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ABSTRACT
In the area of image retrieval from data bases and for copy-
right protection of large image collections there is a growing
demand for unique but easily computable fingerprints for
images. These fingerprints can be used to quickly identify
every image within a larger set of possibly similar images.
This paper introduces a novel method to automatically ob-
tain such fingerprints from an image. It is based on a re-
interpretation of an image as a Riemannian manifold. This
representation is feasible for gray value images and color im-
ages. We discuss the use of the spectrum of eigenvalues of
different variants of the Laplace operator as a fingerprint and
show the usability of this approach in several use cases. Con-
trary to existing works in this area we do not only use the
discrete Laplacian, but also with a particular emphasis the
underlying continuous operator. This allows better results
in comparing the resulting spectra and deeper insights in
the problems arising. We show how the well known discrete
Laplacian is related to the continuous Laplace-Beltrami op-
erator. Furthermore we introduce the new concept of solid
height functions to overcome some potential limitations of
the method.

Keywords
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1. INTRODUCTION
One of the main tasks of computer science is to manage large
collections of data. In general these collections are main-
tained using data base management systems. A variety of
such systems exists, as well as different strategies for data
base management systems to keep track of inserted data.
All these strategies require chunks of data to be identified
by a unique key, in order to distinguish them from other
items stored in the data base. It is common practice to re-
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fer to such identifiers as fingerprints, in analogy to the way a
human individual is identified by the prints of its finger tips.

Furthermore with the area of copyright protection a new field
of applications has developed recently. In order to identify
not licensed copies of protected material there have been
efforts to develop watermarks intrinsic to the material in
question. In case of shape models such watermarks should
be embedded in the geometry of the shape itself and they
should be robust against distortions, caused e.g. by recon-
structing shapes through scan processes. See [Ko et al.,
2003a, Ko et al., 2003b] and [Reuter et al., 2005, Reuter
et al., 2006] for recent developments in this area. For im-
ages this means that an image that is printed out and then
scanned again is still identifiable by its fingerprint in the
optimal case. Such fingerprints can be used as watermarks,
too.

For some types of data constructing a suitable fingerprint
is rather straight forward: E.g. if the data is a collection
of english words, it is sufficient to identify each word by its
representation as an ASCII- or unicode-string. Well known
techniques like tries (cf. [Knuth, 1998]) or the like can then
be applied easily. With the data consisting of images there
is no such straight forward representation. A number of
obstacles arise when trying to construct unique fingerprints
for images, e.g.:

• Identical images can be represented in different ways:
Even if we require all the images to be given as pixels,
color images can be expressed in different color spaces.
Thus we would need to restrict ourselves to a fixed
color space, i.e. RGB space. For images given in other
spaces a conversion needs to be applied.

• Unlike ASCII-strings images may contain minor dis-
tortions, e.g. resulting from numerical errors during
a color space conversion or compression artifacts. We
would like our fingerprints to be robust in the presence
of such distortions.

• Pixel images can be given in different resolutions. For
some applications it would be desirable that the same
image in a different resolution would be identified by
the same (or a very similar) fingerprint.

• Sometimes the content of an image is independent of
the colors chosen, i.e. color rotation or inversion does
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not change the meaning of an image. E.g. the nega-
tive of a photograph still represents the same content
(although it may look strange). Thus we would need
identical fingerprints in those situations.

It is an intricate task to construct fingerprints suitable for
image collections. In general it is impossible to take the im-
age itself in its RGB-representation as its fingerprint. Even
for a rather tiny image with 200 × 200 pixels the resulting
fingerprint would be a vector with 40000 entries. There is no
efficient way to search a 40000-dimensional space of objects.
There has been some effort to overcome these dimensional
restrictions recently, however generally speaking the less di-
mensions are involved, the more efficient a search can be
carried out. See [Gaede and Günther, 1998] for a survey of
search methods on higher dimensional spaces, see [Berch-
told et al., 1996] or [Berchtold et al., 1997] for examples
of efficient data structures for such applications. Further-
more there is the possibility to reduce the dimensionality of
a feature space afterwards using multi dimensional scaling
(MDS), see [Bengio et al., 2004] for an overview on different
methods.

In other words we need to find a map from the space of
images to a much lower dimensional space without losing
information that is relevant for the content. It should be
noted, that there are different approaches to automatically
construct such a map from a given training set of images,
e.g. by MDS. Apart from that, we are looking for finger-
prints, that are suitable for different setups without having
prior training sets.

There have been different approaches to construct finger-
prints, the best known of which are feature vectors. These
vectors are constructed from a number of features that can
be extracted from an image, including:

• brightness (i.e. mean pixel value) of an image

• contrast (i.e. variance of the pixel values) of an image

• overall roundness of contained shapes

• approximate fractal dimension

• Fourier transform

• skeletal transforms (e.g. discrete medial axis trans-
forms)

Some of these features do obviously not fulfill our require-
ments, e.g. changing the brightness or contrast of an image
does not change important content of the image. Most of
the classical techniques are only suitable for certain special
classes of images and not for others. I.e. they cannot be ap-
plied in a general situation where there is no further knowl-
edge about the nature of the images available. Of course
there is a large number of more elaborate techniques but a
detailed discussion would be beyond the scope of this short
introduction. See e.g. [Veltkamp and Hagedoorn, 1999] or

[Loncaric, 1998] for an overview of different methods.

