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ABSTRACT
This paper introduces a method to extract ”Shape-DNA”,
a numerical fingerprint or signature, of any 2d or 3d man-
ifold (surface or solid) by taking the eigenvalues (i.e. the
spectrum) of its Laplace-Beltrami operator. Employing the
Laplace-Beltrami spectra (not the spectra of the mesh Lapla-
cian) as fingerprints of surfaces and solids is a novel ap-
proach. Since the spectrum is an isometry invariant it is in-
dependent of the object’s representation including parame-
trization and spatial position. Additionally the eigenvalues
can be normalized so that uniform scaling factors for the ge-
ometric objects can be obtained easily. Therefore, checking
if two objects are isometric needs no prior alignment (reg-
istration/localization) of the objects but only a comparison
of their spectra. In this paper we describe the computation
of the spectra and their comparison for objects represented
by NURBS or other parametrized surfaces (possibly glued
to each other), polygonal meshes as well as solid polyhedra.
Exploiting the isometry invariance of the Laplace-Beltrami
operator we succeed in computing eigenvalues for smoothly
bounded objects without discretization errors caused by ap-
proximation of the boundary. Furthermore, we present two
non-isometric but isospectral solids that cannot be distin-
guished by the spectra of their bodies and present evidence
that the spectra of their boundary shells can tell them apart.
Moreover, we show the rapid convergence of the heat trace
series and demonstrate that it is computationally feasible to
extract geometrical data such as the volume, the boundary
length and even the Euler characteristic from the numeri-
cally calculated eigenvalues. This fact not only confirms the
accuracy of our computed eigenvalues, but also underlines
the geometrical importance of the spectrum. With the help
of this ”Shape-DNA” it is possible to support copyright pro-
tection, database retrieval and quality assessment of digital
data representing surfaces and solids.
A patent application based on ideas presented in this
paper is pending.

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Similarity measures; J.6 [Computer Applications]: Com-
puter aided Engineering—Computer aided design (CAD);
K.5.1 [Legal aspects of computing]: Hardware/Software
Protection—Copyrights

General Terms
Algorithms

Keywords
Laplace-Beltrami operator, shape invariants, fingerprints,
shape matching, database retrieval, copyright protection,
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1. INTRODUCTION
The characterization and design of the shape of 3d-objects
are central problems in computer graphics and geometric
modeling. The development of software and hardware tools
to design and visualize the shape of 3d-objects has advanced
rapidly during the past twenty years. Nonetheless, funda-
mental problems pertaining to the characterization of shape
are still widely unresolved. It is for example a basic ques-
tion to quickly identify and retrieve a given object stored
in a huge database or to find all similarly shaped objects.
During the past forty years a vast number of shape match-
ing and searching techniques have been developed (e.g. us-
ing moments, spherical harmonics or Reeb graphs - a recent
survey can be found in Iyer et al. [39], see also [30]). It
should be pointed out that most approaches dealing with
shape matching describe procedures to realign the ge-
ometric objects, usually called localization or regis-
tration (cf. [53], [60]), and work only on a specific repre-
sentation (mainly polygonal meshes) of the object. Other
techniques describe subdivison or decomposition of an ob-
ject into smaller features (e.g. [9] or [37]) that are then com-
pared in a second step.

The point-set of a solid 3d-object with smooth boundary
may be described in very different ways (cf. [66]), for ex-
ample in boundary representation (B-Rep) using NURBS
surface patches. This may cause difficulties to decide if two
objects have the same or different shapes. Even when re-
stricted to NURBS surfaces, it is not easy to decide if the
given objects are similar in their shape. A simple compar-
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ison of the control points used to represent the boundary
surfaces does not help at all, because identical patches can
be represented with different control points. Both patches
first need to be represented with the same basis functions im-
plying equal knot vectors and equal degrees of the employed
NURBS basis functions. The problem becomes even more
complicated if we consider the possibility that the solid’s
boundary surfaces might be represented in various other
ways e.g. by trigonometric functions, by implicitly defined
functions or by polygonal meshes (planar polygonal faces),
that have to be compared with each other.

In some of these cases the problem of identifying shapes (for
example to protect the copyright of the designer) has been
approached with the help of watermarks. For this purpose
visible or invisible watermark information is embedded into
the representation or geometry of an object. Later on, this
information can be retrieved and the object can be identi-
fied. This is of special interest when dealing with delicate
high precision material e.g. turbine blades, whose design
needs major research effort and expensive investments. Even
though NURBS patches are very popular today, most water-
mark techniques deal with polygonal meshes only. Often the
watermark data is embedded into these meshes by slightly
modifying the vertex location, the connectivity of the mesh
or the frequency domain employing mesh-spectral analysis
(cf. [6], [49]). For NURBS surfaces watermarking is more
difficult and only very few algorithms exist. An algorithm
proposed by Ohbuchi et al. [48] does not change the sur-
face, but is not very robust. Generally, watermarks can be
destroyed by a representation change or by a reparametriza-
tion of the object, if they are not embedded into the geome-
try. On the other hand, embedding data into the geometry
rather than into the representation changes the shape of
the object which is unacceptable in many cases. It should
be noted that the watermarking technique is limited to the
comparison of watermark information, which in general is
not related to the shape. Therefore it cannot be used for
shape matching but only for the identification of previously
marked objects.

A superior identification method avoiding both problems of
watermarking (i.e. geometry changes or representation de-
pendency) is to identify the shape of an object by geometric
invariants that are often called fingerprints or signatures.
An example for a fingerprint of shape intrinsic information
used to identify shape via registration / alignment of um-
bilics can be found in [42] or [43]. However, our approach
is different because we use sets of geometric invariants that
are sufficiently complete to identify isometric objects so we
can avoid realignment procedures as a safeguard for tests
of identical shape. Of course, fingerprint techniques cannot
distinguish between several copies of the same object, since
they only depend on the shape. In such a case watermarks
have to be applied in order to discriminate identical copies.
Nevertheless, an advantage of the use of shape related fin-
gerprints is that shape can be compared indirectly through
the fingerprints (especially if similar shapes lead to similar
fingerprints). In addition to shape identification, the finger-
print technique can therefore be used for shape matching.

Shape intrinsic information does not depend on the given
representation of the shape and can be understood as a fin-

gerprint of the shape (if enough information is contained).
Many geometric shape invariants (e.g. circumference, sur-
face area, volume, bounding sphere or eigenvalues of the
inertia tensor) have strong limitations with respect to the
amount of completeness up to which these invariants de-
termine the shape of an object. Therefore, we propose the
following properties that optimally should be fulfilled by a
shape fingerprint (e.g. a vector of numbers / shape invari-
ants associated with the given object):

1. [ISOMETRY]:
Congruent solids (or isometric surfaces) should have
the same fingerprint independently of the object’s given
representation and location. Therefore the fingerprint
should be an isometry invariant.

2. [SCALING]:
For some applications it is necessary that the finger-
print is independent of the object’s size, therefore the
fingerprint should optionally be scaling invariant.

3. [SIMILARITY]:
Similarly shaped solids should have similar fingerprints.
The fingerprint should depend continuously on shape
deformations.

4. [EFFICIENCY]:
The effort needed to compute those fingerprints should
be reasonable.

5. [COMPLETENESS]:
Ideally, those fingerprints should give a complete char-
acterization of the shape, thus representing the shape
uniquely. One step further it would be desirable that
those fingerprints could be used to reconstruct the
solid.

6. [COMPRESSION]:
In addition it would also be desirable that the finger-
print data should not be redundant, i.e. a part of it
could not be computed from the rest of the data.

7. [PHYSICALITY]:
Furthermore, it would be nice if an intuitive geometric
or physical interpretation of the meaning of the finger-
prints would be available.

Concerning property [ISOMETRY] let us give the follow-
ing definitions:

Definition 1 (Isometry)
Two geometric objects are isometric if a homeomorphism
from one to the other exists preserving (geodesic) distances,
i.e. mapping curves to curves with equal arc length. This
homeomorphism is then called an isometry.

Definition 2 (Congruency)
Two geometric objects are congruent if they can be trans-
formed into each other by rigid motions (translations and
rotations) as well as reflections.

It should be noted that isometric planar domains in 2d and
isometric solids in 3d Euclidean space are already uniquely
determined in their respective space up to rigid motions and
reflections. For planar shapes and 3d-solids congruency and
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isometry are the same. Surfaces on the other hand that
are bend or folded without stretching (without changing the
metric) stay isometric even though they are not congruent.
The property [ISOMETRY] (and of course [SIMILAR-
ITY]) is important in situations where near isometric sur-
faces like hands with different finger positions or faces with
different expressions are to be compared and identified. See
e.g. [27] for a method using discrete geodesic distances and
multidimensional scaling to generate similar signature sur-
faces (that still need to be aligned for final comparison),
and see [14] for an application to face recognition. An isom-
etry invariant fingerprint is often desired in shape matching,
since it depends

• only on the (intrinsic) shape, independent of any rep-
resentation.

• not on the actual embedding and is therefore indepen-
dent of the spatial position and isometric deformation
of the object.

Very often invariants are used to classify objects. For ex-
ample in knot theory, a branch of topology, knot invariants
(e.g. the Alexander polynomial or the more recent Jones
and the Homfly polynomials) are used to distinguish knot-
ted space curves (cf. [1]). For surfaces there exist for exam-
ple topological invariants (cf. [57]) such as homotopy invari-
ants including e.g. homotopy groups and homology groups
or the well known Euler characteristic. Another important
topological invariant of a manifold is its orientability (be-
ing a non-homotopic invariant, because the non-orientable
Moebius strip and the orientable cylinder have the circle as
deformation retract and are therefore homotopic to it). Al-
though all these topological shape invariants are interesting
and useful, they cannot distinguish any two homeomorphic
objects such as two 3d-solids, e.g. obtained by deforming a
topological full 3d-disk.

There exist theoretical invariants determining the isometry
type of a surface or solid completely up to isometry. In-
deed, the first fundamental tensor (defined independently
of a parametrization) is a complete isometry invariant [25].
However, this invariant can generally not be used to check
if two given parametrizations represent isometric manifolds.
In order to compare this invariant for two objects, they first
have to be parametrized on a common parameter space.
These parametrizations have to be constructed in a way
that they map the same point in parameter space to the
two corresponding points on each manifold. This task is as
difficult as finding the isometry itself, which generally is a
very difficult problem. The first fundamental tensor can be
used to check if a diffeomorphism is an isometry. But even
this task is difficult as it requires checking every point.

A manifold can theoretically be determined completely up
to translation and rotation by the first and the second fun-
damental tensor [25]. Like before, those two tensors do not
provide an easy tool to check if two distinct parametriza-
tions refer to congruent manifolds. The medial axis trans-
form (MAT) (defined uniquely for a solid body) provides a
shape invariant that is a complete shape descriptor (cf. re-
construction theorem, [64], [65], [66]). Using the MAT for

testing the congruence of two given 3d-solids would also re-
quire checking if the respective medial axis sets (usually col-
lections of surface patches) are congruent, a task that again
is not easy at all in general. Therefore, all shape invariants
listed above cannot be used efficiently to detect if two dis-
tinct geometrical object representations refer to congruent
or isometric objects. We think that this paper offers a rem-
edy for the aforementioned difficulties occurring in shape
comparison problems. This holds because the shape invari-
ants presented in this paper can be used efficiently for shape
comparison (once they have been computed).

This paper proposes to use the sequence of eigenvalues (spec-
trum) of the Laplace operator of a planar domain or 3d-solid
or the Laplace-Beltrami operator of a surface or parame-
trized solid in Euclidean space as a fingerprint. The Laplace
operator can be seen as the special case of the Laplace-
Beltrami operator with a Euclidean metric. These Laplace
operators are linear differential operators defined on a corre-
sponding vector space of differentiable functions, the latter
being defined on a domain in Euclidean space or on a Rie-
mannian manifold respectively. Those differentiable func-
tions are supposed to be zero on the boundary of the sur-
face or of the domain in case the boundary is not empty
(Dirichlet boundary condition). The Neumann boundary
condition forces their derivatives in the normal direction of
the boundary curve to be a fixed function or to be constantly
zero. The Laplace operators assign the trace of their Hes-
sian to the latter functions (defined on the domain or on
the surface). In the surface case the Hessian must be de-
fined invariantly of the surface parametrization using only
the Riemannian metric of the surface.

