical structure
is built-in naturally with the medial structure. Scale is eas-
ily represented, i.e., smaller features can be distinguish from
larger ones and ranked accordingly [3]. Second, the medial
representation is complete, i.e., reconstruction of the bound-
ary shape is always possible [8], through the dynamics of
the formation of the medial structures. Third, structural in-
formation made available via the network of medial curves
is more accurate and reliable to capture object features than

unorganized surface sample points. Fourth, important out-
line features such as curvature extrema and ridges, are made
explicit by the tips of medial branches. Also, generalized
axes of elongated objects are explicitly represented by the
medial scaffold. Fifth, the medial structure provides a pow-
erful framework to model shape deformations.

The medial scaffold ( ��� ) [15, 16, 14], is a hierarchical
and summarized organization of the 3D medial axis ( �
	 )
in the form of a graph representation, which permits a qual-
itative description of a shape. The graph structure makes
the representation useful for shape analysis and recogni-
tion, while at the same time simplifying the computation of
the �
	 , its data management, and its visualization, since
only special points, called medial nodes, need to be explic-
itly detected. The ��	 as well as the ��� require a no-
tion of medial transitions to model well-known instabilities
of the �
	 representation: when the shape is slightly per-
turbed, the �
	 topology may undergo large changes. A
formal understanding of 3D �
	 transitions was recently
completed [7]. It is necessary to model these transitions
in order to be able to match the ��� (or ��	 ) of similar
shapes, one of which can be understood as a perturbed ver-
sion of the other.

The matching of two graph structures is an NP-hard
computational problem [10], which has lead to the devel-
opment of several sub-optimal solutions, including search-
oriented methods, nonlinear optimization methods, eigen-
value decomposition, neural networks, linear programming,
etc. In this paper we apply the Graduated Assignment graph
matching algorithm, originally proposed by Gold and Ran-
garajan [10]. Sharvit et al. [17] successfully applied it
to matching 2D medial graphs for indexing a 25-shape
database, and demonstrated promising results. Matching
the 3D medial scaffolds, however, is more complicated than
the equivalent 2D task of matching shock graphs, essen-
tially due to the additional dimension. First, for 2D closed
contours, the shock graph of the object’s interior (and as-
sociated medial axis) is a planar rooted tree, i.e., with no
loops, while in 3D, even for a closed surface boundary, the
��� for the object’s interior typically contains loops which
are the boundaries of the corresponding ��	 sheets. Fur-
thermore, it is often the case in 3D that no closed surface
boundary is available, or the task may be to register two
surface patches, hence without a notion of inside/outside,
Figure 13.

2 The Medial Scaffold and its Transitions

We now review two concepts which are key to our ap-
proach, the medial scaffold ( ��� ) which identifies a quali-
tative structure of the medial axis ( �
	 ), and the notion of
transitions, the sudden topological changes in the scaffold
under perturbations.

The �
	 is the closure of the loci of centers of maximal
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Figure 2: (a) Let
����

denote a circle in 2D or a sphere in 3D os-
culating a boundary element at � distinct points, each with ���	�
degree of contact. (b) In 3D there are 5 possible contact types for
��

points: (i)
��
 �

: a sphere with 2 ordinary
� �

contacts whose
center is part of a medial sheet. (ii)

���
: limiting case of 2

� 
 �
points coming in unison; it corresponds in 3D to rib curves asso-
ciated to ridges on the boundary. (iii)

� � �
: contact sphere with 3

ordinary
� �

contacts whose center is part of a curve where 3 sheets
come together. (iv)

� � ���
: limiting case of centers of spheres hav-

ing contact with the surface in 2 places, one near an
� �

point and
one near a

���
point; this is where an

� � �
curve “terminates” to-

gether with a
� �

curve. (v)
��� �

: the contact sphere has 4 ordinary
contacts, and at its center passes 4

� � �
curves.

balls tangent to the object surface at two or more points. A
classification of the local form of contact of the ball of tan-
gency leads to five principal types of shock points [6]: ���� ,
���� , � � , ��� � and � � � � , Fig.2. The medial scaffold ( ��� ) is
a hierarchical structure based on this classification [15, 16]:
medial sheets are viewed as “hanging off” a scaffold made
from medial curves ( ���� and � � ) and medial points ( � � � �
and � � � ). The ��� is represented as a graph where the me-
dial points are nodes and the medial curves are links in the
structure; the medial sheets are then represented by hyper-
links. In this paper, � � and ���� curves are shown in blue
and red, respectively,1 Figure 3.