In this paper we will introduce a method that works in the
general case where there is no restriction concerning the kind
of images. We will develop criteria to be met in such a setup,
and show that our fingerprints fulfill these criteria. We will
explain how to obtain these fingerprints using the spectra
of a family of operators known as Laplace or Kirchhoff op-
erators. Only discrete versions of these operators have been
used in image processing traditionally, while others (like the
Laplace-Beltrami operator) are relatively new in this area.
In order to compute the operators’ eigenvalues, we will in-
terpret images as Riemannian manifolds. This is a novel
approach in the area of image analysis. We will explain the
techniques from the point of view of its application on im-
ages, although they can be used for more general shapes
also. See [Wolter and Friese, 2000] and [Reuter et al., 2005,
Reuter et al., 2006] for an introduction to the theory of
Laplace spectra in general shape matching.

2. RELATED WORK
Using the Laplace operator and more generally using eigen-
values of different operators and matrices derived from this
operator is a well known and established technique in the
community of shape and image recognition. Most of the ap-
plications mentioned in this section use discrete forms of the
Laplacian directly, i.e. they are using some kind of admit-
tance matrix.

One of the best known applications of the Laplace spectrum
of a graph is graph partitioning. This is useful in areas
where one has to find a segmentation of a given mesh, e.g. to
identify different components of a scene. See [Mohar, 1997,
Chung, 1997] for an overview of the mathematical founda-
tions. Closely related is the application of eigenfunctions to
remesh given objects (see [Dong et al., 2005]).

Another popular application of the Laplacian can be found
in image processing. A local version of the mesh Laplacian
is well established for smoothing of images and meshes, see
[Foley et al., 1996, Glassner, 1994, Grady and Schwartz,
2003, Bülow, 2004, Field, 1988, Taubin, 2000] for examples.
A variant of the Laplace operator can be used for mesh parti-
tioning and compression. This technique is known as spectral
compression, details can be found in [Karni and Gotsman,
2000].

Furthermore the Laplace operator is used for dimensional-
ity reduction of high dimensional data spaces (cf. [Belkin
and Niyogi, 2002]). This method could be seen as a com-
plement of the method developed in this paper. Belkin and
Niyogi assume the existence of a manifold containing all the
objects of a given set of objects represented as points in a
feature space. One can assume that these points form a
manifold since for most applications the space of possible
data depends only on few parameters. E.g. given a set of
images shot from an indoor scene by a movable camera the
results depend solely on six parameters, i.e. placement and
orientation of the camera. Belkin and Niyogi then use some
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interpolation technique to form a discrete mesh resembling
the assumed manifold containing the objects representations
in fetaure space and compute eigenvalues and eigenfunctions
of the associated mesh Laplacian. These eigenfunctions can
be used to reduce the dimensionality of the embedding fea-
ture space to a lower dimension, e.g. six dimensions for the
camera example.

The principal difference (aside from using the mesh Lapla-
cian rather than the Laplace-Beltrami operator) is that
Belkin and Niyogi compute the eigenvalues of the man-
ifold defined by points in a given feature space, that is
each of their points represents an entire manifold in our ap-
proach. We use the manifold’s eigenvalues as features. The
Belkin/Niyogi method is useful when there is a set of fea-
tures present that has to be reduced for some reasons, while
our method is useful when there is a manifold representa-
tion for each object possible but no efficient features are
known. The Belkin/Niyogi technique can roughly be classi-
fied as a multi-dimensional scaling method (MDS) although
it is implemented differently from the classical approaches
(cf. [Bronstein et al., 2003] and [Bengio et al., 2004]).

Another use of MDS is to map shapes to a canonical sig-
nature surface (cf. [Elad (Elbaz) and Kimmel, 2003]). Ide-
ally two isometric shapes should be mapped to an (almost)
identical signature surface. It would be possible to use the
Belkin/Niyogi technique for this application also.

These uses of the Laplacian show that the application of
(non Riemannian!) manifolds in feature space are well es-
tablished in the image analysis community. On the other
hand the duality of the image as a discrete height func-
tion and its continuous representation as a surface is also
well known in the theory of image processing (see [Glassner,
1995]). Nevertheless there seems to be no transfer between
the two fields, i.e. the discussion of an image as a Rieman-
nian manifold. We will see in section 5 how to aquire a
Riemannian metric for an image and use it for image classi-
fication. This discussion seems to be new.

Using the eigenvalues of a different matrix derived from
point sets of two given objects in Euclidean space one can
compute a best match of these points. This technique called
modal matching was developed by Sclaroff and Pentland
[Sclaroff and Pentland, 1995] based on the classical well
known technique of momentum matrices. No features are
derived from the shapes in this approach instead the chosen
points are matched to each other directly.

3. FEATURES AND INVARIANTS
In this section we will develop criteria for a fingerprint to be
used in image identification. We will make precise what we
mean by a feature and an invariant.

Definition 1 Let A,B be sets, with size(x) being the size
of a representation for every x ∈ A∪B. A map ι : A→ B is
called a feature map iff size(ι(a)) < size(a) for all a ∈ A.

For x ∈ Rn we simply set size(x) = b · n for some fixed con-
stant b. Definition 1 states, that a feature should take up
less space than the object itself.

Definition 2 Let A,B, I be sets, P = (Pi : i ∈ I) be a
partition of A with representatives pi ∈ Pi, ι : A → B be a
map (and in our case even a feature map) with

ι(a) = ι(pi) ⇔ a ∈ Pi ∀i ∈ I

Then ι is called a P -invariant for A.

If |Pi| = 1 for all i ∈ I we call ι a characteristic. There is
a relation between partitions and maps: Suppose we have a
family of maps F = (fj) with fj : A → A, j ∈ J for some
index set J with fj surjective and f−1

j (a1) ∩ f−1
j (a2) = ∅

for all a1, a2 ∈ A. Then there exists a natural partition of
A with

a ∈ Pi ⇔ ∃j ∈ J : fj(a) = pi

It is therefore perfectly admissible to speak of an F -invariant,
e.g. for F being the family of isometries of an isometry in-
variant.