This fingerprint (i.e. the eigenvalues) can be calculated for
different object representations in different dimensions and
can even be calculated for grayscale or color images. We con-
sider a gray scale image as a surface defined by the graph of a
height function being the gray scale intensity function of the
image. The color image can e.g. be understood as a surface
(2-manifold) in a five dimensional Euclidean space whose co-
ordinates include the intensity parameters of the red, green,
blue values assigned to any (x, y) pixel of the image. It is
possible as well to understand other even higher dimensional
signals as height functions and therefore as manifolds, whose
Laplace-Beltrami spectra can be computed. Another advan-
tage of this method is that it can even be applied to solids
containing cavities (solids bounded by several not connected
surfaces), for example an ice-cube containing fully enclosed
bubbles. Most techniques only working on boundary rep-
resentations, not on the solid itself, have difficulties with
several boundary components. With our method, one can
compare the 2d boundary as well as the 3d volume for two
given solids.

The fingerprint presented here fulfills the desired properties
above (with the only exception of [COMPLETENESS]).
Since the eigenvalues are isometry invariants, this finger-
print is independent of the objects representation (especially
its parametrization), its spatial position and, as we will see
later, even of the object’s size [SCALING] (if desired).
This isometry invariance makes registration or localization
of the objects completely unnecessary. The isometry in-
variance is very restrictive compared to the topological in-
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variance. As mentioned before, isometry even determines
the congruence of objects in important cases such as pla-
nar shapes or 3d-solids. In other words, if limited to these
very common solid objects, their shapes are uniquely deter-
mined by their isometry class. The fingerprint proposed here
consists of a family of non-negative numbers (the eigenval-
ues) that can be compared easily and fast, permitting this
approach to be used in time-critical applications such as
database retrieval. Because the spectrum of the Laplace-
Beltrami operator contains intrinsic shape information we
call it ”Shape-DNA”. We will show that this ”Shape-
DNA” can be used (like DNA-tests) to identify objects in
practical applications. As in real life, the DNA does not
completely characterize a subject. As we will discuss later
identical twins exist with different shape but exactly the
same ”Shape-DNA”. Even though these twins are shaped
differently they still have quite a few common geometric
properties (exactly those properties that are determined by
the spectrum). It should be noted that in real life human fin-
gerprints (determined by phenotype) can distinguish iden-
tical twins while DNA-tests (genotype) cannot. Therefore
we think that ”Shape-DNA” is the more appropriate term.
Beyond the identification of shapes the ”Shape-DNA” can
even be used to detect similarities.

A special name for the Laplace-Beltrami spectra is even
helpful to distinguish it from other spectra. To avoid any
misunderstanding, note that the continuous Laplace-Beltra-
mi operator does not operate on any mesh vertices, but
rather on the underlying manifold itself. It is therefore dif-
ferent from discrete Laplacians on graphs or meshes. Even
though these discrete Laplacians have been used for e.g. di-
mensionality reduction [5] or mesh compression [41], the in-
troduction of our computation of the Laplace-Beltrami spec-
tra of the underlying manifolds in the areas of geometric
modeling - CAD in particular and in computer graphics in
general - is completely new. The only exceptions are our
recent proceedings publication [56] outlining briefly some of
the ideas and results presented in this paper and [65] con-
taining a sketchy description of some basic ideas and goals.
More details and background can be found in [55]. Moreover
the application of the Laplace-Beltrami spectra as ”Shape-
DNA” in order to discriminate and search for objects in
geometric databases is new (cf. our german patent appli-
cation [67]). Although a considerable amount of theoretical
research has been done in geometry on the Laplace-Beltrami
operator, very little work dealing with computational re-
search exists (see e.g. Huntebrinker [38] for a numerical com-
putation of the Laplace-Beltrami spectrum on 3d hyperbolic
spaces).

One of the reasons why the spectra of the continuous Laplace
and especially the Laplace-Beltrami operator have not yet
been considered in the area of geometric modeling and com-
puter graphics is that their computation is not att all easy,
with respect to the theoretical effort (employing Rieman-
nian geometry), and somewhat cumbersome with respect
to the numerical work involved. However, with the recent
and continuing advancement of hardware development, the
computations needed to determine surface spectra (e.g. the
first 1000 or more eigenvalues) of the Laplace-Beltrami op-
erator have become conveniently feasible even on a fairly
modest personal computer. This shows that the requested

[EFFICIENCY] can be achieved as well. Improvements
concerning the efficient computation of the spectrum are
also foreseeable.

We shall present this paper in a self contained way such that
it should be accessible to a researcher in geometric modeling
who is not an expert on the tools from partial differential
equations and differential geometry used here. Therefore we
will review some concepts from analysis and elements from
differential geometry used for the Laplace-Beltrami operator
and its properties (section 2). We also need some concepts
from numerical analysis on finite element methods used to
compute solutions for partial differential equations (section
3) and describe some techniques (like meshing) needed for
the actual implementation (section 4). Then we present
a method to numerically extract geometric data from the
eigenvalues (section 5) and show how the ”Shape-DNA” can
be used to identify shapes and detect similarities for use in
innovative applications (section 6).

2. THEORETICAL BACKGROUND
In this section we will explain the theoretical background
that is needed to understand the spectrum of the Laplace
operator and its computation.

Let f be a real-valued function, with f ∈ C2, defined on a
Riemannian manifold M (differentiable manifold with Rie-
mannian metric, cf. Berger [7]). With another function
g defined like f we define the Nabla operator ∇ (that
will be needed later for the variational formulation) and the
Laplace-Beltrami Operator ∆ to be

∇(f, g) := 〈grad f, grad g〉
∆f := div(grad f)

(1)

with 〈 , 〉 being the scalar product, grad f the gradient of
f and div the divergence on the manifold (Chavel [17]).

The Nabla operator and the Laplace-Beltrami operator are
linear differential operators. They can be calculated in local
coordinates. Given a local parametrization

ψ : Rn → Rn+k (2)

of a submanifold M of Rn+k with

gij := 〈∂iψ, ∂jψ〉, G := (gij),

W :=
√

detG, (gij) := G−1.
(3)

(where i, j = 1, . . . , n and det denotes the determinant) we
get:

∇(f, g) =
P

i,j g
ij∂if∂jg and

∆f = 1
W

P
i,j ∂i(g

ijW∂jf)
(4)

If M is a domain in the Euclidean plane M ⊂ R2 the
Laplace-Beltrami operator reduces to the well known Lapla-
cian:

∆f =
∂2f

(∂x)2
+

∂2f

(∂y)2
(5)

The Helmholtz equation (also known as the Laplacian
eigenvalue problem) is stated as

∆f = −λf. (6)
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The solutions of this equation represent the spatial part
of the solutions of the wave equation. In the surface case
f(u, v) in equation 6 can be understood as the natural vibra-
tion form (also eigenfunction) of a homogeneous membrane
with the eigenvalue λ. The solutions of the general vibration
problem are the solutions f(u, v) of this differential equation
on the surface. Any constants of the material are ignored.
The standard boundary condition of a fixed membrane is
f ≡ 0 on the boundary of the surface domain (Dirichlet
boundary condition) (see figure 1 for two eigenfunctions of
the disk). Because of this physical interpretation, the ques-
tion whether the eigenvalues of the Laplace operator de-
termine the shape of a planar domain, has been rephrased
by the late mathematician L. Bers in a terse, impressively
concise and pictorial way: “Can one hear the shape of
a drum?” (cf. Protter [54] for a historic account). An-
other important boundary condition (namely the Neumann
condition) does not force the function to a given value on
the boundary but rather forces its derivative in the normal
direction of the boundary curve to a fixed function (often
to zero). Since the boundary of a membrane can there-
fore vibrate freely this condition is sometimes called natural
boundary condition (instead of forced or essential as for the
Dirichlet condition). The advantage of the Neumann
condition is that a small hole in the surface (e.g. a
missing triangle) does not change the spectrum as
much as in the case of the Dirichlet condition. For
manifolds without boundary the spectrum is of course equal
to the spectrum with Dirichlet boundary condition.

Figure 1: Eigenfunction 30 and 50 of the disk

2.1 Properties of the Spectrum
The following paragraphs will describe well known results
on the Laplace-Beltrami operator.

• The spectrum is defined to be the family of eigen-
values of the Helmholtz equation (eq. 6), consisting of
a diverging sequence 0 ≤ λ1 ≤ λ2 ≤ · · · ↑ +∞, with
each eigenvalue repeated according to its multiplicity
and with each associated finite dimensional eigenspace
(Berger [8], p.142). In the case of a closed manifold
without a boundary the first eigenvalue λ1 is always
equal to zero, because in this case the constant func-
tions are non trivial solutions of the Helmholtz equa-
tion. If a Dirichlet boundary exists, the first eigenvalue
is always greater than zero, since the only constant so-
lution is trivial (because of the boundary condition).

Generally, the first eigenvalue is always simple and the
corresponding eigenfunction has no nodal lines (zero
sets of the function). The nodal lines of the n-th eigen-
function subdivide the domain into maximal n subdo-
mains (Courant and Hilbert [20]). In case only the
Neumann boundary condition is used, the first eigen-
value will always be zero with all constant eigenfunc-
tions.

• The spectrum is an isometric invariant as it only de-
pends on the gradient and divergence which in turn
are defined to be dependent only on the Riemannian
structure of the manifold (eq. 4). This implies prop-
erty [ISOMETRY].

• Furthermore, we know that scaling a n-dimensional
manifold by the factor a results in scaled eigenvalues
by the factor 1

a2 . Therefore, by normalizing the eigen-
values, shape can be compared regardless of the ob-
ject’s scale (property [SCALING]). This fact can be
proved quite easily for any dimension n:

Let M be a compact n-dimensional Riemannian mani-
fold of class C∞ with the local parametrization
h : Rn → Rn+k. The scaled manifold with the parame-
trization h̄ := ah possesses the partial derivatives

∂kh̄ = a∂kh (k = 1 . . . n)

implying ḡij = 1
a2 g

ij

and W̄ = a2W,

using the notation defined in equation (3).
With u being a solution to

∆hu =
1

W

X
i,j

∂i(g
ijW∂ju) = −λu

we have found u as a solution to

∆h̄u = W̄−1P
i,j ∂i(ḡ

ijW̄∂ju)

= 1
a2W

P
i,j ∂i(g

ijW∂ju)

= − 1
a2 λu.

• The spectrum depends continuously on the shape of
the membrane (Courant and Hilbert [20]), thus com-
plying with property [SIMILARITY]. Moreover, it
can be shown with similar arguments that the spec-
trum depends continuously on the Riemannian metric
of the manifold in general.

• The numerical computation of the spectrum as de-
scribed later in section 3 can already be done with
a standard personal computer, therefore the requested
[EFFICIENCY] can be satisfied as well.

• The property [COMPLETENESS] is not fulfilled by
the spectrum, because some non-isometric manifolds
with the same spectrum exist (see section Isospectral-
ity 2.2 for more details).

• The question if a sequence of n real numbers (S =
{a1 = 0 < a2 ≤ a3 ≤ · · · ≤ an}) can be the beginning
of the spectrum of a compact Riemannian manifold
X has been discussed by Colin de Verdière [19]. It
is shown that for any such finite sequence S, a com-
pact Riemannian manifold X with dim(X) ≥ 3 always
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exists realizing S as the beginning of its Laplace spec-
trum. This result also means that given any positive
integer n, a Riemannian manifold exists, such that the
multiplicity of the first non-zero eigenvalue is n. In
the case of a closed Riemannian surface (dim(X) = 2)
there are bounds to the multiplicities depending lin-
early on the genus. However, in the case of a surface,
the result by Colin de Verdière also holds for finite se-
quences of the form S = {a1 = 0 < a2 < a3 < · · · <
an}. These results are interesting in the context of
property [COMPRESSION]. We can now prove the
following assertion:

Assertion 1
(Mutual Independency of Eigenvalues)
An arbitrary eigenvalue λk of a compact Riemannian
manifold (M, g) cannot be computed from a finite num-
ber of other eigenvalues of (M, g) in general (i.e. if the
manifold is unknown). Precisely, it is not possible to
find a function h(S) (called redundancy function) de-
pending on a finite subsequence S of the eigenvalues
λ1 . . . λn, that computes a special eigenvalue λk /∈ S so
that for all compact Riemannian manifolds containing
S in their spectra, λk is also contained in their spectra
(at the same position k). We will prove this indirectly:

Proof:
Let h(S) be a redundancy function as stated above
computing a λk /∈ S. If we construct the smallest se-
quence S0 of values containing λk as well as S then S0

is still finite. We can violate the redundancy h(S) by
replacing λk with a different value and call this new se-
quence S1. Because S1 violates the redundancy h (that
was valid for all manifolds containing S in their spec-
tra) it cannot be the beginning of a valid spectrum,
so no compact Riemannian manifold (M, g) with S1

as the beginning sequence of its spectrum can exist.
This yields a contradiction to the result of Colin de
Verdière, since a manifold exists for any finite begin-
ning sequence of its spectrum. �

Another interesting (but weaker) result following di-
rectly from assertion 1 can be stated:

Corollary 1
(Impossibility of finite characterization)
No subsequence S of a spectrum Spec(M) of any un-
known compact Riemannian manifold M already de-
termines the whole spectrum.

