
A Note on
“Fast Raster Scan Distance Propagation

on the Discrete Rectangular Lattice”

F. Leymarie and M. D. Levine
�

January 1992
�

Abstract

The main result of this paper is that simple (raster scan) sequential algo-
rithms for computing Euclidean Distance Transforms can be implemented in
an optimized manner from the point of view of numerical computations. We
will show that these fast implementations have computational complexities
comparable to the city block, chessboard and other simple chamfer Distance
Transforms.

Keywords: Euclidean and pseudo-Euclidean Distance Transforms, discrete
rectangular lattice, numerical complexity and accuracy.

�
This research was partially supported by the Natural Sciences and Engineering Research

Council of Canada in the form of a postgraduate scholarship. It was also partially supported
by the Medical Research Council of Canada under Grant no. MT-3236.�

Appeared in “CVGIP-IU, Vol.55(1), pp. 84-94, Jan. 1992. Academic Press.” The authors
were with the “McGill Research Center for Intelligent Machines, McGill University, Montréal,
Québec, Canada.” Reproduced in electronic format on September 24, 2001, while at Brown Uni-
versity, by F. Leymarie.

Contents

1 Introduction 3

1.1 The Propagation of Distances in the Discrete Domain 4

1.1.1 Raster Scan Algorithms 7

1.2 Accuracy and Speed of Propagation 8

2 Fast Signed Sequential Euclidean Distance
Transforms 8

2.1 Numerical Complexity . 12

2.2 Accuracy . 14

3 Sequential Weighted Distance Transforms 14

3.1 Numerical Complexity . 17

3.2 Accuracy . 18

4 Comparison of Sequential Distance Transforms 19

4.1 Accuracy . 19

4.2 Numerical Complexity . 21

5 Conclusion 22

References 24

2

1 Introduction

A distance transformation on a binary image
�

(object � , non-object ���) pro-
duces a mapping from a double-valued function ��� in a space � to a multi-valued
function �	� in the same space � . The binary function �
� is defined as follows:

���
������� ��� � �������� � elsewhere � (1)

where
�

is some real constant (
� � ��). The values of the function ��� replace

those of ��� by minimizing a distance metric, �!#"
$%���&�'���(� over the domain of inter-
est, the object � , where � and �)� are two points in the space � such that �*�+� and� � �,� � . The three following necessary and sufficient conditions for a distance
metric [21] are, with �&� , �)� and �)-.�+� :

1. �!#"
$%�(�/�0�'�)�1�32 �
: 4!5"
$%���/�0�6�)�0�7� � � �8�7�9�:� (identity);

2. �!#"
$%�(�/�0�'�)�1���; �!5"<$%�(�)�<�'�8�=� (symmetry);

3. �!#"
$%�(�/�0�'�)-1�3>? �!#"
$%�(�/�1�'�)�0�A@9 �!#"
$%���)�
�'�)-1� (triangle inequality).

The distance values of �B�	�(�C� , for �D��� , are given by:

�E�	���C���GFIHKJL0M�N<O)MQP �!5"<$%�(�A�'� � �SRUT (2)

We consider the case of a two-dimensional (2-D) discrete space only, but our re-
sults should essentially hold for higher dimensions. We use the traditional Carte-
sian coordinate system to index image elements (e.g., �V�W�X� YX� Z
�). We restrict
our analysis to rectangular and isotropic image grids, but our discussions and re-
sults should also hold for other grids (e.g., the hexagonal grid). We assume that
such a grid or lattice is isotropic in both the horizontal and vertical directions; that
is, pixels are equally spaced and of equal length in these two directions (i.e., the
usual case of square shaped pixels). We specify the image grid (coordinates) by
the use of two sets, [and \ , defining indices on

�
. The sets [and \ consist of

integer values varying from
�

to some maximum indexing values,
�]

and
� ^

,
respectively: _ Y`� [a [b�c_ � �
T<T<T1� �]ed�d and _ Zf� \ a \��c_ � �<T
T<T&� � ^gd�d .

3

We make use of barred symbols to emphasize the fact that they represent discrete
variables.

The main result of this short paper will be to demonstrate that simple sequential
algorithms for computing Euclidean Distance Transforms (EDT’s) can be imple-
mented in an optimized manner from the point of view of numerical computa-
tions. We will show that these fast implementations have computational complex-
ities comparable to the city block, chessboard and other simple chamfer Distance
Transforms [12]. The particular EDT algorithms we will consider are based on
the work of Danielsson [8].

1.1 The Propagation of Distances in the Discrete Domain

Let us start by identifying the 2-D binary image
�

with the function ��� , i.e.,
� � �4� .

We use the following notation. A distance mapping on
�

is produced by a distance
transform, DT . The latter consists of a minimum operation on a distance metric �!#"
$%���&�'�:��� , where ��� � and �)�&� � � , applied over � (Eq. (2)). Commonly used
metrics in discrete image processing are:1

 �!#"
$����7���A�'� � � � � Y L�� Y L M � @	�� Z L � Z L0M �� � �!#"
$
����
����1���A�'� � � � F������ � Y L�� Y L M � ���� Z L � Z L M ���� � �!#"
$���� �"!$#&%Q���A�'� � � � ' � Y L�� Y L M � � @(� Z L � Z L M � � �
where � �9� � Y L � Z L � and �:� �9� � � Y L M � Z L M � . The DT’s based on the metrics �!#"
$���� , �!#"
$
����
���� and �!5"<$
��� �)!*#&% are called the city block, chessboard and Euclidean DT’s,
respectively.

Applying a DT to
�

corresponds to “propagating” distances over
�

[20]. Points
in the background (� � �?� �) are seen as sources from which distance values are
propagated as waves over the complete image,

�
; for example, the propagation

of circular waves in the case of an Euclidean metric. The first time an object
point (�c�W�) is reached by a given wave it is assigned a new label, that is, a
minimum distance value from � � . Obviously such a wave propagation scheme
can be naturally implemented in parallel (e.g., [9, 23]). Propagation of distances
is then an iterative procedure, where iterations correspond to distances from the

1For extensive surveys of metrics used in the discrete domain see [4, 5].