We can now give some criteria for fingerprints feasible for
image identification, based on arguments from the introduc-
tion:

[FEATURE] Fingerprints should be features, i.e. each fin-
gerprint should have a shorter representation than the
associated image.

[ISOMETRY] Fingerprints should be isometry invariants.
This is a natural requirement if we are dealing with fin-
gerprints of objects that are metric spaces themselves.
Here we will interpret images as Riemannian mani-
folds (see section 5), this discussion seems to be new
in the area of image analysis. In the context of image
classification this is motivated by the fact that most
content preserving operations are isometries. This in-
cludes changes of brightness, rotations, mirror opera-
tions, color rotations and inversions.

[SCALING] Fingerprints should optionally be made scal-
ing invariants, in order to identify different resolutions
of the same image.

There is another important criterion that is not directly re-
lated to invariance:

[SIMILARITY] Fingerprints of similar images should be
similar.

This cannot be taken for granted, even small almost iso-
metric changes in the object’s geometry may change some
feature’s values non-continuously. This is especially true for
discrete features, e.g. the number of “dark” regions on a
photo (the number of components in a level set) and similar
features.

3



Concerning criterion [FEATURE], any method of compres-
sion could be used in order to generate fingerprints. This
way a compressed representation of an image could be
viewed as its fingerprint. Nevertheless, traditional compres-
sion schemes tend to change significantly for small changes
in the data, thus violating [SIMILARITY]. This behaviour is
even wanted in some application, e.g. with MD5 hashes (see
[Rivest, 1992]), where small changes to a file are required to
cause a significant change in the hash. Nevertheless, meth-
ods used especially for geometry compression often change
continuously, e.g. if they are based on fourier transforma-
tions.

4. THE LAPLACE OPERATOR AND THE
KIRCHHOFF OPERATOR

In this section we will describe the Laplace operator, also
known as Laplacian. First we will take a look at the tradi-
tional continuous case, then we will examine the analogous
construction in the discrete case.

Definition 3 Given a compact Riemannian manifold M of
dimension n, f : M → R with f ∈ Ck(M) and k ≥ 2.
Let grad denote the gradient and div the divergence on the
manifold M . Then

∆f := div(gradf)

defines the Laplace operator ∆ on M .

For M being a domain of the Euclidean plane M ⊂ R2 the
Laplace operator reduces to

∆f =

„
∂2f

∂x2
+
∂2f

∂y2

«
(1)

In the non-Euclidean case for a Riemannian metric given by
(gij) and n = 2 the Laplace operator can be expressed as
(cf. [Chavel, 1984])

∆f =

2X
i=1

2X
j=1

gij

 
∂2f

∂xi∂xj
−

2X
k=1

Γk
ij
∂f

∂xk

!
(2)

with (gij) := (gij)
−1 and Γk

ij being the well known Christof-
fel symbols (of the second kind, see e.g. [DoCarmo, 1976]):

Γm
ij =

1

2

X
k

gkm(
∂

∂j
gik +

∂

∂i
gjk −

∂

∂k
gij)

Note that these are invariant against isometries and scaling.

One can easily check, that for the Euclidean case equation
2 specializes to equation 1. We will sometimes refer to the
Laplace operator in the non Euclidean case as Laplace-
Beltrami operator.

As a special case we could identify the map generating the
manifold and the function the operator is applied to, i.e.
given coordinate functions F (u, v) := (x(u, v), y(u, v), z(u, v))
we calculate ∆F with respect to the manifold given by F .
Note that we use a generalized version of the Laplacian here
that is defined coordinate wise by ∆F := (∆x,∆y,∆z). In

this special case of a “double entry” where F serves the
double purpose of representing the manifold and defining a
vector field on this manifold we get the well known equation:

∆F (u, v) = 2H(u, v)n(u, v) (3)

where H is the mean curvature and n is the surface normal
of the point F (u, v). This form where the parametrization
of the manifold and the argument of the operator are be-
ing identified is often used for mesh smoothing (see [Field,
1988, Taubin, 2000] for the discrete case). Equation 3 fol-
lows directly from equation 2 and the Gauss equations (see
[DoCarmo, 1976]):

∂i∂jF =
X

k

Γk
ij∂kF + hijn

⇒ hijn = ∂i∂jF −
X

k

Γk
ij∂kF (4)

Here hij are the coefficients of the second fundamental form.
It follows:

2Hn =
X
ij

hijg
ijn by definition of H

=
X
ij

gij

 
∂i∂jF −

X
k

Γk
ij∂kF

!
with (4)

= ∆F with (2)

There is a long tradition in studying the eigenvalues of the
Laplace operator. Formally we define an eigenvalue λ by:

∆f − λf = 0 (5)

The (multi-)set of possible solutions λ to this equation is de-
fined to be the Laplacian spectrum of M . This spectrum
has a variety of interesting properties some of which make
it interesting for image and shape identification.

• The spectrum is an isometry invariant (see [Chavel,
1984]), i.e. if one maps M to an isometric manifold
M ′ the spectrum remains unchanged. This fulfills cri-
terion [ISOMETRY]. For experimental results and a
detailed discussion we refer to [Reuter et al., 2006].