The second notion required for our proposed graph rep-
resentation of 3D shape is one of medial transitions, some
of which are well-known in 2D as the classical instabilities
of the �
	 : when the shape is slightly perturbed the �
	
topology can experience large changes, i.e., the growth of
an axis, Figure 4.(a), or the swapping of �
	 branches, Fig-
ure 4.(b). Their complete set can be found in [9]. Figure 5
illustrates how those long branches of the ��	 which corre-
spond to a small perturbation of the shape can be removed
(the � � � � transition, Figure 4.(a)), thus reversing the ef-
fect of the presumed perturbation. This operation can then

1More details and examples are available from our website:
www.lems.brown.edu/vision/researchAreas/Shocks3D/

(a)

(b)

(c)

(d)
Figure 3: (a) Two views of an object (sheep) scanned as 22,619
unorganized points and reconstructed as a surface mesh using the
method described in [15] by the full medial scaffold (


��
) shown

in (b). Shock sheets are colored by distance of formation. (c) Two
views of the


��
of curves and vertices.

� � �
axials are in red and���

ribs are in blue. (d) Two views of the regularized and smoothed
Scaffold.

� � � �
vertices are in green and

��� �
vertices are in pink.

be iterated, removing noise in the process but retaining the
“significant corners” which are seen to have a large distance
to the transition point [20].

A similar process in 3D requires both a formal under-
standing of the transitions of the 3D ��	 which was re-
cently completed [7] and an iterative procedure to regular-
ize the scaffold [14]. Figure 6 identifies the complete list of
generic transitions under a one-parameter family of defor-
mations. For example, the � � � � -I transition indicates the
introduction of a loop consisting of two curves ���� and � �
meeting at a pair of � � � � arising from a protrusion on the
surface. Clearly, the sampling process creates perturbations
in the observed surface and such sudden changes must be
filtered out to the extent possible prior to registration. The
approach in [14] identifies such loops and removes them to
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(a)

(b)

Figure 4: From [7, Fig.1].
�����

The growth of an axis with small
perturbations (

� � ���
) and

�����
the swapping of


 �
branches (

� � �
)

both affect the

 �

topology with slight perturbations.

Figure 5: From [20, Fig.1]; the original square wave is perturbed
at numerous places. Traditional smoothing methods smooth away
both the noise and corners. Instead, the iterative removal of
branches of the


 �
graph smoothes the shape while preserving

its corner (only a subset of the discrete space is shown).

effect both surface smoothing and a regularization of the
scaffold, Figure 7. While the approach in [14] used only
three of seven transitions, we are now in a position to utilize
all seven and have used them for regularization in this pa-
per. Figure 3 illustrates the process of extracting a regular-
ized ��� . The input is assumed to be a set of unorganized
points. The process of extracting a scaffold and surface re-
construction are done simultaneously as described in detail
in [15] and as shown in Figures 3.(a) and 3.(b). The ���
without the sheets describes the qualitative structure of the
shape as shown in Figure 3.(c) but it also contains details
pertaining to small as well as large structures. The regular-
ization of the scaffold brings out the essence of the shape as
shown in Figure 3.(d).

Figure 8 shows another example of a regularized scaffold
on the right which features both regularized ridges and reg-
ularized generalized axes. It is clear from the scaffold that
the significant features like the arms and legs are effectively
presented while smoothing the noisy structures.

Once a medial scaffold has been regularized, and thus
greatly simplified by removing the adverse effects of
smaller features and perturbations, we can use it for regis-
tration by matching the scaffold structure as described next.