4

point sources, dependent on the maximal width of the object � . Typically, for
such parallel algorithms, the time complexity is of order �f� � � for an image of
size
�����

[9], but these require an expensive architecture with one processor per
pixel, that is, a total of

� � processors. Therefore, the time-processor complexity
or numerical complexity is of order � � � - � [9].

However, for such a simple propagation transform, a sequential implementation
provides equivalent results [20]. Now the time complexity is of order �f� � � � and
only one processor is required, leading to a time-processor complexity of order�f� � � � [9]. Several sequential algorithms exist for computing a distance map on
a discrete grid. Essentially two categories of algorithms are available depending
on the type of metric used: Euclidean or non-Euclidean. DT’s based on the Eu-
clidean metric use multi-valued vector elements to propagate distances; we shall
refer to them by the symbol SEDT for Sequential Euclidean DT . DT’s based
on non-Euclidean metrics use only single-valued vector elements (i.e., scalars) to
propagate distances; we shall refer to them by the symbol SWDT for Sequential
Weighted DT(adapting Borgefors’ notation [6]). Common to both kinds of dis-
tance mapping is the fact that they are based on information flow or propagation
using small local neighborhoods (e.g., a � � � pixel window).

Each of the two categories of algorithms for sequential distance propagation can
be further classified into two classes depending on how distances are propagated
over

�
: in a raster scan or a contour scan fashion. Most algorithms found in

the literature employ the propagation of distances using masks of fixed size and
shape irrespective of the form of the domain of interest of

�
(i.e., the shape of �).

This class of algorithms follows the approach originally proposed by Rosenfeld
and Pfaltz [20, 21] where a mask, say a � � � window, is broken into two or
more submasks which are recursively convolved with

�
in two or more passes in

fixed directions [17]. For example, the chessboard DT is usually processed using
two symmetrical masks which are recursively convolved with

�
in a raster scan

fashion in opposite directions (Fig. 1). Typically SWDT’s require a minimum of
two passes with two different masks over an image to obtain the distance map. On
the other hand, the SEDTcategory usually requires four passes with four different
masks [8].

In the second class of algorithms, distance values are propagated in a contour
scan fashion, where the shape of the domain to be processed is determined by
iteratively peeling off contours of � . The shape and connectivity of these contours
is governed by the metric �!#"
$ employed, and by the particular queuing scheme
adopted for the processing of the pixels on these contours. These contour scan

5

(a) (b) (c)

Figure 1: Example of a raster scan implementation of a DT . In (a) are shown
the two masks used for the chessboard DT . The masks are centered at pixel �
(indicated by a white dot). The weights in each mask represent the distance from� . The reference frame (directions indexed by [and \) is shown to be positioned
in the top-left corner of an image,

�
. The arrows (next to the masks) indicate in

which direction a given mask is passed over
�
. The convolution of these masks

over
�

is performed in two picture scans (indicated by dashed arrows) in opposite
directions (here downward for masks labelled 1 and upward for masks labelled
2). In (b) and (c) are shown the propagation envelopes for this SWDT . These
windows (over

�
) represent the set of (closeby) pixels whose distance could be

updated (shown as shaded pixels) from the central black pixel (adapted from [17,
Fig.5, p.604]). In this case, the first scan covers a

� ����� interval of propagation
angles over

�
as indicated in (b). The second scan then also covers a

� ��� � interval
of propagation angles, but in the opposite direction as indicated in (c).

6

algorithms lead to more complex algorithmic procedures. A complete analysis of
this approach is outside the scope of the present communication.

1.1.1 Raster Scan Algorithms

Let us consider more precisely the raster scan class of distance propagation. In
this case, an object pixel updates its distance value(s) by comparing itself to some
of its neighbors which have already been processed. The neighborhood is defined
by the mask being used. Propagation occurs “from the [previously processed]
neighbors into the [presently] processed pixel” [19].

We can rewrite Eq. (2) for the iterative and recursive raster scan process, as fol-
lows:

�E�E���C� � ���%�����/� � � � �'�*��� or �*�+� � � (3a)�	� �(������� � � FIHKJL��&N
	�� � �
� P �	� ��������� � � � �C�	� ��� 	 � �
�K� @�� 	 R7� ��� � ���*����� (3b)

where
�

stands for iteration or pass,
� L � �
� is the neighborhood of � defined by the

mask used in the present pass, � 	 is a pixel in that neighborhood, and � 	 stands
for the vector elements value(s) given by the mask. � 	 represents the “distance”
between � and � 	 , that is, � 	 ’s value(s) is (are) defined by the chosen metric �!#"
$.
Note also that we first initialize �B� to ��� (Eq. (3a)) for both object and non-object
pixels. Object pixels are thereby assigned the value

�
(Eq. (1)). We require

that
�

be a large integer value greater than the maximum possible width of any
binary object that could exist in

�
. This is necessary to be able to correctly use the

minimization operation in Eq. (3b) to propagate distances. Furthermore, in the
case of SEDT’s, it will be convenient to use a value of

�
greater than the square

of the maximum possible object width (see � 2).2

From Eq. (3b) we see how distance values at a given object pixel are updated by
reading the distance values of previously visited neighbors. Also, since iteration
corresponds to a (raster scan) pass, the maximal number of iterations is fixed in-
dependently of the object � , and depends only on the number of masks used. As
a consequence, object pixels are processed as many times as there are passes.

2In practice we have used the following simple equation to fix the value of � : ������� ����! #" �$��� %&� �
 #" .