• Continuous changes of the manifold’s geometry result
in continuous changes of the spectrum. Furthermore
we will demonstrate, that small changes of the geom-
etry yield likewise small changes of the spectrum, see
[Courant and Hilbert, 1993], p. 366. This corresponds
to criterion [SIMILARITY]. It is important to notice
that a topological change of the manifold can change
its spectrum radically. I.e. given the full disc, remov-
ing an infinitesimal small open disc at the center trans-
forms the surrounding disc into a topological annulus.
One will observe a significant change of the spectrum
without changing the visual appearance. Luckily this
restriction does not apply to images as we will see in
section 5.

• The multiset of eigenvalues form an infinite but count-
able growing sequence, i.e.

0 ≤ λ1 ≤ λ2 ≤ . . .
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Nevertheless a finite number of these eigenvalues is suf-
ficient to distinguish shapes in a practical situation.
This is because the smaller eigenvalues correspond to
“raw” features of the geometry (like area and bound-
ary length) whereas the higher eigenvalues are related
to finer details of the geometry. In a practical setup
the number of eigenvalues being sufficient to distin-
guish images is much smaller than the data needed to
present the whole image. This corresponds to criterion
[FEATURE].

• For a uniform scaling of the manifold by an factor
a > 0 in every dimension, the spectrum is scaled by
1

a2 . We will show how to use this knowledge to cancel
this effect of scaling, thus making the spectrum scaling
invariant. This fulfills our criterion [SCALING].

Summarizing the points above we take a finite number of
eigenvalues of the Laplace operator as a fingerprint of the
given manifold. We will see in section 5 how images are
related to manifolds.

4.1 The Laplacian with a mass density func-
tion

In extension to equation 5 we can introduce a mass density
function ρ. This function assigns a mass density to each
point of the manifold that influences the vibration of the
material. Formally we can reformulate the equation as

∆f − λρf = 0 (6)

with ρ : M → R. A mass density of 1 means the usual den-
sity, therefore setting ρ = 1 everywhere leads to the classical
problem in equation 5. The new formulation yields some in-
teresting properties:

• The solutions of the problem depend continuously on
changes of the manifold and of the mass density func-
tion (see [Courant and Hilbert, 1993], pp. 304).

• Given two isometric manifolds M and M ′ with an
isometry I and mass densities ρ and ρ′ that are con-
formal to the isometry, that is

I(M) = M ′ and ρ(m) = ρ′(I(m)) ∀m ∈M

then the spectra are identical. In different words, for
a fixed mass density function the spectrum is isometry
invariant.

• The statement above still holds if I is not an isometry
but an isospectral transplantation (see section 6.3), i.e.
a function that maps a manifold to an isospectral twin.

• Scaling the mass density function by a factor of 1/k
results in a spectrum also scaled by 1/k. Let ρ′ := kρ
and ∆f = λρf , then:

∆f = λρf = λ
1

k
ρ′f =

1

k
λρ′f

For each eigenvalue λ of the problem with density ρ
an eigenvalue λ′ := 1

k
λ of the problem with density ρ′

exists with identical eigenfunction f .

• When scaling the manifold by k while keeping the mass
density function, one gets

∆′f =
1

k2
∆f and ρ′ = ρ

⇒∆′f =
1

k2
∆f =

1

k2
λρf =

1

k2
λρ′f

Thus the spectrum is scaled by 1
k2 .

4.2 Numerical calculations
In order to solve the stated eigenvalue problems 5 and 6
using a computer we need to discretize it. This can be
accomplished by transforming the eigenvalue problem into
an equivalent variational problem for the manifold M (cf.
[Reuter et al., 2006] for the steps involved in the transfor-
mation): Z

M

〈∇φ,∇f〉 dξ =

Z
M

φ∆fdξ = λ

Z
M

ρφfdξ

Here ξ represents the area element of M , φ is an arbitrary
function from the same space as f and ρ is the mass density
function. For the classical problem we set ρ = 1. Now we
approximate f by

f =

mX
k=1

ckφk

with {φ1, . . . , φm} being a FEM base for the intended space
of solutions. Sometimes we will refer to these functions as
form functions. Furthermore we choose φ ∈ {φ1, . . . , φm}.
This way the problem is transformed into a generalized ma-
trix eigenvalue problem (again see [Reuter et al., 2006] for
details):

A~c = λB~c (7)

A = (ajk) =

0@Z
G

〈grad φj , grad φk〉Wdudv

1A (8)

B = (bjk) =

0@Z
G

ρφjφkWdudv

1A (9)

This problem can be solved using standard numerical li-
braries.

The existence of boundary conditions can have some im-
pact on the choice of form functions also. Given a Dirichlet
boundary condition f(x) = 0 for all x ∈ Γ with Γ being
the boundary, given a point Pi on the boundary and given
that the intended form functions have local character, that
is each is associated to a special point and is only defined
on a compact surrounding of that point, then the bound-
ary condition mostly implies that the corresponding form
function φi is zero. This is the case for most sets of popu-
lar form functions like piecewise linear function (”hat func-
tions”), polynomial bases etc. In this case every product
with φi and its derivative is cancelled also. This implies
that the corresponding entries in the FEM matrices A and
B become zero.
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4.3 The Laplace-Kirchhoff operator
There is a different version of the Laplace operator in the
discrete case. It is defined as follows:

Definition 4 Given a node weighted graph G = (A,M)
with A ∈ Rn×n being the adjacency matrix of the graph.
In case of an (edge-)weighted graph the entry Aij contains
the weight of the edge connecting nodes i and j. For an un-
weighted graph the weights are simply 0 or 1. Most of the
time we will use the unweighted case, but there are many ap-
plications for the weighted graph also (see e.g. [Dong et al.,
2005, Field, 1988, Taubin, 2000]). M = diag(m1, . . . ,mn) ∈
Rn×n

+ is the diagonal matrix containing the weights of the
nodes, if there are any. Let

Dii =

nX
j=1

Aij

define the valence matrix of G, i.e. the diagonal matrix con-
taining all degrees of the nodes of G. Then the discrete
Laplace operator of G is given by

L = L(G) := M−1(D −A)

The discrete Laplace operator is also known from the Matrix-
Tree theorem by G. Kirchhoff and is therefore sometimes re-
ferred to as Kirchoff operator. To distinguish the operator
from the Laplacian in the continuous case we will refer to it
as Laplace-Kirchhoff operator.