Proof:
Since no redundancy function h(S) computing just a
single eigenvalue λk can be found (see assertion 1), it is
of course impossible to find a function h(S) computing
several eigenvalues (or even the whole spectrum). �

Of course classes of manifolds exist (like the disks or
the rectangles) where one or two eigenvalues already
determine the size and the shape and therefore the
whole spectrum. In other words, if we know we have
a rectangle, we need just two eigenvalues to find its
side lengths. The corollary above states that without
prior knowledge of the manifold, a characterization is
impossible by a finite subsequence of the spectrum.
Therefore the spectrum cannot be compressed into a fi-
nite subsequence (see property [COMPRESSION])
without losing information. As we will discuss later,

the whole spectrum on the other hand determines the
shape of some manifolds (e.g. balls in any dimension
among solids, cf. remark 1 in section 6.1).

• A substantial amount of geometrical and topological
information is known to be contained in the spectrum
(see section 2.3), therefore the property [PHYSICAL-
ITY] is fulfilled. Even though we cannot crop a spec-
trum without losing information, we will show that it
is possible to extract important information just from
the first few eigenvalues (approx. 500).

2.2 Isospectrality
Unfortunately, the spectrum does not completely determine
the shape of the underlying manifold, even though geomet-
rical data is contained in the eigenvalues. Manifolds with
identical spectra will be called isospectral manifolds. The
question formulated by L. Bers and first published by Kac in
1966 (see [40]), asking if the shape of a planar region is deter-
mined by the spectrum of the Laplacian, has been answered
negatively. Originally, the question was stated by Gel’fand
in a more general and theoretical context concerning arbi-
trary manifolds (see [32]). After many years of research
in 1992 it could be shown (cf. [34]) that pairs of isospec-
tral but not congruent planar domains exist. Meanwhile
various pairs of planar (and also non-planar) non-isometric
but isospectral manifolds are known. Figure 2 shows two
isospectral planar domains found by Buser, Conway, Doyle
and Semmler (see [16]). One can show these domains to
be isospectral by using the technique of transplanting the
eigenfunctions of one domain to the other.

Therefore, it will not be possible to satisfy property [COM-
PLETENESS]. Nevertheless, no three pairwise isospectral
planar domains have been constructed so far and all known
pairs of isospectral planar domains have been shown to be
non-convex with non-smooth boundaries. The only exam-
ples of pairs of convex domains in Euclidean space, being
isospectral but not congruent, were found in four or higher
dimensional spaces (Gordon and Webb [33]). It is not sure if
triples or isospectral continuous deformations exist in lower
dimensions at all. The constructed examples (i.e. pairs of
isospectral domains) were always somewhat artificial and
appear to be exceptional. Furthermore, some shapes can be
characterized completely by their spectrum (e.g. simple ana-
lytic surfaces of revolution among their type, cf. Zelditch [69]
or the n-dimensional disks among solids, cf. Kac [40] for pla-
nar disks and see remark 1 in section 6.1 for Euclidean balls
in higher dimensions). Therefore, there is some hope that
isospectrality of non-isometric manifolds (at least in lower
dimensions up to three) is a relatively rare phenomenon.
For instance Osgood, Phillips and Sarnak [52] showed that
isospectral families of metrics on a given surface are compact
in a natural C∞ topology. Furthermore, for the special case
of Riemann surfaces (namely surfaces with constant nega-
tive curvature) Buser [15] was able to derive an upper bound
for the number of isospectral but non-isometric surfaces de-
pending only on the genus. For all of these reasons and
also based on experimental studies, we feel that the spectra
of the Laplace-Beltrami operator have significant discrim-
ination power, strong enough to be used in contemporary
applications.
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Figure 2: Isospectral planar domains

In this context, it should be noted that there is evidence that
in the case of a fixed graph, the unknown weight function
can be reconstructed by knowledge of the discrete spectrum
of the graph. This graph spectrum can be obtained by the
discrete analogue of the Laplacian, the Laplace-Kirchhoff
operator (cf. [36]). The weight reconstruction is still an
area of active research. For the “reverse” case of a given
weight function (satisfying special conditions) the unknown
graph structure can be reconstructed by knowledge of the
sprectrum of the Laplace-Kirchhoff operator (see Halbeisen
and Hungerbühler [36]).

2.3 Geometric Information
A substantial amount of geometric and topological infor-
mation is known to be contained in the spectrum. These
results endorse property [PHYSICALITY]. Beyond that,
they even contribute towards the desired property [COM-
PLETENESS] considering that all geometrical and topo-
logical properties determined by the spectrum have to be
identical for isospectral objects. In this section we will
present an overview on known results. Finally we state
our Theorem 4 that ensures the rapid convergence of the
”heat trace” and thus the possibility to actually compute
geometric and topological information with only the first
few eigenvalues of an object.

In response to the question “can one hear the shape of a
drum?”, it is possible to “hear” the following information:

1. It has been shown that if two compact Riemannian
manifolds M and M̄ are isospectral, then dimM =
dim M̄ and (Riemannian) volume(M) = volume(M̄)
(Berger [8], p. 215). Hence the spectrum determines
the dimension and the volume of a Riemannian man-
ifold. McKean and Singer [44] showed the equality of
the respective curvature integrals for the scalar curva-
ture K (i.e. the Gauss curvature in case of a surface)
for isospectral manifolds (

R
M
K =

R
M̄
K̄).

2. In the case of a compact d-dimensional manifold M
with compact (d−1)-dimensional boundary B in addi-
tion to the results in (1.), the (Riemannian) volume of
the boundary B can be “heard” (McKean and Singer
[44]). However, in order to obtain the curvature inte-
gral of M and the integrated mean curvature

R
B
J the

spectrum of the double of M is generally needed.

3. In the cases of a closed surface (dim = 2) and of a
planar domain with a smooth boundary, McKean and
Singer [44] deduced the possibility to “hear” the Euler
characteristic from the spectrum. Thus Kac’s conjec-
ture [40] of hearing the number of holes in the case of
a planar region M with smooth boundary B can be
obtained. For surfaces with smooth boundary the Eu-
ler characteristic and the geodesic curvature integral
of the boundary curve can be obtained from spectral
data as well, if one additionally employs the spectrum
of the surface double.

Remark: On a surface (dim(M) = 2) the Riemannian vol-
ume of M is the surface area and the Riemannian volume
of the boundary is its length.

We will now give a short overview on the background needed
to understand the connection between the eigenvalues and
the geometric data mentioned above (in 1. 2. 3.). More
details can be found in Berger [7], and in [22]. Everything
started with the following result by Weyl (1911) [62] for the
two dimensional and (1912) [63] for the three dimensional
case for a planar domain with boundary (cf. also [7] or [17]):

Theorem 1
(Weyl - Asymptotic Growth of Eigenvalues)
IfD is a bounded region of Rd with piecewise smooth bound-
ary B and if 0 < λ1 ≤ λ2... is the spectrum and N(λ) the
number of eigenvalues ≤ λ, counted with multiplicity, then

N(λ) ∼ ωd vol(D) λ
d
2

(2π)d
(7)

as λ→ +∞, where vol(D) is the volume of D and

ωd :=
π

d
2

Γ( d
2

+ 1)
(8)

is the volume of the unit disk in Rd. In particular,

λn ∼ 4π2

„
n

ωd vol(D)

« 2
d

as n ↑ ∞ (9)

especially,

λn ∼ 4π
vol(D)

n for d = 2

and λn ∼
“

6π2

vol(D)

” 2
3
n

2
3 for d = 3.

(10)

Minakshisundaram and Pleijel (1949) [46] extended this re-
sult and showed more generally that for a closed Riemannian
manifold, N(λ) also has an asymptotic approximation whose
first term is determined by the volume of the manifold and
its dimension. Not much later the heat kernel, the funda-
mental solution of the heat equation, was constructed by
Minakshisundaram (1953) [45] and the asymptotic expan-
sion of the heat trace was inspected. We will give a short
explanation of these concepts, as they are the basis of our
computations.

Let M be a Riemannian manifold. The heat equation is
given by

∂u

∂t
+ ∆2(u) = 0, u : [0,∞)×M → R, (11)
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with ∆2 being the Laplace-Beltrami operator with respect to
the second variable (i.e. the space variable x). Here u(t, x) is
the temperature at the point x ∈M at time t. Given an ini-
tial temperature distribution u(0, x) = f(x) and a Dirichlet
boundary condition (u(t, x) ≡ 0 for x on the boundary ofM)
then a fundamental solution of the heat equation on M (also
called heat kernel) is a function K : (0,∞)×M×M →M ,
satisfying:

1. K(t, x, y) is C1 in t and C2 in x and y,

2. K solves the heat equation: ∂K
∂t

+ ∆2(K) = 0,

3. K fulfills the boundary condition: K(t, x, y) = 0 if x
is on the boundary of M , and

4. limt→0+
R

M
K(t, x, y)f(y)dV (y) = f(x) uniformly for

every function f that is continuous on M and vanishes
on the boundary of M .

A solution of the heat equation 11 can be obtained with the
heat kernel by adding the contribution of each point to the
initial data:

u(t, x) =

Z
M

K(t, x, y)f(y)dV (y). (12)

For the following theorem refer to Chavel [17] p.139 and
p.169:

Theorem 2
(Sturm-Liouville Decomposition)
Let (M, g) be an n-dimensional compact Riemannian mani-
fold, with eigenvalues (counted with multiplicities) λn (n ≥
1) and associated orthonormal real eigenfunctions ξn. A
unique heat kernel K(t, x, y) exists on (M, g). The heat ker-
nel can be expressed as

K(t, x, y) =

∞X
n=1

e−λntξn(x)ξn(y) (13)

with absolute and uniform convergence for each t > 0. The
heat trace of the Dirichlet Laplacian ∆ on a Riemannian
manifold M is defined by

Z(t) :=

Z
M

K(t, x, x)dV (x) (14)

and can thus be expressed by

Z(t) =

∞X
n=1

e−λnt

Z
M

(ξi(x))
2dV (x) =

∞X
n=1

e−λnt (15)

Z(t) is sometimes called the partition function of (M, g).

Theorem 3
(Asymptotic Heat Trace Expansion)
The heat trace has the following asymptotic expansion
when (t→ 0+), (cf. [45] and [54] for an overview):

Z(t) = (4πt)−
dim(M)

2

 
nX

i=0

cit
i
2 + O(t

n+1
2 )

!
. (16)

With one of the Landau symbols, ”big-O”:

f(t) = O(g(t)) :⇔ ∃k ∈ R :

˛̨̨̨
f(t)

g(t)

˛̨̨̨
< k when (t→ 0). (17)

The first coefficient c0 of the asymptotic expansion Z(t) is
the volume of the manifold, but even more geometric infor-
mation can be extracted as shown by McKean and Singer
(1967) [44] who obtained the first three coefficients in the
case of smooth compact d-dimensional Riemannian mani-
folds M with or without compact (d−1)dimensional bound-
ary B

c0 = vol(M), c1 = −
√

π
2

area(B)

and c2 = 1
3

R
M

K − 1
6

R
B

J
(18)

with the scalar curvature K and the mean curvature J at
the boundary. Therefore, for a planar region with a smooth
boundary B the number of holes h <∞ can be obtained:

c2 =
2π

3
(1− h) (19)

and for closed 2-dimensional manifolds the Euler character-
istic E:

c2 =
2π

3
E (20)

These results confirm the earlier results by Weyl and Kac
for planar regions, namely that the area and the length of
the boundary curve can be extracted (see above). Further
coefficients of the asymptotic expansion above have been
calculated (see Protter [54]).