7

1.2 Accuracy and Speed of Propagation

In terms of isotropy of propagation of distances, or equivalently, invariance under
rigid transformations of the associated DT , such as rotations, the optimal distance
metric is of course Euclidean, that is, 4!5"
$�� � �"!*#&% . The other metrics provide coarse
approximations of circular propagation; that is, they approximate an Euclidean
propagation. For example, the city block metric gives diamond-shape propaga-
tion, while the chessboard metric gives square-shape propagation [21]. However,
DT’s based on non-Euclidean metrics, that is, SWDT’s, have a long history in pic-
ture processing. In most cases they were used because they were believed to be
much faster to apply than SEDT’s. This should have been recognized to be true
only until Danielsson’s SEDT algorithms were published in 1980 [8]. In fact,
only the city block DT can be evaluated significantly faster than Danielsson’s
SEDT [12].3 This is because of its simpler spatial complexity, though the price
paid is poor accuracy (see � 4).

In the following sections we will consider different aspects of the implementa-
tion and application of raster scan distance mapping to binary images. First, in
� 2 we will give a detailed analysis of a numerically optimized implementation
of Danielsson’s SEDTalgorithm. In � 3 we will consider the SWDT’s and discuss
their principal characteristics. In � 4 we will then compare these optimized imple-
mentations to SWDT’s. There, we will show that SEDT’s are in fact numerically
simpler than most SWDT’s.

2 Fast Signed Sequential Euclidean Distance
Transforms

In this section we present optimized versions, in terms of numerical complexity,
of the sequential algorithm for computing the EDT . We discuss the raster scan
algorithm first proposed by Danielsson [8] and later refined by Ye [24].

Following Danielsson’s notation [8], we consider a mapping from a binary image� � Y � Z�� (a double-valued function, �4� ; see Eq. (1)) to a multivalued image
� � YX� Z��

(� �	�). In order to evaluate
�

, Danielsson proposes to compute a multivalued
3This must be contrasted with the generally incorrect belief appearing in the literature (even

recently) that most SWDT’s are computationally less expensive than SEDT’s (see for example
[4, 5, 10, 11, 1, 2]).

8

vector image
�

, in which each pixel of the image is assigned a vector (a doublet)
rather than a singleton, as it is the case with SWDT’s, as follows:

� � Y � Z��7�W� � � � � � �/� (4)

where
� �

and
� �

will contain the minimum integer distance values from the back-
ground � � in the Y and Z directions, respectively. Note that these distance values
can be signed, giving positive or negative directions with respect to the origin of
the Cartesian coordinate system defined by [and \ .

�
is then simply obtained

as the Euclidean norm (or 2-norm) � � � � as follows:

� � YX� Z��7� ' � �� @ � �� ��� � � � T (5)

The propagation of distances over the complete image is obtained with a four-pass
algorithm (see [18] for a recent three-pass version). This is best visualized as a
recursive convolution of

�
with four masks (Fig. 2). This recursive convolution

is usually performed in two complete picture scans in opposite directions. Masks
1 and 2 are passed downwards over the image, while masks 3 and 4 are passed
upwards (Fig. 2). Note how each row is scanned in both horizontal directions to
ensure an isotropic propagation of the distance values [18]. Depending on the
required accuracy and numerical complexity, two versions of the SEDTalgorithm
were described by Danielsson (see also Ye [24]). The simpler one, the 4SSEDT,
which stands for the “four-points signed SEDT”, requires a visit to only the four
direct neighbors (i.e., horizontal and vertical neighbors) at each object pixel � �� (Fig.2. ���
�); the 8SSEDT, which stands for the “eight-points signed SEDT”,
requires a visit to the eight closest neighbors around each object pixel � � �
(i.e., direct plus diagonal neighbors; see Fig. 2. ���1�). Obviously, the 8SSEDT is
numerically more complex than the 4SSEDT, but it is also more accurate.

As we saw in � 1.1, when scanning the image with masks, every object pixel,�c� � , is updated by comparing it to some of its neighboring pixels. For the
4SSEDTand 8SSEDT, a neighborhood is defined by the masks of Fig. 2. Com-
paring a pixel � to its neighbors implies first seeking the neighbor (denoted by�	� #�
) already visited at least once and which minimizes the distance, as indi-
cated by Eq. (3b). If such a neighbor ��� #�
 exists, that is, one of the � 	 (of Eq.
(3b)) minimizes the distance, then a second step will involve assigning the pair

9

Figure 2: The four masks used in the raster-scan signed SEDT . Two sets of masks
are shown. In ���
� are shown the four masks for the 4SSEDT. In ���1� are shown
the four masks for the 8SSEDT. The masks are centered at pixel � (indicated by
a white dot). The pairs of weights in each mask (� 	 �W� YX� Z�� pairs) represent the
distances from � in horizontal and vertical steps. The reference frame (directions
indexed by [and \) is shown to be positioned in the top-left corner of an image,�

. The arrows (next to the masks) indicate in which direction a given mask is
passed over

�
. The recursive convolution of these masks over

�
is performed

in two picture scans (indicated by dashed arrows) in opposite directions (here
downward for masks 1 and 2, and upward for masks 3 and 4). For each row of

�
the pairs of masks (1,2) and (3,4) are moved in opposite horizontal directions so
that the propagation of distance values is isotropic (see text).

10

� � � �(�	� #
4�1� � � �(�	� #
��=� to
� �(�C� plus the weights (� 	 ’s) indicating the relative po-

sition of �	� #�
 with respect to � . We note here that the addition of these local
distances given by the � 	 ’s reduces to a simple increment or decrement in the[and \ directions for the SEDTmasks (Fig. 2). Thus, the complete updating
procedure generates the vector image

�
. At first, it would seem that seeking the

minimum distance requires numerically expensive computations for every visited
pixel ���?� .4 Furthermore, floating point numbers, rather than integers, are re-
quired. For example, if we wish to compare � with a neighbor � � in the positive Y
direction, then we must compare

� ����� with
�

����(� � � , where

�

�� ��� � � is
� ��� � �

incremented as follows:

�

�� ��� � �7� ' � � � �(� � �A@ � � � @ � �� ��� � �/T
However, there is a much better way to perform these computations using integers
only, getting rid of the multiplications and bypassing the square root operations
completely.5 Since we only wish to compare the amplitudes of