The spectrum of the Laplace-Kirchhoff operator is given by
the ordinary eigenvalue problem

Lx− λx = 0 (10)

with x ∈ Rn. One can easily check that this is equivalent to

(D −A)x = λMx⇔ det(D −A− λM) = 0 (11)

which is a generalized eigenvalue problem. The advantage of
11 over the formulation in 10 is, that all matrices are given
in symmetric form, whereas L might be non-symmetric in
general. This can be easily reformulated to the ordinary
eigenvalue problem:

M−1/2(D −A)M−1/2x = λx (12)

For symmetric eigenvalue problems more accurate numeri-
cal solutions are available.

The Laplace-Kirchhoff operator can be seen as a special
discrete formulation of the Laplace-Beltrami operator. If
we choose the FEM base from section 4.2 to be the set
{φij : (i, j) ∈ Z2} we can define a FEM base for the space
of functions defined on R2 with

φij(x, y) : = φi(x)φj(y)

φi(x) : = φ(x− i)

φ(x) : =

8<: x+ C for − 1 ≤ x < 0
−x+ C for 0 ≤ x < 1
0 else

-0.3
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f(x)

Figure 1: Orthogonal FEM base function

using C = 3+
√

3
6

(see figure 1). This yields the following
matrices (by evaluating equations 8 and 9, note that we
choose pairs of numbers as indices here):

A = (aij,kl) =

8<: 4 for (i, j) = (k, l)
−1 for |(i, j)− (k, l)| = 1
0 else

B = (bij,kl) =

 √
3−1
3

for (i, j) = (k, l)
0 else

after dividing by a factor of
√

3−1
3

on both sides of the equa-
tion. This conforms to the Laplace-Kirchhoff operator of a

regular grid, except for a factor of
√

3−1
3

for the B matrix.
This factor is of no practical importance, since it only leads
to a scaling of the spectrum and can be divided from the
spectrum after calculation. Now let there be a mass density
function given by

ρ(x, y) := K[x][y]

where B ∈ Nn×m is a grey value image. For each square in
R2 this function ρ is constant, therefore we get (again after
dividing by a factor):

A = (aij,kl) =

8<: 4 for (i, j) = (k, l)
−1 for |(i, j)− (k, l)| = 1
0 else

B = (bij,kl) =


Kij

√
3−1
3

for (i, j) = (k, l)
0 else

This conforms to the Laplace-Kirchhoff operator with mass
density function ρ. So far we have constructed discrete op-
erators for the case of a uniformly spaced grid with grid size
1. Now let the grid have a grid size of 1/w. We define

φ[w](x) := φ(wx)

φ
[w]
i (x) := φ[w](x− i) = φ(w(x− i))

By applying the substitution rule for integration we get:

∞Z
−∞

φ
[w]
i φ

[w]
j dx =

1

w

∞Z
−∞

φiφjdx

∞Z
−∞

φ′
[w]
i φ′

[w]
j dx =

1

w

∞Z
−∞

wφ′iφ
′
jdx =

∞Z
−∞

φ′iφ
′
jdx

This shows that the mass matrix B is scaled by an addi-
tional factor of 1/w in the one dimensional case, for the two
dimensional case B is scaled by 1/w2 and A is scaled by
1/w. Again we can divide by 1/w.
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Summarizing the above results, the Laplace-Kirchhoff oper-
ator can be seen as a discrete approximation of the Laplace-
Beltrami operator with mass density operator on a regular

grid. Given that the mass matrix B is scaled by w
√

3−1
3

the resulting spectrum is an approximation of the spectrum
of the Laplace-Beltrami operator. Note that according to
section 4.2 one needs to zero out the matrix entries corre-
sponding to a boundary point to zero if there is a Dirichlet
boundary condition.

Instead of interpreting the Laplace-Kirchhoff operator as a
special case of the Laplacian resulting from FEM calcula-
tions we could also view it as an approximation: Let B be
a small geodesic disc with boundary ∂B and center point
p, φ, ψ : B → R with ψ ≡ 1 on B and φ being C2-smooth.
Then we obtain (cf. [Blaschke and Leichtweiß, 1973])

Z
B

ψ∆φ dξ = −
Z

∂B

ψ
∂

∂n
φ ds−

Z
B

〈∇φ,∇ψ〉 dξ

⇒
Z
B

∆φ dξ = −
Z

∂B

∂

∂n
φ ds− 0

as 〈∇φ,∇ψ〉 =
P
ij

gij∂iφ∂jψ = 0 since ψ ≡ 1. This gives:

Z
B

∆φ dξ =

Z
∂B

∂

∂n
φ ds (13)

It is well known that for the arclength l and area F of a
geodesic circle the following approximations hold (withK(p)
being the Gaussian curvature at center p, cf. [Blaschke and
Leichtweiß, 1973], p. 204):

lim
r→0

2πr − l

r3
=
π

3
K(p)

⇒l ≈ 2π(r − r3

6
K(p))

lim
r→0

πr2 − F

r4
=

π

12
K(p)

⇒F ≈ π(r2 − r4

12
K(p))

For a sufficiently small radius of B ∆φ is approximately
constant, thus we have in geodesic polar coordinates (r, α):Z
B