Weyl’s law (equation 9) can be described as a result of the-
orem 3 (using Karamata’s Tauberian theorem and writingP

n e
−λnt =

R∞
0
e−λntdN(λ) cf. [28] p. 446 theo. 4). It is

therefore valid for Riemannian manifolds in general. Using
Weyl’s law we will now discuss how fast the series defining
Z(t0) in equation (15) converges for a fixed t0. We derive the
subsequent result (that we could not find in the literature).

Theorem 4
(Rapid Convergence of Heat Trace Series)
The remainder term Rn0(t) = Z(t) − Zn0(t) of the n0-th
partial sum

Zn0(t) :=

n0X
n=1

e−λnt (21)

describing the heat trace Z(t) vanishes very fast:

Rn0(t) <
n1−k1t

0

k1t− 1
=: R1(t) when t >

1

k1
(22)

Here k1 is a constant depending on the geometry of the
domain and on n0. In the special case of a two-dimensional
manifold the remainder is bound from above by:

Rn0(t) <
e−(n0+1)k0t

1− e−k0t
=: R0(t) (23)

with a constant k0 depending on the geometry of the domain
and on n0.

Proof:
We can write Weyl’s law (equation 9) as

λn ∼ 4π2

„
n

ωd vol(D)

« 2
d

= an
2
d as n ↑ ∞ (24)
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with the substitution a := 4π2(ωd vol(D))−
2
d (only depend-

ing on the dimension d of M). This asymptotic relationship
means that

λn ∼ an
2
d ⇔ lim

n→∞
λn

an(2/d) = 1

⇔ ∀ε > 0 ∃n0 :
˛̨̨

λn

an(2/d) − 1
˛̨̨
≤ ε (∀n ≥ n0)

⇔
˛̨̨
λn − an(2/d)

˛̨̨
≤ ε an(2/d) (∀n ≥ n0)

(25)

If λn ≤ an(2/d) it follows that

λn ≥ (1− ε)an(2/d) (26)

In the other case (λn ≥ an(2/d)), equation 26 holds trivially
when choosing 0 < ε < 1. Therefore, we can write

λn > k0 n
(2/d) (27)

and because exponential decay is much faster than polyno-
mial we get

λn > k1 lnn (28)

in general (for all λn with n > n0 and n0 depending on the
constant).

We can now find an upper bound for the remainder term
Rn0(t) for a fixed t using equation 28:

Rn0(t) =
∞P

n=n0+1

e−tλn

<
∞P

n=n0+1

e−k1t ln n =
∞P

n=n0+1

n−k1t

<
∞R

n0

x−k1tdx = 1
k1t−1

n1−k1t
0 if (k1t > 1)

(29)
This term vanishes very rapidly. The condition k1t > 1 can
be fulfilled for small t by choosing n0 large enough to get a
sufficiently large k1.

Of course the real convergence of Z(t) is even faster, since
the term above is just a rough upper bound. A tighter up-
per bound to the remainder term can be given in the case
of a surface (d = 2) with equation 27, because the series de-
scribing Z(t0) converges as rapidly as the geometric series:

Rn0(t) =
∞P

n=n0+1

e−tλn

<
∞P

n=n0+1

e−k0tn =
∞P

n=n0+1

`
e−k0t

´n
= e−(n0+1)k0t

1−e−k0t

(30)

�

Our observations above regarding the rapid convergence of
the series describing Z(t0) imply that there is hope to obtain
a decent approximation of the first coefficients ci in equa-
tion 16 using a moderate number of eigenvalues that can be
determined by feasible numerical computations.

3. NUMERICAL COMPUTATION
In this section we will explain the numerical computation of
the eigenvalues of surfaces and solids with the help of finite
elements. Readers familiar with the finite element method
may simply skip this section.

3.1 Variational Problem
For the numerical computation (next section), the first step
is to translate the Laplacian eigenvalue problem into a vari-
ational problem. To accomplish this, we use Greens for-
mula Z Z

ϕ∆fdσ = −
Z Z

∇(f, ϕ)dσ (31)

with ϕ ≡ 0 on the boundary (Blaschke [11] p.227) and the
Nabla operator

∇(f, ϕ) =
X

gij∂if ∂jϕ. (32)

We multiply the Helmholtz equation with test functions ϕ ∈
C2, (ϕ ≡ 0 on the boundary). Integrating over the area and
using Greens formula we obtain:RR

ϕ∆fdσ = −λ
RR
ϕfdσ

⇔
RR P

gij∂if ∂jϕdσ = λ
RR
ϕfdσ

(33)

(with dσ = Wdudv being the surface element in the surface
case). Every function f ∈ C2 on the open domain and
continuous on the boundary solving the variational equation
for all test functions ϕ is a solution to the Laplace eigenvalue
problem (Braess [13], p.35).

3.2 Discretization
For the numerical computation of the eigenvalues and eigen-
functions a discretization of the problem is necessary. The
solution of the variational problem in the surface case is ap-
proximated using the Galerkin technique as follows (see
e.g. Strang [58]):

• Firstly we choose n linearly independent form func-
tions: F1(~x), ..., Fn(~x) defined on the parameter space.

• Secondly we use these functions as a basis of a vector
space and allow the following linear combination as
approximation of the solution:
f(~x) ≈ F (~x) := U1F1(~x) + ...+ UnFn(~x).

• Finally we calculate the n unknown coefficients Ui ∈ R
by substituting f in the variational equation and by
choosing n different test functions ϕi to get n equa-
tions. In order to keep the problem symmetric we
choose the test functions to be the n form functions.

As form functions for the Finite Element Method we
used linear, quadratic and cubic polynomials defined on tri-
angular elements in the parameter space of the surface or on
tetrahedral elements in case of a solid. The higher degree
functions lead to a better approximation and consequently
to better results. Employing equation (33) then with the
two symmetric matrices

A = (alm) :=
“RR

(
P

j,k(∂jFl)(∂kFm)gjk)dσ
”

B = (blm) :=
`RR

FlFmdσ
´ (34)

the variational equation can be written as the general eigen-
value problem:

AU = λBU (35)

Here U is the vector (U1, . . . , Un) and A, B are sparse pos-
itive (semi-) definite symmetric matrices since all eigenval-
ues are greater or equal to zero. The solution vectors U
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(eigenfunctions) with corresponding eigenvalues λ can then
be calculated.

It should be noted that the integrals mentioned above are
computed on the surface (not on vertices of a given mesh)
and therefore independent of the given mesh (as long as
the mesh fulfills some refinement and condition standards).
Beyond that, this method is completely independent of the
given parametrization.

4. IMPLEMENTATION
In the present state we can use the following object rep-
resentations as input: A triangulation of a 2d-parameter
space together with any given parametrized surface as input
(our sample computations include NURBS, faceted surfaces,
etc.). Furthermore polyhedra or tetrahedrized 3d-parameter
spaces can be used as input. As we will see later, it is possi-
ble to glue parameter spaces to each other or to themselves
in order to construct closed or more complex objects.

Different techniques are used for mesh generation. The tri-
angulation of the parameter space employs a Delaunay tri-
angulation technique, resulting in triangles whose smallest
angles are maximized (Okabe [51]). Furthermore, a surface
sensitive triangulation technique based on Chen and Bishop
[18] has been implemented for the creation of high qual-
ity meshes on surfaces. This method uses surface curvature
and circumellipses (instead of circumcircles) in the param-
eter space to control the surface mesh quality and density
(see figure 3).

Figure 3: Surface sensitive meshing

In order to be independent of the given resolution, it is pos-
sible to further refine a triangulation or tetrahedrization.
Since we are interested in many eigenvalues and eigenfunc-
tions at once and since we do not know beforehand where a
dense mesh is needed for a specific eigenfunction, it is wise to
refine the mesh globally. It is also possible to refine locally.
This makes sense, for example, in areas with concavities
or with high surface curvature, since most eigenfunctions
will need fine meshes in these areas. Furthermore, for lo-
cal refinement an a posteriori error estimate can be used to
improve the calculation of a specific eigenfunction. For ex-
ample, the error estimate of Zienkiewicz-Zhu (see Ainsworth
and Oden [2]) detects regions where the approximation of an
eigenfunction yields errors. These regions can then be re-
fined locally to improve the results in a second computation.

Often the global refinement of a given triangulation is done

by dividing every edge into halves, thus creating four smaller
triangles within each triangle, each of them similar to their
parent. Further refinement can be achieved by repeating
this step. The problem with this method is that the total
number of triangles t raises exponentially with the steps n
of refinement (t = 4ntold) (with told triangles in the initial
mesh). After only a few steps the mesh is too large for ef-
ficient FEM computations. It is therefore helpful to have
a refinement method that provides more densely spaced re-
finement steps. In this way the maximal possible number of
triangles can be approached without exceeding it to early.

In order to be able to generate more closely spaced levels of
global refinement, the simple approach from above can be
modified slightly. Every edge can be divided into n equidis-
tant segments (see figure 4). This way, it is possible to
generate n2 similar smaller triangles in just a single step.
Since only this single refinement step will be used, the to-
tal number of finer triangles t yields a poynomial growth
(t = n2told).

Figure 4: Triangle refined with edge trisection

Even though this method seems to be very simple, it is quite
tricky to implement. The creation of a huge amount of
triangles in a single step makes bookkeeping very compli-
cated. Many new neighborhood relations have to be gen-
erated and the uniqueness of every new vertex has to be
assured. This turns out to be challenging especially with
vertices and neighborhood relations at the edges of each par-
ent triangle. The new neighbor-triangles might not yet exist
(the neighbor parent might not have been visited yet). In
order to avoid revisiting triangles later, the triangle indices
of the future neighbors have to be pre-calculated. Neverthe-
less, all of this can be done within a single run through the
triangle list, resulting in a very time efficient and flexible
routine for global refinement.

To be able to glue different patches to each other or even
glue a patch to itself we developed a special data structure
called “structural atlas”. The “structural atlas” consists
of one or several polygonal triangulated parameter spaces,
associated parametrizations (functions mapping a point of
the parameter space into R3) and a list of edge pairs glued
to each other. The glued edges must lie on the boundaries
of the parameter spaces. With the help of this data struc-
ture it is possible to use a broad variety of parametrizations
to construct surfaces, since the boundary of the parameter
space does not necessarily need to be the boundary of the
surface patch anymore. The atlas can easily be employed to
construct a torus, a sphere and many other closed or non-
closed surfaces. It is not necessary that the mapped edges
are located on top of each other in R3, therefore even ob-
jects like flat tori that cannot be embedded in R3 can be
constructed. This is a great advantage since models with
correct topology (e.g. boundary representations where the
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patches are glued correctly to each other) but with gaps or
holes in the geometry can be given as input without any
pre-processing.

Figure 5 shows the construction of a cylinder with spheri-
cal caps. The cylinder with spherical caps consists of three
parameter spaces glued to each other with corresponding
parametrizations mapping the triangles to hemispheres and
the rectangle to the cylinder shell. The reason why it is pos-
sible to glue different patches to each other is simply that
different local parametrizations do not change the values of
the integrals used to compute the two matrices A and B,
defined invariantly only employing the Riemannian metric.
Therefore our method also works with faceted surfaces (such
as the boundary of 3d-polyhedra).

Figure 5: Glued parameter spaces of a cylinder with
spherical caps

Finally, before computing the surface integrals mentioned
earlier, the Cuthill algorithm [23] is applied to the interior
vertices of the triangulation or tetrahedrization to keep the
usage of memory small. By renumbering the vertices in a
way that adjacent vertices get numbers close to each other,
the bandwidth of the two resulting sparse symmetric matri-
ces can be reduced. These band matrices can be stored very
efficiently. Because of the boundary condition (f ≡ 0 on the
boundary) the vertices on the boundary do not need to be
indexed. After calculating the integrals (being the entries of
the two matrices), a NAG (Numerical Algorithms Group)
FORTRAN library [47] is used to solve the general eigen-
value problem. In addition to the eigenvalues it is possible
to compute the eigenfunction in the same manner. If only a
small number of eigenvalues is needed, a Lanczos algorithm
([35]) can be employed to solve large symmetric eigenvalue
problems even faster than this is possible with the direct
method used in the NAG library.