� �(�C� and its neigh-
bors (e.g.,

�

��g�(� � �), it is equivalent and sufficient to compare the squares of their
amplitudes (e.g.,

� �(�C� � and
�

����(� � � �), thereby eliminating the floating point op-

eration. Furthermore, we can augment the vector image
�

by also assigning the
sum

� �� @ � �� (� � �) to each pixel � [7, 24], thereby obtaining a new vector image
representation,

�
� , as follows:

�
� � YX� Z���� � � � � � � � � �� @ � �� ���W� � � � � � � � � �/T (6)

Then,
�

�� �(� � � can be easily evaluated from the stored data as follows:

�

��g��� � � � � � � � �(� � �A@ � � � @ � �� ��� � �
� � � �� �(� � �A@ � �� ��� � � �A@ � � � ��� � �A@ �

� � � ��� � �A@ � � � �(� � �A@ � T
4That is, two integer adds, two integer squares (multiplications), one floating square root and,

possibly, two assignments and one or two increments/decrements.
5This numerically optimized implementation was first brought to our attention in an unpub-

lished work of one of our colleagues at McGill University [7]. Since then a similar idea has been
presented by Ye [24], but without much detail.

11

Indeed, since now
� � is stored in

�
� , we can in this example (and similarly in

all other cases; see below) evaluate
�

��g��� � � � using only one add, one left-shift

(i.e., a multiplication by two) and one increment.6 We summarize all possibilities
when evaluating

�
� for both the 4SSEDT and 8SSEDT in the following four

equations:

� � � � � � � @ � �� � � � � � � � @ � � (7a)
� �� @ � � � � � � � � � � � � � � @ � � (7b)� � � � � � � @ � � � � � � � � � � @ � � � � @ � � � � �/� (7c)� � � � � � � @ � � ��� � � � � � � @ � � � � ��� � � @ � � (7d)� � � � � � � � � � � � � �/T

The first two equations, (7a) and (7b), are used for comparisons of a pixel with its
immediate horizontal or vertical neighbors, that is, along the two axes specifying
the rectangular image grid. The other two equations, (7c) and (7d), are used for
comparisons with the immediate diagonal neighbors of a pixel, that is, along a ��� �
and a

� ��� � orientation, respectively.

2.1 Numerical Complexity

We can now evaluate the numerical complexity of both the 4SSEDT and 8SSEDT.
Let us define the integer constant � � to represent the total number of object pixels
found in an image

�
.7 In the following, we consider that updates are performed

only at object pixels. As we scan through the image, non-object pixels will also,
in general, be encountered. By testing if the distance value of a pixel is null or not
we can easily avoid doing any more computations with it. We note that this still
requires one comparison operation (or maybe a logical AND) to be performed
at each pixel in both � and � � . We will not consider this test operation in our
evaluation of the numerical complexity of raster scan DT’s since it is rather simple
to perform in comparison to the other operations used to evaluate distance values.

6An increment (or decrement) is usually faster to compute (or at least as fast to compute) on
most machines than an add (or subtract).

7 � " ���
	 ��� %�
�� , where � � ����� � ��� � ���� and � ��� ��� � ��� � �� �"! .

12

Let us first consider the case of the 4SSEDT. Then, only Eq. (7a) and (7b) need be
considered. The complete updating procedure will require six comparison opera-
tions for each object pixel, which we refer to by using the symbol

� � 4SSEDT .
The six neighbors are defined by the masks of the 4SSEDT (Fig. 2. ���
�). A� � 4SSEDT operation represents one left-shift, one add (or subtract), one in-
crement and one compare. Therefore, finding the minimum distance values in
the case of the 4SSEDT will require a total of � � � � � 4SSEDT operations. In
the case of the 8SSEDT all four Eq. are used. The complete updating proce-
dure will require ten comparison operations for each object pixel. Six of them are
just the

� � 4SSEDT operations as before. The four other comparisons are de-
rived from Eq. (7c) and (7d) where both

� �
and

� �
are incremented/decremented

simultaneously. They are associated with the four diagonal neighbors (with re-
spect to �) found in the masks of Fig. 2. ���1� . We refer to these four compari-
son operations using the symbol

� � 8SSEDT . A
� � 8SSEDT operation rep-

resents one left-shift, two add(s)/subtract(s), one increment/decrement and one
compare. Therefore, finding the minimum distance values in the case of the
8SSEDT will require a total of � � � � � 4SSEDT operations together with � � �� � 8SSEDT operations; or in other words,

�Q� � � (left-shift, increment/ decrement,
compare) plus

� � � � (add/subtract) operations.

Once we have completely updated the vector image
�

� , the real Euclidean dis-
tance map is recovered by computing the square roots of the

�
� ’s third ele-

ment (Eq. (6)). This accounts for � � floating point operations. However, in
many practical cases the (integer) squared distance values may be sufficient. Fur-
thermore, since we know the maximum possible size of an object (> � � �� � � � @ � � � @;� � � @ � � �), for fixed size images

�
, we can store all possible dis-

tance values
�

in a double-index lookup table [24]. This table can be indexed
using the absolute values of the first two elements of the vector image

�
� , that

is,
� � � �

and
� � � �

. Such an approach is particularly useful for fixed size images if
distance maps are to be evaluated often [12].

In summary, we have two versions of the raster scan signed SEDT algorithm:
the 4SSEDT and the 8SSEDT, the latter being roughly twice as expensive nu-
merically. Besides computations, the essential difference between these two DT’s
relates to accuracy. This is briefly considered in the following subsection.

13

2.2 Accuracy

Both SEDT algorithms will possibly generate some errors in computing distance
values when distance propagation on the discrete rectangular grid needs to go
through very thin areas. This is the case when “propagation needs to pass between
pixels” [19]. However, the errors generated by both the 8SSEDT and 4SSEDT al-
gorithms have maximal amplitudes smaller than the half size of a pixel, that is,� T ��� and

� T ��� pixel units,8 respectively [8]. Therefore, these errors are negligible
in [some] practical applications.