∆φ dξ = (∆φ+ o(r))

Z
B

1 dξ

= ∆φ (πr2(1− r2

12
K(p)) + o(r4))| {z }

Area of the geodesic disk

+o(r)

=

Z
∂B

∂

∂n
φ ds using 13

=

2πZ
0

∂

∂n
φ

p
G(r, α)| {z }

Arclength element

dα

=

2πZ
0

∂φ

∂n
((r − r3

6
K(p)) + o(r4))| {z }

Arclength element

dα

=

2πZ
0

∂φ

∂n
r + γr3 dα γ ∈ [0, 1]

Let ~rα be the cartesian vector of the point with coordinates
(r, α). Then we have using a linear approximation:

∂φ(r, α)

∂n
r

=∇φ(r, α) · ~rα

=∇φ(0, 0)~rα + ~rt
α

„
φxx(0, 0) φxy(0, 0)
φxy(0, 0) φyy(0, 0)

«
~rα + o(|~rα|3)

=φ(r, α)− φ(0, 0) + o(|~rα|2)

Note that here (x, y) denote Riemannian normal coordinates
with center p implying that ∆φ(p) = φxx(0, 0) + φyy(0, 0).

Since
2πR
0

∇φ(0, 0)~rα dα = 0 and the same is true for the

mixed partial derivatives, we get

2πZ
0

∂φ(r, α)

∂n
r dα

=

2πZ
0

~rt
α

„
φxx(0, 0) 0

0 φyy(0, 0)

«
~rα + o(|~rα|3) dα

=

2πZ
0

φ(r, α)− φ(0, 0) + o(|~rα|2) dα

Choosing a symmetric discretization of the geodesic disk B
with angle steps D = π/n we obtain with αi := iD

˛̨̨̨
˛̨
2πZ
0

~rt

„
φxx(0, 0) 0

0 φyy(0, 0)

«
~r dα

−
2nX
i=1

D~rt
αi

„
φxx(0, 0) 0

0 φyy(0, 0)

«
~rαi

˛̨̨̨
˛ ≤ r2 2π

n
(|φxx|+ |φyy |)
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Using the above equations we get:

2πZ
0

∂φ

∂n
r + γr3 dα

=

2nX
i=1

D(~rt
αi

„
φxx(0, 0) 0

0 φyy(0, 0)

«
~rαi

+ r2
2π

n
(|φxx|+ |φyy|) + o(|~rα|3))

=

2nX
i=1

D(φ(iD, r)− φ(0, 0) + o(r2)) +O(
1

n
)r2

Therefore we get:

∆φ(p) = lim
r→0

0BB@
2nP
i=1

φ(iD, r)− φ(0, 0) +O( 1
n
)r2 + o(r2)

πr2

1CCA
Hence

∆φ(p) = lim
r→0

0BB@
2nP
i=1

φ(iD, r)− φ(0, 0)

πr2

1CCA+O(
1

n
)

This corresponds to the well known non-matrix formulation
of the Laplace-Kirchhoff operator, i.e. for a function f =
(f1, . . . , fn) defined on a graph with each fi located at a node
pi we get the respective discrete form ∆fi =

P
j

(fj − fi)wij

for edge weights wij . In matrix formulation this is ∆f =
−Lf with L as defined in definition 4.

5. IMAGES
In this section we will explain how to represent images in
order to compute fingerprints. First we will restrict ourselves
to gray value images to keep the description simple, but we
will also explain, how to extend the technique developed to
images given in arbitrary color spaces.

Definition 5 Let m,n, g ∈ N, G = {0, . . . , g − 1} and B ∈
Gm×n. Then we call B a discrete gray value image with
g steps.

We define a gray value image to be a matrix but as one can
easily see, this is the same as defining B to be a discrete
height map B : {1, . . . ,m} × {1, . . . , n} → G. We will use
both definitions interchangeable. See figure 2 for an exam-
ple. We will define a gray value of 0 to represent “black”
and g − 1 to represent “white”, with the values in between
defining shades of gray. This specification is arbitrary and –
as we will see later – without effect to the actual calculations.

5.1 Fingerprints and the Laplace-Beltrami op-
erator

One way to calculate a fingerprint for an image is to take
the image as a discrete height map and transform it into a
continuous manifold. Then the eigenvalues of its associated
Laplace-Beltrami operator can be used as a fingerprint. At
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Figure 2: An image and its height map

first glance it is not clear how to transform the image into
a continuous form. An ad hoc technique could be to in-
terpolate the manifold with any kind of 2D spline, e.g. a
tensor product NURBS. However, the interpolation would
take some time and there would also be calculation time
needed for evaluating the resulting rather large spline rep-
resentation of the surface.

An obvious solution to calculate the needed coefficients of
the first fundamental form is to create a bilinear surface and
then use the partial derivatives of that surface. For given
pixel values z1, z2, z3, z4 the associated patch is:

f(u, v) := (1− v)((1− h)z1 + hz2) + (v((1− h)z3 + hz4)

with local coordinates h, v ∈ [0, 1] (see figure 3). We get the
partial derivatives

fh = v(z4 − z3) + (1− v)(z2 − z1)

fv = h(z4 − z2) + (1− h)(z3 − z1)

and therefore the coefficients

g11 =1 + f2
h

=1 + (v(z4 − z3) + (1− v)(z2 − z1))
2

g12 =fhfv

=(v(z4 − z3) + (1− v)

(z2 − z1))(h(z4 − z2) + (1− h)(z3 − z1))

g22 =1 + f2
v

=1 + (h(z4 − z2) + (1− h)(z3 − z1))
2

Given this Riemannian metric of an image one can use the
finite element method to obtain the eigenvalues. See section
4.2 and [Reuter et al., 2005, Reuter et al., 2006] for the de-
tails of this calculations.
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z1 z2

z3 z4h

v
f(u,v)

Figure 3: Bilinear interpolation of partial deriva-
tives

In section 4 we have noted that a change of the topology
of a given object changes its spectrum fundamentally with-
out affecting the point set of the object significantly. For
images this is of no relevance since we take each image to
be a height function defined on a rectangular area, i.e. the
resulting manifold is always homeomorphic to the full disc.
Therefore changes in topology cannot occur and we only
have to deal with changes in geometry. As noted in section
4 these changes take place continuously, which is the desired
behaviour.