4.1 Convergence and Accuracy
It is well known that the convergence rate of the FEM
method with degree p behaves asymptotically (with an er-
ror of order O(hp+1)) as the element size h tends to zero
and if the exact solution contains no singularities (see e.g.
Zienkiewicz and Taylor [70]). Given two approximate solu-
tions, u1 obtained with mesh size h and u2 with mesh size

h/2, then a close approximation of the exact solution u can
be calculated from„

O(hp+1)

O(hp+1/2p+1)

«
≈ u1 − u

u2 − u
≈ 2p+1 (36)

in most practical cases [70]. This is possible because the
described convergence rate is generally reached very fast. It
should be noted that many discrete Laplace-Beltrami
operators defined on meshes and used for computer graph-
ics applications are not convergent in general, some of
them are not even an approximation of the continuous case
(cf. Xu [68]). Furthermore, most of these discrete opera-
tors are only discretizations of the Laplacian in the case of
manifolds without boundary.

In addition to the known convergence rate, further possi-
bilities exist to assess our results. Our FEM computation
yields very accurate results as can be verified when com-
paring the approximated results with the exact ones known
from theory in some cases (rectangle, circle, sphere, cube,
ball, cylinder etc.). Additionally, the fact that we are able
to extract the correct geometrical data (volume, boundary
length, Euler characteristic) from the heat trace expansion
indicates that the calculated eigenvalues are very precise.

4.2 Planar Polygonal Domains
For planar polygonal domains there exists a method for
calculating the eigenvalues of the Laplacian that uses the
knowledge of the correct solution at the singularities (the
vertex points of the polygon) employing radial basis func-
tions in polar coordinates and the integration of Fourier-
Bessel functions on subdomains. This method was proposed
by Descloux and Tolley [24] and improved by Driscoll [26]
and yields very exact results (proven in [10]). To be able to
use their method for any planar polygonal domain, we had
to extend it to handle inner domains. We also developed and
implemented a fully automatic algorithm to subdivide any
polygon into subdomains (see figure 6 for an example). The
star shaped subdomains around each center need to obey
special conditions dictated by Descloux and Tolleys method.
For example, the size of each subdomain is bounded by the
distance of its center to the closest neighbor center. With
our software it is possible to find a close approximation to
an eigenvalue inside a specified interval. It is therefore effi-
ciently possible to calculate a few eigenvalues very exactly.
For larger quantities of eigenvalues (e.g. 100 or even 1000),
this method is not suitable, though it might be possible to
combine it with our FEM computation to improve our pre-
calculated results.

Note that Descloux and Tolley [24] were already inspired by
the method of particular solutions that had been proposed
by Fox, Henrici and Moler [29]. This method has been re-
vived by Betcke and Trefethen [10] quite recently. They
were able to overcome its numerical limitations by forcing
the solutions to be largely non-zero in the interior of the
planar domain. With their refined method they computed
highly accurate eigenvalues and verified their correctness.

5. EXTRACTION OF GEOMETRIC DATA
5.1 Error Computation and Extrapolation
The numerical extraction of geometric data from the heat
trace (cf. equation 15 and 16) appears to be completely new.
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Figure 6: Subdomains of polygon

The asymptotic expansion (16) as (t → 0+) can be under-
stood as

X(t) := (4πt)
dim(M)

2 Z(t) =

nX
i=0

cit
i
2 + O(t

n+1
2 ) (37)

With the substitution x :=
√
t and d := dim(M) we get

X(x) = (4π)
d
2

∞X
i=1

xde−λix2
=

nX
i=0

cix
i + O(xn+1) (38)

and for (x→ 0+) the first coefficient c0 can be calculated:

lim
x→0

X(x) = lim
x→0

 
nX

i=0

cix
i + O(xn+1)

!
= c0 (39)

The coefficients c1 and c2 can be calculated similarly using
the limit values of the derivatives

c1 = lim
x→0

X ′(x) = lim
x→0

(4π)
d
2
∞P

i=1

xd−1(d− 2λix
2)e−λix2

c2 = 1
2

lim
x→0

X ′′(x)

(40)
The only handicap is that instead of the whole spectrum
only the first n eigenvalues λi are known. Therefore the
infinite sum in X(x) can only be evaluated partially for the
first n summands. However, as we showed in Theorem 4
in section 2.3, we receive good results for sufficiently large
x because the convergence rate is fast enough for x large
enough. Of course, the function

Xn(x) := (4π)
d
2

nX
i=1

xde−λix2
(41)

and its derivatives yield a large error if x gets too small,
since the infinite sum is replaced by a finite summation.
Therefore the values ci have to be computed by extrapola-
tion. Actually, the error stays quite small for larger x and
then increases rapidly if x drops below a certain value. In
figures 8 and 9 (that we will discuss in more detail later)
the function X1000(x) is plotted with the first 1000 known
eigenvalues of the sphere. It can be seen that X(x) breaks
away when x gets smaller than 0.1. The interesting question,
which values of X(x) are reliable and which are not, can now
be answered with the help of Theorem 4 via computation of
the constants k0(1000) and k1(1000).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  1000  2000  3000  4000  5000
n

S(n)

K0(n)

K1(n)

Figure 7: Spectrum of the sphere with lower bounds

We can see in figure 7, where the first 5000 eigenvalues of the
sphere are plotted (step function S(n)), that we can get a
safe approximation of k1 = 143 since the linear growth of the
eigenvalues larger than λ1000 will stay above the logarithmic
function K1(n) := 143 lnn (cf. Theorem 4). Since we have
a two-dimensional problem (sphere surface) and therefore a
linear growth of the eigenvalues, a tighter lower bound for
the eigenvalues can be given by the line K0(n) := k0n with
k0 = 0.96969 (again see figure 7). Of course, in general, one
cannot be sure that all higher eigenvalues will stay above
the bounds λn > K0,1(n). This theoretical objection can
be diminished since the eigenvalues usually start to obey
Weyl’s law very early and since many more eigenvalues are
computed than needed for Xn, which can be used to verify
and if necessary to correct the constant. To be on the safe
side, one can simply apply the weaker logarithmic bound K1

and use the constant k1 for the error estimation.
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Figure 8: X(x) for the sphere with error using k1

Using the constants k0 and k1 the upper bound of the er-
ror (remainder term R0(x) and R1(x) respectively) can be
computed via Theorem 4. In figures 8 and 9 the function
X1000(x) is plotted together with the upper bounds of its
remainder term. In the first case we computed the gen-
eral bound R1 using k1 that holds in any dimension. As
shown in the assertion, this bound can only be applied for
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Figure 9: X(x) for the sphere with error using k0

x >
q

1
k1

≈ 0.08363 which is still sufficiently small. It

can be seen that the values of X(x) for x > 0.1 are very
good. Using the constant k0 (that can be applied since the
sphere is a 2-dimensional manifold) yields a much better
upper bound R0 of the error (see figure 9). We observe
that values for x > 0.08 are already very good. These left
bounds (x-values where the function R(x) shrinks below a
given error ε) can be computed numerically and depend on
the number of eigenvalues used.
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Figure 10: Left bounds x(n) with ε = 0.0000001

In figure 10 we see these left bounds (x-values) plotted against
the used number of eigenvalues n (again in the case of the
sphere) for a given ε = 0.0000001. This graph shows, how
far we can approach zero given a number of eigenvalues
(with an error certain to stay below ε). As can be seen, the
graph shrinks rapidly at the beginning, it then slows down
at around 500 eigenvalues and decreases only slightly above
1000 eigenvalues. In other words, it does not help much to
use more than 1000 eigenvalues for the computation, since
the left bound barely keeps moving. The inverse plot n(x)
is also interesting, because it shows how many eigenvalues
are actually needed if X(x) shall be computed with an error
below ε for a given x.

Since we cannot approach zero any closer than the left bound
x(n), the computation of the limits of X and its deriva-

tives for x → 0 in eq. (39) and eq. (40) have to be done
via extrapolation. For this purpose we constructed an in-
terpolating rational function (using the NAG library) and
evaluated the interpolant at x = 0. This automatic process
yields very good results when computing the first coefficient
c0. Because the derivatives of the interpolant are not as pre-
cise, we interpolated the derivatives of X(x) successively in-
stead. Since no error bounds have been constructed for the
derivatives so far, some user interaction was necessary for
the appropriate placement of the sampling points. We are
currently working on improved methods using different ex-
trapolation functions employing also the known derivatives
at some sample points. We think that with more suitable
extrapolation or fitting routines and a refined error analysis
for the derivative values (X ′ and X ′′) further automation
and a higher accuracy of the computed geometric data will
be possible.

5.2 Examples
5.2.1 Ellipse
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Figure 11: Extrapolation of X500(x) for the ellipse

In the case of the ellipse with radii (r1 = 1.0, r2 = 1.5) we
used an affine transformation of the disk for the numerical
eigenvalue computation (cf. section 6.1 and figure 13 for
a parametrization), keeping the mesh well conditioned. In
figure 11 the function X500(x) is plotted together with its
extrapolating rational function E(x). The computed value
A = E(0) = c0 = 4.71075 describes the area of the ellipse,
a number quite close to the real area 1.5π ≈ 4.712389. A
different polynomial extrapolation function

Ap := Ep(x) = 4.71121− 7.04364x+ 0.19791x2 (42)

looks exactly the same, but yields an even better approxi-
mation of the area

Ep(0) = c0 ≈ 4.71121. (43)

The approximated boundary length

L ≈ −2√
π
c1 ≈

−2√
π

(−7.02176) ≈ 7.9232 (44)

which is close to the real length 7.93272 (computed by inte-
gration of the boundary curve) could be obtained by extrap-
olating the first derivative X ′(x). Furthermore, the number
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of holes h, a topological invariant and determining the Euler
characteristic,

h =
−3c2
2π

+ 1 ≈ −3 · 2.0862

2π
+ 1 ≈ 0.00391 ≈ 0 (45)

could be obtained correctly (of course the result has to be
an integer value). All the results with relative error can be
found in table 1.

real extracted error
A 4.712389 4.71075 0.035%
Ap 4.712389 4.71121 0.025%
L 7.93272 7.9232 0.12%
h 0 0.00391 -

Table 1: Geometric data of ellipse

5.2.2 Annulus

Using the Laplace-Beltrami operator on a parametrization
of the annulus with outer radius 1 and inner radius 1/3 for
the computation of the spectrum, we extracted its area and
boundary length exactly at least up to the 3rd decimal place
and obtained the number of holes h = 1 (since c2 is almost
zero, as can be seen in figure 12).
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Figure 12: Extrapolation of X ′′500(x) for the annulus

5.2.3 Sphere
The sphere with radius 1 has a surface area of 4π ≈ 12.5664.
We extracted the area

A = 12.557 (46)

from the computed eigenvalues employing the Laplace-Bel-
trami operator on the surface. The boundary length L = 0
is already known from the fact that the first eigenvalue is
also zero (since the sphere is a closed surface, cf. section 2.1).
The extracted Euler characteristic

E = 1.902 ≈ 2 (47)

is a close approximation to the real characteristic. The re-
sults can be found in table 2.

real extracted error
A 12.5664 12.557 0.075%
E 2 1.902 -

Table 2: Geometric data of sphere

5.2.4 Ellipsoidal hemisphere

The ellipsoidal hemisphere with radii (r1 = r2 = 1, r3 =
1.5) serves as an example for a bounded, curved surface.
The extracted surface area and boundary length together
with the relative error can be found in table 3.

real extracted error
A 8.459 8.459 0%
L 2π ≈ 6.283 6.25761 0.404%

Table 3: Geometric data of ellipsodial hemisphere

5.2.5 Ball
For the solid ball we deformed a cube using the parametriza-
tion as described in section 6.1. Even the extraction of
the volume V and the boundary surface area A for
this smoothly bounded 3d solid was possible. Ta-
ble 4 presents the exact and the extracted values together
with the relative error. We notice a larger error than in
the 2d surface examples presented above. This is due to the
fact that the additional complexity of the new dimension re-
sults in denser and larger matrices and therefore allows only
coarser meshes. As we will show later, these coarse meshes
are good enough for the first lowest eigenvalues to be quite
accurate. The larger λn with n around 500 however show
errors up to 11% . We also obtained similar results for the
unity cube (see [55]).
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real extracted error
V 4/3πr3 = 4.18879 c0 = 4.058 3.12%
A 4πr2 = 12.56637 −2√

π
c1 = 12.049 4.12%

Table 4: Geometric data of the ball

5.2.6 Remarks
Furthermore, we obtained very good results for the torus
extracting its area and Euler characteristic (see [55]), em-
ploying the ”Atlas” data structure for the construction and
computation. In all examples above we used only the first
500 eigenvalues. Of course all of the shown values can be
improved if higher sufficiently correct eigenvalues are used
(using a higher refinement of the mesh or more accurate and
faster computation methods available for special cases, e.g.
planar shapes).