3. Matching Medial Scaffolds by the
Graduated Assignment Algorithm

We extend the graduated assignment [10] algorithm which
was used with success for matching 2D shock graphs [17]
to matching medial scaffold graphs. Formally, consider two
graphs � and � . Refer to nodes of � and � by �	� and
��
 � , respectively, and links of � and � by ����
 and ��
 � 

 ,

� � ���
-I

��� �

� � �

� �

� � � �
-II

��
 � ���
-I

� 
 � � �
-II

Figure 6: Small perturbations in 3D shape cause 7 types of sud-
den changes in the


 �
topology. The complete set of generic

transitions in a one parameter family of deformations is shown
in [7].
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(a) (b)

(c) (d)
Figure 7: From [14, Fig.6]. (a) Point samples from a rectangular
box, deformed by 5 protrusions (4 on top, 1 on a side). (b) The
 �

shows five transitions which when removed both smooth the
surface (c) as well as regularize the scaffold (d).

(a) (b)
Figure 8: Laser scanned dataset of a real-life human female body,
provided by Cyberware Inc., comprised of 30,430 points. (a) The
surface mesh recovery from the associated “sampling artifact scaf-
fold” [15]. (b) The


 �
structure of the interior.

respectively, where
� � ����� �������	��
 , and � � � ��
��� ��������� 
 .

The match matrix � associates nodes in two graphs:

� � 
 � ��� �
if the node

��� � corresponds to node � ��� ��
otherwise.

(1)

Missing and extra nodes are handled by adding slack
rows and columns. An objective energy function � � � �

is
defined for each possible � . Gold and Rangarajan [10]
give a generic definition of � � � �

for attributed relational
graphs (ARGs) as

� � � � � ��
��� � ��


 ��� � ��

�� � ��


�� � � � 
 � � 
 
�� � 
 � 
 
���� ��
��� � ��


 ��� � � � 
 �! 	� 
 � �
(2)

where � � 
 ��
 
 represents total similarity between links � � 

and � 
 � 
 , and  � 
 � represents total similarity between nodes

� � and � 
 � .
A significant idea in [10] is to extend the discrete as-

signment problem to a continuous one by embedding it in
a large space, where gradient descent can be performed to
iteratively move from one assignment to another. A contin-
uous analogy to the discrete assignment matrix (matching
matrix) � , is "� , the continuous assignment matrix, which
takes values between 0 and 1 with the constraint that "�
has to be a doubly stochastic matrix, i.e., # � "� � 
 � ���

and# 
 � "� � 
 � �
�
[18].

Gradient descent on � � "� �
is used to move from one as-

signment to another in a Graduated Non-Convexity setting.
The Taylor Expansion of the energy function

� � "� � � � � "��$ �&% ��
��� � ��


 ��� �(' � 
 � � "� � 
 � % "��$ � 
 � � � (3)

where ' � %*),+).-/ � "� $ � , turns the energy minimization into

maximizing # ��0� � # �
 ��� � ' � 
 � � � "� � � 
 � , an assignment prob-
lem [10]. This assignment is solved by softassign [18],
where an initial matrix is moved toward a solution by in-
creasing a parameter 1 which controls the convexity of the
energy landscape (to avoid poor local minima). In each iter-
ation of graduated assignment, the continuous match matrix"� is best estimated and normalized such that it gradually
moves toward a

� � � � � discretization.
This approach was successfully used in matching 2D

shock graphs [17]. The node and link attributes were based
on the types of shocks and their geometric and dynamic fea-
tures. A key observation in matching 3D shock graphs is
that a quadratic energy function is not sufficiently discrim-
inatory due to the introduction of a third dimension. Thus
we employ a 24365 order energy term to match the ��� hy-
pergraph.

� � � � � � ��
��� � ��


 ��� � � � 
 �  � 
 � � 1 ��
��� � ��


 �0� � ��

�� � ��


�� � � � 
 � � 
 
�� � 
 ��
 

� ��
��� � ��


 ��� � ��

�� � ��


6� � ��7 � � ��

7 � � � � 
 � � 
 
 � 7 
798 � 
 � 
 
 7 
7 �

(4)
where the node, link, and hyperlink costs are defined as

 � 
 � � � � � ��
 � � �;: � � if � � and � 
 � have different types,� %=< 3?>A@B3DC >EGFIHKJ0LNM LPO < � otherwise,

(5)
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� � 
 � 
 
 ��: � � if any of links
� �

and � � �� are missing,� % < � > � @ � C > C�EGFIH�J��BM � O < � otherwise,

(6)8 � 
 � 
 
 7 
7 �;� � � if any links
� �

,
���

, � � �� , �� �� are missing,� %=<�� � ��� %	� � � �� �� < � otherwise,
(7)

where 
 � is the radius at node
�
, � is the maximum radius,�

is the link length, � is the maximum link length,
� � ���

is
the angle between the link �	� 
 and � 
 7 . In Equation (4),� and 1 are weights;  � 
 � , � � 
 � 
 
 , and 8 � 
 � 
 
 7 
7 all take values
between 0 and 1, where 1 indicates a perfect match.