Furthermore we have noted that uniform scaling of a mani-
fold by a modifies the associated Laplace-Beltrami spectrum
by 1/a2. This might be problematic with images since im-
ages are usually either scaled along their x and y direc-
tions (which represents a uniform scaling of an image) or
along their z direction only (which corresponds to a change
of contrast). As a result of this, changing e.g. the con-
trast of an image modifies its spectrum in a rather unpre-
dictable manner. To make the spectrum invariant against
contrast changes we need to scale the gray values to the
range [0, . . . , smax] where smax represents the larger value of
image width and image height. This way the effect of con-
trast changes are canceled and a scaling of the image in x
and y direction becomes a uniform scaling along all axes. To
make this spectrum scaling invariant we could simply divide
it by its first non zero eigenvalue. This way scaled spectra
become identical. Note that this effect can be achieved also
using a different method for computing the similarity of two
spectra. E.g. if we use the correlation coefficient instead of a
simple Euclidean distance, scaling effects are canceled. See
[Reuter et al., 2006] for more detailed insights on this.

5.2 Fingerprints from the Laplace-Kirchhoff
operator

Another possibility is to choose the eigenvalues of the Laplace-
Kirchhoff operator as a fingerprint. To accomplish this, the
image is transformed into a node weighted graph. Each
pixel is interpreted as a node whose weight corresponds to
the given gray value. Then two nodes are connected iff they
are adjacent in the image. One can choose different mod-
els of neighborhoods here, for our experiments we imple-
mented the 4-neighborhood (see figure 4). For the resulting
graph the Laplace-Kirchhoff operator according to definition

�� �� ���� �� �� �� �� ���� �� ��
�� �� �� �� �� ��

�� �� ���� �� ��

Figure 4: 4-neighborhood of a pixel

4 is calculated and its eigenvalues are computed numerically.
Note that one needs only the n smallest eigenvalues, so ef-
ficient techniques like the Lanczos algorithm (see [Cullum
and Willoughby, 1985]) can be applied. These eigenvalues
possibly normalized to avoid scaling effects are then taken
as a fingerprint.

5.3 Color images
Usually color images are given in some color space represen-
tation. The most commonly used color space is the RGB
space, i.e. each color pixel is given by a triple (r, g, b) with
r representing the red value, g the green value and b the
blue value of the pixel. Most color spaces are three dimen-
sional although there are some four dimensional spaces also,
e.g. the CMYK space used in printing. We will outline a
technique for 3D spaces here, the extension to 4D is straight
forward.

Definition 6 Let m,n, g ∈ N, G = {0, . . . , g − 1} and B ∈
(G×G×G)m×n. Then we call B a discrete RGB value
image with g steps.

Just like in the monochrome case we can interpret B as a
map B : {1, . . . ,m}×{1, . . . , n} → G×G×G. This is some
kind of generalized height function. Like the monochrome
image can be understood as a two-manifold embedded in 3D
space, we can interpret the color image as a two-manifold
embedded in 5D space. The manifold is parametrized by:

(u, v) 7→ (u, v, r(u, v), g(u, v), b(u, v))

Thus we get the following components for the first funda-
mental form:

g11 = 1 + r2u + g2
u + b2u

g22 = 1 + r2v + g2
v + b2v

g12 = g21 = rurv + gugv + bubv

with ru and rv denoting the partial derivatives of r(u, v) and
similar definitions for g and b. We can then apply exactly the
same interpolation techniques as in the monochrome case in
section 5.1 and then use the Laplace Beltrami operator to
gain a fingerprint for the color image. See section 6.2 for a
discussion of advantages and disadvantages that may arise
from this approach.

Interestingly this approach is compatible with the method
developed for gray value images in section 5.1. In RGB
colour space a gray value image is represented by a colour
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image with equal channels f := r = g = b. Thus we get:

g11 = 1 + 3f2
u

g22 = 1 + 3f2
v

g12 = g21 = 3fufv

This can be seen as the calculation done for a gray value
image with height function

√
3f . This means that we get

the same spectrum as with an ordinary height function f
only scaled by 1/3.

6. ISOMETRY AND ISOSPECTRALITY
In section 5 we have presented two possibilities for construct-
ing fingerprints of an image applying variants of the Laplace
operator. The question we are dealing with now is to what
extent a fingerprint is unique for a given image.

6.1 Isometry
Let us first discuss the spectrum of the Laplace-Beltrami
operator. From section 4 we know, that isometric manifolds
share identical spectra. So we would have to find out, in
which cases two images can be considered isometric. Fur-
thermore, there are some rare cases where manifolds are
isospectral (i.e. they share the same spectrum) but are non-
isometric. We will discuss them in section 6.3. Especially,
two manifolds generated by the process described in section
5.1 are isometric, if their Riemannian metrics (gij) are iden-
tical:

Theorem 1 Let the manifolds be defined by height func-
tions f : [0,m−1]× [0, n−1] → R and g : [0,m−1]× [0, n−
1] → R with gf

ij = gg
ij =: gij . Then:

f = g + α or f = −g + α

for any α ∈ R.