6. APPLICATIONS
Before we look at some application examples, we want to
give a brief overview on the necessary steps described so far:

1. Pre-process:
Some objects might need to be pre-processed for the
computation of the eigenvalues. Pre-processing in-
cludes e.g. conversion into a dataformat supported by
the FEM engine (like triangular meshes, surface para-
metrizations such as spline patches or composed patches
as a ”structural atlas”, tetrahedrizations of solids, para-
metrized solids). If the given object is not a manifold,
or consists of several separated components, it first
has to be repaired or the desired component has to be
selected. If the eigenvalue computation of a scene con-
taining several components is carried out at once the
resulting ”Shape-DNA” is the union of the eigenvalues
of the single components ordered by size. In such a
case, shape matching is still possible (if e.g. the whole
scene needs to be compared to a scene with similar
components or if single components shall be found)
whereas the extraction of geometric data cannot be
accomplished in this way.

2. Eigenvalue computation:
The computation of the eigenvalues is the most time
consuming step. It can be done with the FEM method.
In the case of a solid tetrahedrization or planar trian-
gulation, a commercial software package can be em-
ployed for this task. For the parametrized objects (us-
ing the Laplace-Beltrami operator, equation 4) and
for 3d-meshes such a software package needs to be
expanded, or proprietary FEM software solving the
Helmholtz equation (6) for these cases needs to be de-
veloped. To get accurate results, remeshing or mesh
refinement of the object might be necessary (see also
section 4). In some cases (where the initial mesh is too
fine) mesh simplification can be applied to speed up
the computation. The FE-method can be divided into
two parts. The first part creates a discrete general-
ized eigenvalue problem Ax = λBx with two large and
sparse symmetric positive (semi-)definite matrices A
and B (equation 34). The second part solves this prob-
lem (employing standard libraries as e.g. ARPACK or

NAG). The computation time of the FE-method de-
pends on the degrees of freedom (dimension of the
matrices). The dimension depends on the number of
elements (triangles or tetrahedra), on the connectivity
of the mesh and on the degree used for the FEM com-
putation. Usually, we use cubic elements. If the given
surface or solid has a boundary, generally the Dirich-
let boundary condition (fixed membrane) is applied. If
objects with small holes or missing triangles are
to be compared the Neumann boundary condi-
tion can be used instead, because the unwanted
holes appear not to change the Neumann spec-
trum as much as in the Dirichlet case.

3. Post-process:
When the eigenvalues of the surface or solid have been
computed, they can be post-processed depending on
the desired application. As will be described in the
next sections, scaling can be undone using different
approaches. Furthermore geometric data can be ex-
tracted, or the ”Shape-DNAs” (vectors of eigenvalues)
can be compared for shape identification or matching.

With the help of this ”Shape-DNA” several applications can
be realized. As mentioned before, one can use the ”Shape-
DNA” to identify objects for the purpose of copyright pro-
tection, even when they are given in different representa-
tions. Similar objects having similar ”Shape-DNA” can be
detected fast by comparing merely the ”Shape-DNA”, en-
abling the use of our technique for database retrieval and
shape matching. Furthermore the ”Shape-DNA” can be
used for quality assessment, e.g. when converting or pro-
ducing objects to prove that the shape of the converted ob-
ject has not been modified. In order to apply our technique
in these areas, three requirements need to be fulfilled.

• Firstly, the ”Shape-DNA” needs to be very accurate,
ensuring that the same ”Shape-DNA” is calculated for
an object when using different meshes or even when
it is calculated analytically. This requirement can be
fulfilled by using sufficiently dense meshes, since the
convergence of the FEM is known.

• Secondly, similar but different objects should have dif-
ferent ”Shape-DNA”, making it possible to discrim-
inate between these objects. This property is only
violated by the artificially constructed isospectral but
not isometric objects (identical twins) described ear-
lier. Anyhow, we will present evidence in section 6.3.4
that for some isospectral 3d-solids, the ”Shape-DNA”
of the boundary surface can be used as a discrimina-
tion criterion.

• Thirdly, similar objects need to have similar ”Shape-
DNA” in order to detect the similarity. This require-
ment is completely fulfilled by the spectra. We will
show in section 6.3.6 that this property allows the de-
tection of small deformation and leads to a clustering
of similar objects when applied for shape matching.

In order to discriminate and compare similar objects via
their ”Shape-DNA”, a distance measure for ”Shape-DNA”
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will be constructed. Before we look at the accuracy of the
computation, we want to give the following definition.

Definition 3 (Shape-DNA)
Let M be a Riemannian manifold with a metric g and let

spec(M, g) = {λ0 ≤ λ1 ≤ λ2 ≤ ...} (48)

be the function computing the spectrum of (M, g) for a given
boundary condition (we use the zero Dirichlet condition if
not noted otherwise). spec : M→ RN

≥0 maps a Riemannian
manifold (M, g) ∈ M to the positive infinite dimensional
space. The cropped spectrum containing only the first n
eigenvalues

cspecn(M, g) = {λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn} ∈ Rn
≥0 (49)

is called Shape-DNA of (M, g) and can be seen as a point
in the n dimensional positive Euclidean space Rn

≥0.

We compute these cropped spectra (”Shape-DNA”) contain-
ing a finite number n of eigenvalues (50 to 100, or up to 500
for the extraction of data), since the numerical computation
of the whole spectrum is generally not possible.

6.1 Accuracy
At first we want to corroborate the requirement ”accuracy”
by looking at a few example calculations where the exact
eigenvalues are known. If not noted otherwise, the compu-
tation was done on a standard PC (AthlonXP running at
1667 MHz). The eigenvalues of the unit disk, for exam-
ple, are the squares of the roots of the Bessel functions Jn

(Courant [20], p.261). By approximating the area of the
disk with linearly bounded triangles one always gets a dis-
cretization error at the boundary. Therefore the resulting
eigenvalues are not very accurate compared to the superior
technique used below. In this computation (with cubic ele-
ments and 4021 degrees of freedom) the first eigenvalue al-
ready shows an error of approx. 0.067%. Higher eigenvalues
are even more erroneous. These results can be improved by
exploiting the fact that the Laplace-Beltrami operator (due
to its invariance properties) yields the same eigenvalues even
if a different parametrization of the same surface is applied.
Of course the Laplace-Beltrami operator can be applied to
parametrizations of planar objects as well as for surfaces in
3d. In this example we choose a special parametrization f
(not the identity as above) defined on a polygonal parame-
ter space glued to itself at the appropriate boundary edges
(as can be seen in figure 13). This parametrization f maps
the triangular parameter space onto the disk:

f(u, v) = rv

0B@ cos πu
v

sin πu
v

0

1CA with 0 < v ≤ 1 , |u| ≤ v (50)

additionally defining f(0, 0) := (0, 0, 0).

This method leads to a computation of the smoothly boun-
ded disk without any discretization error at the boundary.
Another advantage of the parametrization f (compared to
polar coordinates, where a whole edge of the parameter
space boundary collapses if r = 0) is that we have well-
behaved triangles at the center that do not degenerate when
using a higher resolution (refinement). Therefore, with only
3781 degrees of freedom the first eigenvalue is exact up to

Figure 13: Parameter space of the disk

the eighth decimal place and even λ99 is approximated with
a relative error of only 0.027%.

The aforementioned free choice of a parametrization that is
especially suited for the numerical computation is only pos-
sible because of the property of the Laplace-Beltrami oper-
ator to be independent of any isometric reparametrization.
This does not hold for the classical continuous Laplace op-
erator since it operates on functions defined directly on the
Euclidean space (with Euclidean metric). Generally, we ob-
serve an advantage of the Laplace-Beltrami operator over
the simple Laplacian even for planar domains: using the
free choice of a parametrization we have utilized something
like “free form finite elements”. That way, any surface
can be triangulated without discretization error at the
boundary. The computations of eigenvalues based on these
parametrizations are very accurate.

Remark 1 (Spectral determination of some shapes)

Since we know what happens to the eigenvalues when scal-
ing the area (see section 2 “Theoretical Background”), the
eigenvalues of a disk with radius r can be calculated as

λn,m =
k2

n,m

r2
with the Bessel function Jn(kn,m) = 0 (51)

Kac [40] proved that no planar shape is isospectral to
the disk, except the disk itself. Therefore, given a pla-
nar shape, it is possible to calculate the radius with the
first eigenvalue

r ≈ k0,1√
λ1

(52)

It is then possible to test the assumption that a given
shape is a disk with further eigenvalues. In fact, all Eu-
clidean balls are determined among solids by their spectra
in any dimension. This follows from the fact that the vol-
ume and the boundary area of the domain are determined
by its spectrum (cf. heat coefficients in equation 18) and
using that an isoperimetric region (a region with maximal
volume related to the boundary size) in Rn is always a ball
(see [3]). A similar argument leads to the result that
all regular polygons D ∈ R2 with n sides are spec-
trally determined among planar polygons with not
more than n sides (since the area and boundary ratio is
again fixed by an isoperimetric equality [3]). Furthermore,
Tanno [59] proved that all round spheres in dimensions up
to six are completely characterized by their spectra. For
higher dimensions the validity of this result appears to be
still open.
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A similar eigenvalue calculation as in the disk case can be
done for the sphere. Even though the sphere is a surface
with curvature, the eigenvalues computed with this parame-
trization are very accurate. With 5447 nodal points we ap-
proximated

λ101 = 110 ≈ 110.55599 (53)

with a relative error of 0.5055% in 4 seconds and with 11522
nodal points we obtained

λ101 = 110 ≈ 110.0003989 (54)

with a relative error of only 0.0004% in 73 seconds. Gener-
ally, these high resolutions are not necessary for most appli-
cations.

In order to show that we can use a 3d triangle mesh (a
surface consisting of planar triangular faces) instead of a
parametrized surface as input, we calculated the eigenvalues
of a triangle mesh approximating the unit sphere with 11522
degrees of freedom and 2560 triangles in 5 seconds using
cubic elements. The eigenvalues

λ1 ≈ 0 , λ2−4 ≈ 2.005 , λ4−5 ≈ 6.014 . . . (55)

are very close to the eigenvalues of the sphere (0,2 and 6), as
expected, since the triangle mesh approximates the real sur-
face very exactly (with a maximal distance of only 0.0026)
and because of the continuity property of the spectrum (cf.
section 2.1). Yet it should be noted that this faceted sphere
is of course only an approximation and not the sphere it-
self, therefore the spectra have to differ slightly from each
other. An advantage of using polygonal meshes instead of
parametrized surfaces is that no numeric integration (cuba-
ture) is needed by the FE-method for the construction of
the matrices. Since all triangles are planar, the integrals
(eq. 34) can be evaluated for the unity triangle once and
then transported to an arbitrary triangle, resulting in an
enormous speed-up in computation.

For the computation of the eigenvalues of the round sphere
the parameter space of the sphere was glued to itself. Simi-
larly, we computed the eigenvalues of tori. Since the correct
eigenvalues of non flat tori are not known from theory, they
cannot be used to verify our computations and will there-
fore not be discussed here. More complex objects can be
constructed by gluing different patches to each other. The
cylinder with spherical caps presented in section 4 figure 5
for example consists of three surface patches. Since the real
eigenvalues of this compound surface can be derived from
results in (Beekmann [4]) we will present a comparison with
our values (see table 5). For the first computation we used
the Laplace-Beltrami operator on the surface with 4056 cu-
bic elements (18254 degrees of freedom) to approximate the
eigenvalues very exactly. The construction of the matrices
A and B together with the pre-processing (refinement) took
58 seconds and the computation of the first ten smallest
eigenvalues using the ARPACK library approx. 5 seconds.
In a faster computation we only used 216 cubic elements
(974 degrees of freedom) and computed the shown values in
3 seconds.