This completes our detailed analysis of the two versions of Danielsson’s algo-
rithm optimized for numerical performance. In a later section we will show how
these algorithms compare to the non-Euclidean ones, that is, the SWDT’s. In the
following section, we first analyze the SWDT’s.

3 Sequential Weighted Distance Transforms

In this section we present the main characteristics of some SWDT algorithms. We
will consider the four simplest SWDT’s: the city block DT , the chessboard DT ,
and the chamfer DT’s [4] for the two smallest neighborhood sizes (i.e., � � � and
�
�
�).

In the case of the SWDT’s, rather than computing a vector image
�

or
�

� as was
the case for the SEDT’s, we compute a scalar image. We denote this image by the
symbol

� � , defined as follows:

� � � Y � Z���� � �
�&�/� (8)

where
�

� represents the approximated, unsigned and scaled distance value. Once� � is computed, the best approximation to the Euclidean distance,
��

, is obtained
as follows:

�� � �
��� � (9)

8A pixel unit equals the distance between two horizontal or vertical pixel centroids on the
discrete rectangular image grid.

14

where � represents a multiplication factor used to scale the weights � 	 of the
masks employed to perform a SWDT . The value of � is a function of the selected
metric �!#"
$, but is generally fixed at the value of the smallest weight.

Fig. 3 shows the masks used for the SWDT’s. Note that only two masks are
sufficient for each SWDT while four were used for the SEDT (compare with
Fig. 2). This implies that the propagation of distances will not be isotropic (e.g.,
see the propagation envelopes of Fig. 1, ���1� and � � � , which do not cover a full � � � �
orientation range) and will generate errors in the distance map. However, this type
of error is in general negligible “compared to [the errors due to] the differences
between the Euclidean distance and the non-Euclidean approximations” [18].9

The chamfer DT’s have different sizes and weights that can be chosen to satisfy
various needs. A � � � chamfer DTis called chamfer- � - � where � and � represent
the mask’s weights (Fig. 3. � ���).10 In order to propagate distances that approximate
circular or Euclidean propagation, the following natural constraints are imposed
on the weights � and � [5]:

��� � > � > � � T (10)

These constraints are called natural since they emphasize the desirable property
that diagonal steps should never be smaller than horizontal or vertical ones on
the discrete rectangular lattice.11 Under these constraints, the weights � and �
are chosen to take into account accuracy and numerical efficiency. The “optimal”
weights, for accuracy, are ��� � T � � � ��� and ��� � T � � � � � [5]. However, for
practical applications, the weights � � � � and �f� � � are preferred to perform
integer computations [22]. Furthermore, the weights � � �

and �f� � may be
preferred over � � � � and � � � � when the scaling by � � � is required. In this
case � � �

and the divide operation is simply replaced with a right-shift operation.
If one permits floating point operations, another interesting compromise between
accuracy and numerical efficiency is obtained with the weights � � �

and ���� T ��� � , where no scaling is required.
9Note that in certain atypical cases this type of error will not be negligible (e.g., see [17, � 4.2]

).
10Note that the city block and the chessboard DT’s can be interpreted as the chamfer-

�
- � and

chamfer-
�
-
�

DT’s, respectively (Fig. 3. �
). For the city block DT, the weight � becomes redun-
dant and the masks can be further reduced in size.

11Note that equality in Eq. (10) holds only for two particular cases of the city block DTand
chessboard DT, that is, when 	 � �

and � ��� and 	 � � �
� , respectively. Therefore, for any
other chamfer- 	 - � DT’s, inequalities in Eq. (10) can be replaced by strict inequalities.

15

(a) (b)

Figure 3: Masks used for SWDT’s for the two smallest neighborhood sizes (i.e.,
� � � and �

�
�). The masks are centered at pixel � (indicated by a white dot).

The weights in each mask represent the (approximated, unsigned and scaled) dis-
tance from � . The reference frame (directions indexed by [and \) is shown
to be positioned in the top-left corner of an image,

�
. The arrows (next to the

masks) indicate in which direction a given mask is passed over
�
. The recursive

convolution of these masks over
�

is performed in two picture scans (indicated by
dashed arrows) in opposite directions (here downward for masks labelled 1 and
upward for masks labelled 2). In ���
� are shown the masks for the, � � � chamfer
DT’s where � and � are weights to be optimized (see text). The city block and the
chessboard DT’s can be seen as particular cases of � � � chamfer DT’s; that is,
the chamfer-

�
-
�

and chamfer-
�
-
�

DT’s, respectively. In � �%� are shown the masks
for the �

�
� chamfer DT’s where � , � and � are three weights to be optimized,

and where some mask pixels, shown by a minus symbol (�), are suppressed (see
text).

16

A �
�

� chamfer DT is called chamfer- � - � - � where an additional weight � is
needed. For this neighborhood size, certain mask pixels do not contribute to the
distance value propagation and are redundant. A simple definition for those mask
pixels which are not redundant is obtained by observing the ratio of the vertical to
the horizontal steps necessary to go from the central mask pixel to any other pe-
ripheral mask pixels. If this ratio consists of integer components having a largest
common divisor of one [19], then the peripheral mask pixel is not redundant.12

Redundant mask pixels are therefore suppressed from the local search for a mini-
mum distance value (marked with a minus symbol (�) in Fig. 3. ���1�). As with the
case of the chamfer- � - � DT’s, the following natural constraints on the weights � ,
� and � are required:

� � � � � � � � � � � � @ �XT (11)

Under these constraints, the weights � , � and � are chosen to satisfy the needs of
accuracy and numerical efficiency. The optimal accuracy is obtained with � �� T ��� � ��� , � � � T � � � � � and � � � T � � � ��� [22]. For practical applications, the
weights � � � , � � � and � � ���

are preferred [5, 22].13 Furthermore, the
weights �;� � , � � � and � � �

may be preferred over �;� � , � � � and
� � ���

when the scaling by � � � is required. In this case � � � , and the divide
operation is simply replaced by a double right-shift operation. If one permits
floating point operations, another interesting compromise between accuracy and
numerical efficiency is obtained with the weights � � �

, � � � T � � and � � � T � � � ,
where no scaling is required.