The link and hyperlink costs can easily be further refined,
i.e., by adding radius, curvature, torsion, and other measure-
ments, so that it can also perform local fine registrations.
Note that the introduction of the 2 365 order energy does not
affect the computation time very much, due to the sparsity
of the 2 3 5 order connectivity.

After matching, a Euclidean transform is performed to
align the two objects together. The best alignment is com-
puted by Singular Value Decomposition (SVD). This com-
pletes the proposed global registration algorithm.

4. Results and Applications
The goal of this work is to derive a global alignment for
registering unorganized datasets obtained from the same ob-
ject at different times, using different operators, settings, or
equipments. Figure 9 illustrates that two laser range scans
each obtained by a different operator, and each contain-
ing 20K points, are aligned well by matching their regu-
larized medial scaffolds. Figure 10 shows that two scans at
rather different resolutions, roughly 21K and 6K points, are
aligned well. We have also verified the accuracy of the re-
sults by aligning two distinct random subsamples of a high
resolution shape which is itself used as ground truth, Fig-
ure 11.

We also examined the robustness of the global align-
ment when large chunks of data were missing. Figure 12a-d
shows two scans where in the second scan, the bottom part
of the “sheep” was not scanned. Nevertheless the medial
scaffold retains sufficient structure to match the two shapes
and align them. Similarly, Figure 12e-f shows the success-
ful alignment with another scan where the rear section of
the “sheep” is cut off.

The global alignment does not require closed surfaces.
Figure 13 shows two scans of a pot’s outer surface and the
successful alignment of the two surfaces.

Since the method is based on graduated assignment
matching of regularized medial scaffold, two types of errors
can occur. First, the match itself can be erroneous as shown
in Figure 14, but given a sufficient number of correct corre-
spondences, the overall registration is not typically affected
much. Second, in the process of regularizing the scaffold,

(a) (c)

(b)

(d)

Figure 9: Registering two scans of an object at the same res-
olution (20K points), obtained by two distinct operators. (a) The
sheep object from two scans with different viewpoints. (b) Two
views of the shock matching result. (c) Zoom in to illustrate the
matches and mismatches. Matched vertices are connected by a
thin line. Matched links are colored in pair; unmatched ones are
drawn in gray. Although there are mismatches, globally the result
is still close to the optimal solution. (d) The final registration result
after 20 iterations of ICP with (b) as the initial pose.

differences can still remain from one scan to another. Again
if a sufficient number of correct correspondences exist, the
overall registration is not affected, Figure 15.

5. Conclusions and Future Work
We have proposed an automatic global registration method
via matching the medial scaffold ( ��� ) using the graduated
assignment algorithm. The proposed method is robust to
handle missing/extra samples on the data. Results show that
it is reliable for practical applications.

Future work will aim at refining the medial hypergraph
cost function and regularizing all shock transitions to enable
fine registration. The proposed method also has a strong
potential to handle non-rigid registrations, due to structural
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Figure 10: Left: two scans of an object at different resolutions,
top: 21,463 points, bottom: 5,748 points. Right: alignment by
matching regularized medial scaffolds.

(a) (b)
Figure 11: The ground truth validation on a scanning of
Michelangelo’s David head (42350 points, from [13]). (a)
20K and random points from the ground truth, refer to Fig-
ure 1 for the other scan of 30K points. (b) The result of ���
matching. The two point clouds are aligned close together.
Validation against the ground truth shows that the average
square distance is 3.129372 (where the object bounding box
is
���������������

). Refer to Figure 1 for the final registration
result after 20 iterations of ICP. The final alignment matches
the ground truth (final average square distance is 0.000005).

and global representation properties of the ��� .
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