As examples of 3d-solids we will look at the 3d-cube and
the 3d-ball. The eigenvalues of the cuboid with side lengths

EV real FEM(18254) FEM(974)
Time - 58s + 5s 3s + 0s
λ1 0 0 0
λ2 0.5974034 0.5974034 0.5974034

λ3, λ4 1.3450307 1.3450624 1.3456242
λ5 2.1930427 2.1930427 2.1930430

λ6, λ7 2.5588079 2.5589283 2.5610538
λ8 4.4586760 4.4586760 4.4586826
λ9 4.5416743 4.5416754 4.5421094

Table 5: Eigenvalues of the cylinder with spherical
caps

Figure 14: Ball with parameter-cube

a, b, c are known from theory:

λΩ
M,N,O = π2

„
M2

a2
+
N2

b2
+
O2

c2

«
with M,N,O = 1, 2, . . .

(56)
The eigenvalues can also be computed numerically, using
the Laplacian in Euclidean space, a tetrahedrization of the
cube and an appropriate FEM computation. The smallest
computed eigenvalues are close to the correct ones:

λ1,1,1 = 29.6112 ≈ 29.6088 , λ2,1,1 = 59.2343 ≈ 59.2176
(57)

This computation was done with 6144 quadratic elements
(tetrahedra) resulting in 7471 degrees of freedom. The con-
struction of the matrices took 18 seconds and the computa-
tion of the first 10 eigenvalues 20 seconds.

In the case of the ball, the computation is even more interest-
ing, since it is smoothly bounded and cannot be discretized
with linearly bounded tetrahedra without error. Therefore
we used a tetrahedrized cube as parameter space and the
3d-Laplace-Beltrami operator to calculate the eigenval-
ues of the ball (see figure 14 for the tetrahedrization). Our
parametrization (with ‖ · ‖∞ ,‖ · ‖2 being the maximum and
Euclidean norm respectively)

f(u, v, w) =
‖(u, v, w)‖∞
‖(u, v, w)‖2

0@ u
v
w

1A (58)

shrinks the cube with −1 ≤ u, v, w ≤ 1 onto the unit ball,
mapping the boundary of the cube onto the boundary of
the ball, thus making it possible to carry out the calculation
without having to glue the solid to itself but still without
discretization error at the boundary. The first approximated

17



eigenvalues, using the same resolution as in the example
above,

λ1 = 9.88 ≈ 9.8696 , λ2 = 20.357 ≈ 20.1907 (59)

are close to the real values (known from theory) but higher
eigenvalues are getting inaccurate due to the calculation
with a low resolution (refinement). In this example the com-
putation of the matrices took 155 seconds and the compu-
tation of the first 10 eigenvalues 47 seconds.

6.2 Distance of "Shape-DNAs"
For the purpose of shape comparison and identification we
need to apply a distance calculation to the spectra. In most
cases shape comparison is applied to objects independent of
their size. Therefore the ”Shape-DNAs” (spectra) need to
be normalized first. Such a normalization can be achieved by
scaling the vector containing the eigenvalues with an appro-
priate scaling factor. The following normalization methods
are possible: The ”Shape-DNA” of a d-dimensional Rieman-
nian manifold can be . . .

1. . . . divided by its first non-zero eigenvalue.

2. . . . divided by the factor c of the fitting curve

f(x) = cx
2
d (60)

fitting f(n) := λn (cf. Weyl’s law in equation 9 and
10). For d = 2 the factor c is simply the slope of the
fitting line. The dimension d can easily be determined
if enough eigenvalues are given.

3. . . . multiplied by V
2
d , where V is the Riemannian vol-

ume of the manifold extracted by extrapolation from
the spectrum (for d = 2 this is simply a multiplication
by the surface area).

4. . . . multiplied by V
2
d , where V is the real Riemannian

volume that has been calculated externally via a pre-
process (again for d = 2 this is simply a multiplication
by the surface area).

5. . . . multiplied by s2, if the scaling factor s of a given
object is known.

The first normalization method is sufficient when trying to
identify an object, since the ”Shape-DNA” will be exactly
the same after normalization. The methods two to four can
be used if similar shapes are to be detected. It should be
noted that the slope of the fitting line is a rough approxi-
mation to 4π/A where A is the area of the two dimensional
manifold (see ”Weyl’s Law” equation 9 in section 2.3).

In the next step the normalized ”Shape-DNAs” are cropped
to lower the number of eigenvalues n (to 10-100) and the mu-
tual Euclidean distances of the resulting n-dimensional vec-
tors of eigenvalues can be calculated. Let Λ = (λ1, λ2, . . . , λn)
andM = (µ1, µ2, . . . , µn) two n-dimensional ”Shape-DNAs”
then the p-norm of the distance can be expressed as

dp,n(Λ,M) :=‖ Λ−M ‖p,n=

 
nX

i=1

(λi − µi)
p

! 1
p

(61)

The Euclidean distance is simply d2,n. It is possible to use a
different distance (another p-Norm, a symmetric Hausdorff
distance or the correlation) but our results show that the
Euclidean distance leads to good results. Further research
will be done on applying different weights to the eigenvalues
(for example emphasizing the smaller eigenvalues by divid-
ing λn through n).

6.3 Examples
6.3.1 Independence of Representation
For the application in copyright protection, database re-
trieval and quality assessment it is necessary that shapes can
be identified, even if the object has a different parametriza-
tion, with a different spatial position and size. Therefore we
computed the ”Shape-DNAs” of the three B-Spline patches
B1, B1′ and B2 (backs of display dummies) that can be
found in 8. Appendix. The patch B1′ is a scaled, trans-
lated and rotated version of patch B1 where the degree has
been additionally raised. Patch B2 is a deformation of B1
with a leaner waist and smaller shoulders. As expected, the
”Shape-DNA” of B1 and B1′ are almost identical (distance
d2,50 = 0.079) while the ”Shape-DNA” of B2 differs from
the other two ”Shape-DNA” by a distance of d2,50 = 45.6
(when scaling with the fitting line and using n = 50 values).
When using different meshes for the calculation, a different
representation as a height function or even when introduc-
ing small errors (at the control points), the ”Shape-DNA”
comparison leads to the same clear results.

6.3.2 Continuous Dependence on Shape
In the subsequent example we deform an ellipsoid and plot
the first eigenvalues. The deformation starts with an ellip-
soid with radius 1 in x and y direction and 0.5 in z direc-
tion. Then the z-radius was slowly shifted up to 1.5 in 100
steps. Figure 15 shows that the eigenvalues move continu-
ously, as discussed earlier and described in property [SIM-
ILARITY]. In the case of the sphere (z-radius = 1 in step
50) the graphs describing the eigenvalues intersect because
many eigenspaces coincide.

6.3.3 Discrimination Power
To show how the spectrum can distinguish between different
shapes with the same area, perimeter, incircle, circumcircle
and sum of angles, the eigenvalues of the two polygons Isovol
I1 and I2 (see 8. Appendix) have been calculated. It can

EV patch 1 patch 2 diff.
λ1 1.4303697 1.3619184 0.0684513
λ2 2.9252157 2.4698985 0.4553171
λ3 3.4078884 3.4220482 0.0141597
λ4 4.0994027 3.8857960 0.2136067
λ5 4.6141383 5.3698187 0.7556803

Table 6: Eigenvalues of the iso-domains

be seen in table 6 that the first few eigenvalues of the two
patches are already quite different from each other. The
Euclidean distance of the two normalized 50-dimensional
”Shape-DNAs” is d2,50 = 53.5. Even when transforming
I1 slowly into I2 by moving the north bay to the right (and
keeping the geometric properties specified above constant),
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Figure 15: Spectra of the ellipsoid deformation de-
pends continuously on the shape

the corresponding continuous movement of the eigenvalues
can be detected.

6.3.4 Discrimination of the GWW-Prisms
In section 2.2 ”Isospectrality” we presented an example of
isospectral but not isometric planar shapes. Of course isospec-
tral but not congruent solid bodies exist in 3d as well. In
fact they can be easily constructed from planar shapes by
sweeping the isospectral 2d-domains into a third orthogonal
direction for a distance h. The 3d prisms constructed that
way are isospectral when they have the same height h. Fig-
ure 16 shows two such prisms that were constructed with the
planar GWW drums found by Gordon, Webb and Wolpert
[34]. The theoretical eigenvalues λ and the eigenfunctions f

Figure 16: GWW solid isospectral prisms

of the GWW-prisms with height h can be computed from
the eigenvalues µ and the eigenfunctions s of the 2d-GWW-

drums via this formula (for any constant c):

λ = µ+ l2 (62)

f(x, y, z) = s(x, y) c sin (lz) (63)

with l :=
`

Nπ
h

´
and N ∈ N>0. This result can be obtained

by separation of the new variable z in the Helmholtz equa-
tion (6). It can be verified quite easily by plugging the
solution into (6) and noting that ∆s = −µ s (since it was a
solution to the 2d problem):

∆f = ∆ (c s sin (lz)) (64)

= c
`
∆s sin (lz)− s l2 sin (lz)

´
(65)

= −
`
µ+ l2

´
c s sin (lz) = −

`
µ+ l2

´
f (66)

and by verifying the boundary condition for z = 0 and z = h
(sin (0) = 0 = sin (lh)).

At first we will present our computational results together
with the theoretical results employing the eigenvalues of the
planar GWW drums as computed very exactly by Driscoll
[26]. It can be seen in table 7 that eigenvalues of the two

EV theoretical prism 1 prism 2
λ1 5.0053451 5.0128509 5.0129320
λ2 6.1229108 6.1317422 6.1317167
λ3 7.6429605 7.6596645 7.6595216
λ4 9.0049585 9.0151974 9.0153987

Table 7: Eigenvalues of the GWW-Prisms

prisms (with height h = 2) are very similar (due to their sim-
ilar tetrahedrization). The computed eigenvalues are very
close to the theoretical ones, even though this is a 3d exam-
ple and the FEM computation in 3d is not as exact as in 2d
because of the lower resolution possible.

The interesting fact about these 3d isospectral solids is that,
even though they cannot be distinguished by the ”Shape-
DNA” of their body, the ”Shape-DNAs” of their boundary
shells can tell them apart. Since we can use a much higher
mesh refinement in 2d, the computation of the shell will be
much more accurate and reliable. In table 8 we present the
4th eigenvalue of the two prism shells (with height h = 2)
for different mesh resolutions (edge length l).

edge prism 1 prism 2 diff-abs diff-rel
l 0.57145 0.65719 0.08575 13.0474%

2 l / 3 0.57133 0.65711 0.08578 13.0543%
0.5 l 0.57128 0.65708 0.08580 13.0571%
0.4 l 0.57125 0.65706 0.08581 13.0590%

Table 8: λ4 of the GWW prism-shells

It can be clearly seen that the difference is quite large (with
13%) and even grows when the refinement gets smaller and
thus the computation more accurate. The computation with
the highest resolution containing 3872 cubic elements and
17426 degrees of freedom should be highly accurate. Still
the construction of the matrices A and B took only a second,
because all the faces are planar and therefore no numerical
integration is needed. For triangle meshes in general the
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integrals can be computed once for the unity triangle and
then be transformed to an arbitary triangle. The computa-
tion of the first 10 eigenvalues, on the other hand, took 928
seconds due to the high degree of freedom. Note that the
computation in the case of the lowest resolution only takes
2 seconds and still yields sufficiently accurate results. There
is even more evidence indicating that the ”Shape-DNA” of
the prism-shells has been computed sufficiently exact to dis-
tinuish the two shapes. We computed the eigenvalues of the
shells scaled by 1.0/

√
A, whose surface areas are equal to

1. Their resulting fourth eigenvalues are 39.4 and 45.3 re-
spectively (of course still a difference of approx. 13%). Even
though some eigenvalues differ that much, we were able to
extract the area (1.004 and 1.007 for the two shells) very ex-
actly by extrapolation using the first 500 eigenvalues. It is
remarkable that even though the spectra of the two
shells differ significantly, their surface areas, iden-
tical for both shells, can be computed very exactly
from the different spectra.