3.1 Numerical Complexity

As before, we use the constant � � to represent the total number of object pixels
found in an image. For the city block DT (Fig. 3. ���
�), a complete updating
procedure will require four comparison operations,

� � ��� , for each object pixel,

12An equivalent definition is obtained in terms of Farey sequences of order � , when considering
neighborhoods of size � ��� � �

x � ��� � �

[16]. The sequence of valid ratios (i.e., corresponding

to mask pixels which are not redundant) is the Farey sequence of order � , that is, “the ordered
sequence of all rational numbers between � and

�
with denominators less than or equal to � ” [16].

13Vossepoel has made the interesting observation that for practical applications, the integer
valued weights satisfy the relation: � ��	 � �	� � [22].

17

� � � . A
� � ��� operation involves one increment and one compare. Therefore,

finding the minimum distance values in the case of the city block DTrequires � � �� � ��� operations. For the chessboard DT (Fig. 3. ���1�), each object pixel will
require eight comparison operations,

� � ��� (i.e., same operations as for the city
block DT). Therefore, finding the minimum distance values in the case of the
chessboard DT requires

� � � � � ��� operations.

The chamfer- � - � DT’s (Fig. 3. � ���) require eight comparison operations, per object
pixel,

� � �"� � ���
�� . A
� � �"� � ���
�� comparison consists of one add and one com-

pare. Therefore, finding the minimum distance values in the case of the chamfer-
� - � DT’s requires

� � � � � �"� � ���
�� operations. The chamfer- � - � - � DT’s (Fig. 3. ���1�)
requires sixteen comparison operations,

� � �"� � ����
�� , per object pixel (i.e., the
same operations as the chamfer- � - � DT’s). Therefore, finding the minimum dis-
tance values in the case of the chamfer- � - � - � DT’s requires

� � � � � � �"� � ����
�� operations.

Once we have completely updated the scalar image
� � , the best approximation

to the Euclidean distance map is recovered by computing the ratios, as indicated
by Eq. (9), for all processed object pixels. This accounts for � � floating point
operations. However, note that certain SWDT’s will not need this last step (e.g.,
the city block DT and chessboard DT) or will require simpler operations (e.g.,
left-shifts for divisions by powers of two, such as for the chamfer-

�
- � DT).

3.2 Accuracy

The accuracy of SWDT’s are a function of the size of the neighborhood
� L , the

values taken by the weights, � 	 , and the value taken by the scaling factor, � . As
a general principle, the larger the neighborhood, the better the accuracy (although
the weights’ values can counteract this effect). Essentially, with larger neighbor-
hoods, circular propagation can more easily be approximated.

The weights � 	 , which represent an approximation of the local distance from a
pixel to its surrounding neighbors, can be selected on the basis of different error
criteria. Essentially, an error measure with respect to the Euclidean distance is
selected and sequences of weights are then evaluated on this basis. For example,
Borgefors has proposed the maximum difference between the chamfer DT result
and the EDT [5] and Vossepoel, the minimum average difference [22].

The scaling factor � may be fixed to values other than � . This may be useful
for some sequences of weights as it permits having maximal errors symmetrically
distributed over all directions of propagation [22].

18

4 Comparison of Sequential Distance Transforms

On the basis of the discussions in � 2 and � 3, we will in this section summarize
our results by comparing SEDT’s with SWDT’s. Comparisons will be made in
terms of accuracy and numerical complexity.

An important remark has first to be made concerning our evaluation of numeri-
cal complexity and its relation to the speed of processing of a DT . We will take
as a measure of speed the numerical complexity we have evaluated previously.
However, other measures are also possible. For example, Ragnemalm only con-
siders the number of memory accesses [19]. Note that our measures of numerical
complexity also embody the number of memory accesses (i.e., number of pixels
processed, updated or simply accessed). Furthermore, we also account for the
complexity of the type of operation performed on each accessed pixel (e.g., adds,
increments, square roots, sorting, etc.) and distinguish whether integer or floating
point arithmetic is used. We also discuss the effects of including or not rescal-
ing operations (a step not always necessary in practice). Significantly, we assume
that memory requirements are not of concern in our evaluation of the different
DT’s.14 Finally, following Ragnemalm [19], we will assume that the bus used to
read or write values from the “distance image”

�
� , in the case of SEDT’s, is large

enough to process a whole three-component vector (i.e., (
� � � � � � � �)) with only

one memory access.

In Table 1 we compare SEDT’s with SWDT’s from the point of view of both
numerical complexity and accuracy. DT’s are ranked according to their accuracy.

4.1 Accuracy

Let us first note that both the 8SSEDT and the 4SSEDT have a maximal possi-
ble error (MaxDiff in Table 1) expressed in absolute pixel unit values, � � , which
is less than the sampling error of the digital grid (

� � T �1� �). Therefore, these er-
rors [may] be considered negligible [18]. Moreover, as the distance values are
augmented, these possible errors become more and more negligible (in relative

14We have avoided memory requirements in our discussions since these days memory is con-
sidered to be more or less an “infinite” resource. However, if memory does become an issue for
a particular application, other data structures could be considered for both SEDT’s or SWDT’s to
ease the memory requirements. For example, pyramid structures can be used for such a purpose
(e.g., see [6]).