6.3.5 Database Retrieval
In order to see how the ”Shape-DNA” can help to distinguish
many different surfaces, we applied our technique to a data-
base of 1000 randomly generated B-Spline surface patches
(with 3 × 3 up to 6 × 6 control points and degrees ranging
from 2 to 4). For these patches the first 1741 eigenvalues
were calculated and stored with the shapes. By using the
Euclidean distance d2,11 of the normalized (divided by λ1)
11-dimensional vectors of eigenvalues, each patch could be
uniquely identified even with deliberately different (not op-
timal) meshes introducing distinct calculation errors. Still,
these inaccurate eigenvalues yielded distances of less than
0.02 between the original and the modified patch. Further-
more, from all the 500 000 possible pairs of different patches
only 300 had a distance of less than 0.3 to each other, none
was closer than 0.15. This confirms our assumption that
our method is sensitive enough to be used for identifying
patches even with reduced capacities for calculation (since
only the first 11 eigenvalues were used). The construction of
the matrices A and B for a given patch took approximately
100 seconds (we used the SISL Spline Library) and the com-
putation of the first 10 eigenvalues took less than a second
as did the actual comparison of a computed ”Shape-DNA”
with all the ”Shape-DNA” contained in the database. The
relatively slow construction of the matrices is due to the
fact that for the computation of the integrals (equation 34)
in the case of a curved surface patch the gjk of the patch
are needed. In the case of triangulated surface meshes the
computation is clearly much faster, since all triangles are
planar and no numerical integration is necessary. Figure 17
shows an accumulated plot of the first 200 eigenvalues af-
ter normalization with the first eigenvalue λ1. In an earlier
experiment we tried the same techniques using a database
of 1625 randomly generated polynomial patches of degree
10. The results were similar: Each patch could be easily
identified by its first few eigenvalues.

It is perfectly possible that one could also identify any single
NURBS patch within a large collection of NURBS patches
using other isometric invariants like: boundary length,
surface area, Gauss curvature integral, geodesic cur-
vature of the boundary curve, Euler characteristic
etc. However, since these invariants contain very little in-
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Figure 17: Accumulated spectra (λn) of the patches

formation with respect to the amount of completeness up
to which they determine the shape of an object, it is not
very difficult to construct examples using (e.g. non isomet-
ric) subdomains of the plane (see section 6.3.3) and of the
sphere sharing surface area, length and total curvature of
their boundary curves. Those subdomains share also the
Gauss curvature, that is either zero or determined by the
area of the respective domain in these examples. It con-
firms the discrimination power of the spectrum that those
domains sharing the aforementioned geometric invariants
have significant differences even in their respective first few
eigenvalues (cf. 6.3.3). Obviously, the spectrum must have
more discrimination power than the combination of the in-
variants consisting of length of boundary curves and surface
area, as those invariants and even more information can be
computed from the spectrum. Additionally employing the
spectrum of the double of the given surface, all the geometric
information described in section 2.3 can be obtained.

6.3.6 Shape Matching
To demonstrate how the ”Shape-DNA” can be used for shape
matching we will calculate the ”Shape-DNAs” of all the ob-
jects depicted in 8. Appendix. We have already referred to
B1, B1′, B2, I1 and I2 in subsections 6.3.1 and 6.3.3. The
objects N1 and N2 (parts of a bottle neck) are deforma-
tions of each other (N2 is slimmer). The ”Shape-DNA” of
the unit square has been calculated with our FEM method
(S1) and analytically. In the case of the square (even for
an arbitrary rectangle, see Courant [20], p.258) the exact
eigenvalues are known. Therefore they can be used to verify
the computational accuracy of our numerical results. The
eigenvalues of a rectangular area with edge lengths a and b
can be computed analyticallly as follows:

λΩ
M,N = π2

„
M2

a2
+
N2

b2

«
with M,N = 1, 2, . . . (67)

For the comparison we also computed these exact values
(represented by SR). The disk’s ”Shape-DNA” has been
computed with a fine (D1) and a coarser (D2) mesh (both
having smooth boundary) and by using a polygonal disk
approximation (linearly bordered D3). All of these objects
are now compared with each other in a way that not only
identifies identical shapes, but also detects similarities. For
this purpose the ”Shape-DNAs” were first normalized by the
slope of the fitting line (equation 60) and then cropped to
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contain only the first 50 eigenvalues. To visualize their posi-
tions, these vectors were embedded linearly into the two di-
mensional space with the help of classical multidimensional
scaling (MDS), a method performing a principal coordinate
analysis (PCA). When plotting only the first two dimensions
the display error of the real mutual distances is kept as small
as possible [21]. The 2d-MDS plot (Figure 18) can be un-
derstood as an orthogonal projection of the 50 dimensional
vectors onto their best 2d-fitting-plane. It shows very well
how identical objects are mapped to the same spot and how
similar objects form groups. These are very good results,
considering that only the first two most important dimen-
sions are plotted and that further information is contained
in higher (less important) dimensions.

Figure 18: 2d MDS plot of ”Shape-DNAs”

As a final example we will compare the objects (given as
triangular meshes) depicted in 8. Appendix. The ”Shape-
DNA” of the rabbit has been computed for three meshes
of different resolution (containing 10 000, 1000 and 400 tri-
angles). The simplified meshes could be quickly obtained
with the program QSlim (using a method described in Gar-
land [31]). Since the rabbit looks like a deformed ellipsoid,
we computed the ”Shape-DNA” of the ellipsoid as well.
The helmet is in fact nearly isometric to the ellipsoid, even
though it does not look like it, because it consists of an in-
ner and an outer shell, which are connected. Flipping the
inner shell to the outside, one gets a deformed ellipsoid. An-
other group of test objects consists of animals (a camel, a
cat, a cow and a horse), all of which have legs or arms,
some have tails and some long necks. Another subject is the
Santa, who is also equipped with arms and legs and wears
a long jelly bag cap. The final test group is supplied by the
screwdriver with its deformations. First the tip has been
stretched and twisted, then bend over and last but not least
the handle has been deformed. The stretching and the de-
formation of the handle are the most serious changes since
the surface area (being a global feature) is modified.

The 2d MDS plot, that has been constructed like in the ex-
ample before, can be seen in figure 19. Again we observe a
nice clustering of the objects. The strongest modifications
of the screwdriver are well reflected by the larger distance of

Figure 19: 2d MDS plot of mesh ”Shape-DNAs”

the corresponding ”Shape-DNA” projections. Furthermore
the deformed ellipsoids are well separated from the animals
with the Santa. Note that the MDS plot is merely used
for the visualization of the position of the 50 dimensional
”Shape-DNA”. The measuring of the distance is done in
higher dimensions. Even though the MDS plot shows the
first two most important principal components, relevant in-
formation might be contained in higher dimensions as well.
A dimensionality reduction therefore might lead to the col-
lapse of clusters onto each other. For real time database ap-
plications the eigenvalues of an object have to be computed
very fast. This can be achieved with coarser meshes (that
can be constructed quickly) yielding very similar ”Shape-
DNA” as can be seen in the case of the rabbit.

Furthermore, when dealing with a large database the search
for nearest neighbors might be too slow in high dimensional
spaces. Then it might be helpful that global shape infor-
mation is already contained in the first eigenvalues while
smaller details seem to be encoded in higher values. Be-
cause of the property [SIMILARITY] the ”Shape-DNA”
depends continuously on the shape deformation. As we have
seen in section 6.3.2 the deformation of an object changes the
λi(t) continuously with a deformation parameter t. There-
fore, the ”Shape-DNA” of all shapes that can possibly be
obtained through a deformation of an object are contained
in a path-connected subset.

It is generally possible that all n dimensions of the space
containing the ”Shape-DNA” are equally important when
filled with the ”Shape-DNA” of all deformations of a single
shape. In real world applications we often want to compare
one object with the finite amount of objects contained in a
database. The ”Shape-DNA” of these objects often do not
vary equally strongly in all dimensions n. With the help of
PCA we can choose the dimension n0 < n of the best fitting
n0-dimensional subspace (the ”shape space”) in a way that
keeps the approximation error of the set of ”Shape-DNA”
sufficiently small. This leads to a distinct dimensionality
reduction with only little error. The ”Shape-DNA” can
then be represented in the lower dimensional shape space
(in more than two dimensions as in the plots above, but
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still in less than the number of eigenvalues needed for ef-
ficient comparison). Similar to the approach of Turk and
Pentland [61], who use eigenvectors of PCA (called eigen-
faces) for face recognition, it can then be decided quickly if
a new geometric object has a match in the database repre-
sented by the point set of ”Shape-DNA” by measuring the
distance of its ”Shape-DNA” to shape space and by checking
if its projection into shape space lies in or close to a cluster.
If a ”Shape-DNA” lies far away from the shape space and
the corresponding object has to be added to the database, a
new shape space has to be constructed, containing the new
object. For this purpose, the PCA needs to be repeated for
the ”Shape-DNA” of all objects, so that future queries can
again be processed quickly.

7. CONCLUSION
We have introduced a novel method that uses the eigenval-
ues of the Laplace-Beltrami operator as ”Shape-DNA” (a
fingerprint) for a given 2d or 3d manifold (surface or solid).
Even though the proposed ”Shape-DNA” does not meet
the property [COMPLETENESS] entirely, since (artifi-
cially constructed) identical twins exist, we were able to
demonstrate that it satisfies other important properties (like
[ISOMETRY], [SCALING], [SIMILARITY], [EFFI-
CIENCY], [COMPRESSION] and [PHYSICALITY]).
We introduced the possibility of numerically calculating the
”Shape-DNA” for different types of geometric objects (com-
pound parametrized surfaces including NURBS, polygonal
meshes and solid polyhedra). The computed results were
shown to be independent of the given spatial location and
scaled size and above all independent of the objects repre-
sentation (especially of the chosen parametrization). Our
method is also robust under variations in the quality and
resolution of the model. We demonstrated that shape iden-
tification and comparison can be done using only a few eigen-
values, making it possible to locate objects rapidly within
huge databases. Via comparison of the ”Shape-DNA” it is
possible to compare a suspicious object with a copyrighted
one to detect if the object might be an illegal copy. As
shown, it is even possible to use the Euclidean distance of
normalized ”Shape-DNA” to detect similar objects. ”Shape-
DNA” can also be used as a quality measure when converting
surfaces or solids into different representations utilizing the
fact that the spectrum of a correctly converted object must
agree with the spectrum of the original one.

We proved some propositions about the mutual indepen-
dence of the eigenvalues and about the rapid convergence of
the heat trace series. Moreover, we succeeded in numerically
extracting the volume, boundary length and Euler charac-
teristic from the computed ”Shape-DNA” of the respective
surface. Those numerical computations appear to be new.

Further research will extend this work to implicitly defined
surfaces and solids employing e.g. new concepts ([12], [50])
useful to mesh implicit surfaces. As another extension, par-
allel processing and multigrid methods could be used to
speed up and improve our eigenvalue computation making
it possible to use higher resolutions and to compute spectra,
especially of 3d-solids, more accurately. It is of interest as
well to study the combination of subdivision (or feature de-
composition techniques) with the ”Shape-DNA” to be able
to match object parts. Additionally more experiments will

be done on larger shape databases (for meshes and for CAD-
models), extending the concepts used for similarity detection
(i.e. PCA) as described in the last section.
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8. APPENDIX

Back B1 Back B1’ Back B2 Bottle Neck N1 Bottle Neck N2

Disk Disk Square Isovol Isovol
D1 D2 D3 S1 SR I1 I2

Rabbits, Cow, Cat and Camel

Ellipsoid, Helmet, Santa and his ”Reindeer”

Screwdriver deformations

23



9. REFERENCES
[1] C. Adams. The Knot Book. W.H. Freeman and

Company, New York, 1994.

[2] M. Ainsworth and J. Oden. A Posteriori Error
Estimation in Finite Element Analysis. Wiley, 2000.

[3] C. Bandle. Isoperimetric Inequalities and Applications.
Pitman Publishing, 1980.

[4] B. Beekmann. Eigenfunktionen und Eigenwerte des
Laplaceoperators auf Drehflächen und die Gliederung
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