19

Distance Transform Numerical Complexity Accuracy
(raster scan) Comparison op. Rescaling (MaxDiff)

8SSEDT
�<� � � � ��� � � ��� � ��� � � � � ��� � � � T ��� pu (1)@ � � � � �6@ � � �

4SSEDT � � � � ��� � � ��� � �C� � � � � � � � � � T ��� pu (1)
chamfer- � - � - � DT’s:

� � � � �'@�� � � � � ��� �
� � � T ��� � , � � � T � � � , � � � T � � � ” ”

� T � � �	� (2)
��� �

, � � � T � � , � � � T � � � ” None
� T � � � (3)

��� � , � � � , � � ���
” � � ��� � � T � � � � (2)

��� � , � � � , � � �
”

� � � ��
�
 � � � � (2)
chamfer- � - � DT’s

� � � �'@�� � � � � ��� �
� � � T � ��� , � � � T � � � ” ” �:T � � ��� (2)
��� �

, � � � T ��� � ” None � T ��� ��� (3)
� � � �

, � � � � ” � � ��� � � T � �	� (3)
��� �

, � � � �
” � � � ��
�
 � ��T � �
� (3)

��� �
, � � � ” � � ��
�
 � � � T � �
� (4)

chessboard DT
� � � � � � � � � None � � T � � (4)

city block DT � � � � � � � � � None � � T � � (4)

Table 1: Comparison of SEDT’s and SWDT’s for both numerical complexity and
accuracy. DT’s are ranked according to decreasing accuracy. For chamfer DT’s,
useful (i.e., for accuracy or speed) real and integer weights are given. For numer-
ical complexity, both comparison and rescaling operations are shown. The sig-
nificance of the symbols is: left-shift (���), right-shift (
�
), increment/decrement
(� ��� � �), add(s)/subtract(s) (@ � �), compare (�), square root (�), divide (�). � �
stands for the number of object pixels being processed. For accuracy, the max-
imum possible difference (MaxDiff) or error with respect to the true Euclidean
distance is given in percent (

�
) or in absolute pixel units, pu. References for

accuracy are: (1) [8], (2) [22], (3) [5], (4) [4].

20

percentage), that is, their effect tends rapidly toward zero. Also, the errors can
only occur in a few rare and sparsely distributed locations [8] and therefore they
do not propagate over large portions of the distance map.

In the case of the SWDT’s, all errors are expressed as a percentage of the real
Euclidean distance value. Therefore, in distinction to the SEDT’s, the absolute
errors increase with the distance values,

�
. Finally, these errors generally occur

in groups of pixels (i.e., are not isolated) and propagate rapidly to corrupt large
portions of the distance map.

4.2 Numerical Complexity

Let us now consider the numerical complexity of the different raster scan DT al-
gorithms. We first ignore rescaling and any floating point operations; this elim-
inates the chamfer DT’s that use real-valued weights. Thus, the fastest DT is
the city block DT (because it uses the smallest masks), but it is also the least
accurate. In second place we find the chessboard DT and the 4SSEDT which
have similar numerical complexity, with a slight advantage for the chessboard
DT . The 4SSEDT is slightly slower than the chessboard DT , even though the lat-
ter requires a visit to

� � � more pixels, because the comparison operations for the
4SSEDT are more complex than in the chessboard case. In fourth place follows
the chamfer- � - � DT’s with integer-valued weights. These have comparison oper-
ations as complex as the ones for the 4SSEDT (if we neglect the left-shift and
the increment operations in front of the add/subtract operation), but they require
a visit to

� � � more pixels. In fifth place comes the 8SSEDT, followed by the
chamfer- � - � - � DT’s with integer-valued weights (e.g., the chamfer- � - � -

���
DT).

Finally, other chamfer DT’s defined on larger neighborhood follow; e.g., � � �
chamfer DT’s.

If we include rescaling operations, but still consider integer-valued weights only,
the city block DT is still the fastest, followed by the chessboard DT (which do
not require any rescaling operations). In third place come chamfer- � - � DT’s with
a scaling factor of power two (e.g., in Table 1, chamfer-

�
- � DT with � � �f� �

,
followed by chamfer-

�
-
���

DT with � � �
). Then comes either the 4SSEDT or

the chamfer-
� �

-
� � DT (or any chamfer- � - � DT’s with integer-valued weights

but requiring a (floating point) divide operation) depending on whether or not a
square root is faster then a divide operation on a given machine.15 Then come

15For example, on our SUN 3/50 workstation, square root operations are faster than (floating

21

chamfer- � - � - � DT’s with integer-valued weights having a scaling factor of power
of two (e.g., chamfer- � - � -

�
DT), followed by the 8SSEDT and chamfer- � - � - �

DT’s with integer-valued weights but requiring a (floating point) divide operation
(e.g., chamfer- � - � -

���
DT). Finally, other chamfer DT’s defined on larger neigh-

borhoods follow “paired” as above; that is, first chamfer DT’s of a given size with
� a power of two, followed by those with other scaling factors.

If we now consider real-valued weights, we get a similar classification as above
with some additions. After the chamfer- � - � DT’s with integer-valued weights
and the 4SSEDT we now have to include chamfer- � - � DT’s with real-valued
weights (i.e., chamfer-

�
-
� T ��� � DT with no scaling followed by other chamfer- � - �

DT’s). Similarly, after chamfer- � - � - � DT’s with integer-valued weights and the
8SSEDT we now have to include chamfer- � - � - � DT’s with real-valued weights
(i.e., chamfer-

�
-
� T � � - � T � � � DT with no scaling followed by other chamfer- � - � - �

DT’s). Then, similar comments apply to chamfer DT’s defined on larger neigh-
borhoods.

In the worst possible case with respect to the numerical complexity of the SEDT’s,
that is, where increment/decrement operations are not significantly faster than
add/subtract and square root operations are slower than (floating point) divisions,
we observe that 4SSEDT is faster than any SWDT defined over neighborhoods
larger than � � � . Similarly, 8SSEDT is faster than any SWDT defined over
neighborhoods larger than �

�
� .

5 Conclusion

In this paper we have described and compared raster scan sequential distance
transforms implemented on the discrete rectangular lattice. In particular, by a
careful analysis of two versions of the algorithm originally proposed by Daniels-
son, we have shown how the numerical complexity of signed SEDT’s can be sim-
plified (e.g., complexity of the 4SSEDT comparable to the chessboard DT’s) so
that the need for other pseudo-Euclidean DT’s, that is SWDT’s, becomes unnec-
essary.

point) divide operations. However, if we use a look-up table to bypass the square root computa-
tions (� 2), the 4SSEDT is definitely faster than any chamfer- 	 - � DT that requires floating point
divisions.

22

Aside from low numerical complexity, SEDT’s possess crucial advantages over
SWDT’s. They provide “exact” results in the discrete domain. They also give the
orientation towards the source from which the shortest distance was propagated
(points of the background, �)�).
Considering the inaccuracies of SWDT’s and their relative lack of speed compared
to SEDT’s, it seems that for practical applications they have little to offer.

One of the few possible advantages of SWDT’s over SEDT’s is that they have
lower memory requirements. An efficient implementation of an SEDT algorithm
like the one we have described in � 2 requires three times more space than the
SWDT’s (to store the vector image

�
�). However, the extra information we ob-

tain might be very useful (other than the fact that
�

� gives us exact Euclidean
distances at a low numerical complexity). For example, because we store both Y
and Z distance values and their signed orientation (given by

� �
and

� �
), we al-

ways know the exact position of the nearest background pixel for any object point.
This information is particularly useful when employed in the computation of the
skeleton of an object [12]. It permits us to directly recover the complete boundary
from the skeleton, thereby yielding the Inverse Grassfire Transform [3, 12]. Also,
when combined with an active contour model, this information provides a useful
framework for simulating the Grassfire Transform [13, 14, 12].16

16See also [15] (note added by F.Leymarie, on Sept. 24, 2001).

23

References

[1] C. Arcelli and G. Sanniti di Baja. Computing Voronoi diagrams in digital
pictures. Pattern Recognition Letters, 4:383–390, Oct 1986.

[2] C. Arcelli and G. Sanniti di Baja. Finding local maxima in a pseudo-
Euclidean distance transform. Computer Vision, Graphics and Image Pro-
cessing, 43:361–367, 1988.

[3] H. Blum. Biological shape and visual science. Journal of Theoretical Biol-
ogy, 38:205–287, 1973.

[4] G. Borgefors. Distance transformations in arbitrary dimensions. Computer
Vision, Graphics and Image Processing, 27:321–345, September 1984.

[5] G. Borgefors. Distance transformations in digital images. Computer Vision,
Graphics and Image Processing, 34:344–371, June 1986.

[6] G. Borgefors. Time: Time and memory efficient distance transformations
for parallel and pyramid machines. Technical Report FOA Report (ISSN
0347-3708) C 30531-3.4, Swedish Defense Research Establishment, Dept.
of Information Technology, Linköping, Sweden, May 1989.

[7] H. Cox. Distance transformations in binary images. Project Report in Image
Processing and Communications, Dept. of Elec. Eng., McGill University,
Montreal, QC, Canada, Dec. 1986.

[8] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and
Image Processing, 14:227–248, 1980.

[9] P. E. Danielsson and S. Tanimoto. Time complexity for serial and parallel
propagation in images. In Proceedings of the SPIE Conference on Archi-
tecture and Algorithms for Digital Image Processing, volume 435, pages
60–67. Society of Photo-Optical Instrumentation Engineers, 1983.

[10] L. Dorst. Pseudo-Euclidean skeletons. In Proceedings of the 8th Interna-
tional Conference on Pattern Recognition, pages 286–288, Paris, France,
October 1986. IEEE Computer Society Press.

24

[11] L. Dorst and P. W. Verbeek. The constrained distance transformation:
A pseudo-Euclidean, recursive implementation of the Lee-algorithm. In
I. Young, editor, Signal Processing III: Theories and Applications, pages
917–920. Elsevier Science, Amsterdam, The Netherlands, 1986.

[12] F. Leymarie. Tracking and describing deformable objects using active con-
tour models. Mcrcim technical report cim-90-9, McGill University, Elec.
Eng. Dept., Montreal, QC, Canada, Feb 1990.

[13] F. Leymarie and M. D. Levine. New method for shape description based
on an active contour model. In Proceedings of the SPIE “Visual Communi-
cations and Image Processing” Conference, volume 1199 of Part 1, pages
390–401, Philadelphia, PA, U.S.A., November 1989.

[14] F. Leymarie and M. D. Levine. Skeletons from snakes. In V. Cantoni et al.,
editors, Progress in Image Analysis and Processing, pages 186–193. World
Scientific, Singapore, 1989.

[15] F. Leymarie and M. D. Levine. Simulating the grassfire transform using an
active contour model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(1):56–75, January 1992.

[16] U. Montanari. A method for obtaining skeletons using a quasi-Euclidean
distance. Journal of the Association for Computing Machinery, 15:600–624,
Oct 1968.

[17] J. Piper and E. Granum. Computing distance transformation in convex and
non-convex domains. Pattern Recognition, 20(6):599–615, 1987.

[18] I. Ragnemalm. The Euclidean distance transform and its implementation on
SIMD architectures. In Proceedings of the 6th Scandinavian Conference on
Image Analysis, pages 379–384, Oulu, Finland, June 1989.

[19] I. Ragnemalm. Generation of Euclidean distance maps. Licentiate thesis no.
206, Linkoping University, Elec. Eng. Dept., Linkoping, Sweden, January
1990.

[20] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture pro-
cessing. Journal of the Association for Computing Machinery, 13:471–494,
Oct 1966.

25

[21] A. Rosenfeld and J. L. Pfaltz. Distance functions on digital pictures. Pattern
Recognition, 1:33–61, 1968.

[22] A. M. Vossepoel. A note on “Distance transformations in digital images”.
Computer Vision, Graphics and Image Processing, 43:88–97, 1968.

[23] H. Yamada. Complete Euclidean distance transformation by parallel opera-
tion. In Proceedings of the 7th International Conference on Pattern Recog-
nition, pages 336–338, Montreal, QC, Canada, July 1984. IEEE Computer
Society Press.

[24] Q.-Z. Ye. The signed Euclidean distance transform and its applications.
In Proceedings of the 9th International Conference on Pattern Recognition,
volume 1, pages 495–499, Rome, Italy, Nov 1988. IEEE Computer Society
Press.

26