Proof We first show that the partial derivatives of f and g
are identical up to their sign:

g11 = 1 + f2
x ∧ g11 = 1 + g2

x

g22 = 1 + f2
y ∧ g22 = 1 + g2

y

g12 = g21 = fxfy ∧ g12 = g21 = gxgy

⇒(1) f2
x = g2

x

(2) f2
y = g2

y

(3) fxfy = gxgy

⇒ (from 1) |fx| = |gx|
(from 2) |fy| = |gy|

⇒ (with 3) (fx = gx ∧ fy = gy) ∨ (fx = −gx ∧ fy = −gy)

Now let fx = gx and fy = gy. Then we have:

(1) f =

x2Z
x1

fxdx+ C(y)

(2) f =

y2Z
y1

fydy +D(x)

(3) g =

x2Z
x1

fxdx+ E(y)

(4) g =

y2Z
y1

fydy + F (x)

where C(y) and E(y) are functions depending solely on y,
D(x) and F (x) solely on x. We get:

(5) 0 =

x2Z
x1

fxdx−
y2Z

y1

fydy + C(y)−D(x)

(6) 0 =

x2Z
x1

fxdx−
y2Z

y1

fydy + E(y)− F (x)

and finally:

(7) 0 = C(y)−D(x)− E(y) + F (x)

This means that there has to be some constant α fulfilling:

D(x)− F (x) = α = C(y)− E(y)

By substitution in (1) and (3), respectively (2) and (4) we
get:

f = g + α

Now let fx = −gx ∧ fy = −gy. From an analoguous argu-
ment we get:

f = −g + α

There is an alternative proof of theorem 1 using knowledge
about Riemannian manifolds: Given two surfaces defined
by height functions f and g we can define a solid height
function for f by:

Sf (x, y; z) :=

0@ x
y

f(x, y) + z

1A with z ∈ Rn

and the same for g. One can easily check that its Rieman-
nian (volume) metric is given by:

(gS
ij) =

0@ gf
11 gf

12 fx

gf
21 gf

22 fy

fx fy 1

1A =

0@ 1 + f2
x fxfv fx

fxfv 1 + f2
v fy

fx fy 1

1A
We know from our elementary considerations at the begin-
ning of this proof that (fx = gx∧fy = gy)∨(fx = −gx∧fy =
−gy), hence for Sg we get

(gS
ij) =

0@ gg
11 gg

12 gx

gg
21 gg

22 gy

gx gy 1

1A
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Figure 5: Isometric height functions

This resolves to one of0@ 1 + f2
x fxfv fx

fxfv 1 + f2
v fy

fx fy 1

1A 0@ 1 + f2
x fxfv −fx

fxfv 1 + f2
v −fy

−fx −fy 1

1A
Therefore Sf and Sg are isometric. Two solids in Euclidean
three space are isometric if and only if they are congruent
that is they are related by a series of Euclidean motions
(see e.g. [Klingenberg, 1995], p. 88). Hence all their faces
including the original height functions must be identical up
to Euclidean motions.

2

Theorem 1 shows, that if two images share the same Rie-
mannian metric, one is either a brighter version of the other,
its negative or a combination of both. However in order
to be isometric two images do not need to share the same
Riemannian metric of their height functions. They could
also be rotations or mirror images of each other. This still
perfectly conforms to criterion [ISOMETRY]. Furthermore
there are some cases where isometries result from a change
of parameterization. E.g. let

f1(x, y) :=
p

1− (x− 1)2

f2(x, y) :=
x

2

p
π2 − 4

One can easily check, that these functions do not have iden-
tical Riemannian metrics of their height functions, however
their graphs on the parameter space [0, 2] × [0, 2] are both
isometric to the Euclidean rectangle [0, π]× [0, 2]. This way
they are related by an isometry flattening the cylindrical
surface to the rectangle. Figure 5 shows the corresponding
manifolds. Another possibility to construct isometric images

α

Figure 6: Rotated height function

1

m
max

90−α

α

Figure 7: Computation of the rotation angle

is to determine the maximal and minimal partial derivative
along one axis and then rotate the image at angles α and
−α along the other axis (see figure 6). Since one needs to
make sure that the rotated manifold remains describable by
a height function, α can be calculated as

α < 90− arctanmmax and α < 90 + arctanmmin

with mmin and mmax being the minimal respectively maxi-
mal derivative (see figure 7). Figure 8 shows an image and
the same image rotated by 5◦. Note that the image needs
to be rather blurred to allow even a small possible rotation
angle of 5◦. For a monochrome image mmin and mmax are
determined by the maximal possible difference of two gray
values, i.e. g − 1:

mmin = −g + 1 und mmax = g − 1

(see figure 9). Typically g − 1 = 255 so it follows:

α < 90− 89.775312 = 0.22468818

This gives a maximal rotation angle of 0.22468818◦, result-
ing for an original image width of w in a width of w · cosα
after the rotation. In a typical situation with g − 1 = 255
and α = 0.22468818 this yields a width of 99,999231% of
the original, that is for a total image width of 100000 pixels

Figure 8: Original image and by 5◦ rotated version

11



g−1

0

0
1 2 3

Figure 9: Maximal gray value difference

less than 1 pixel difference! Effectively the rotation would
be invisible.

Therefore in practice one rarely encounters images that meet
the above conditions, so isometry usually means that two
images are identical up to Euclidean motions and mirror
operations.

6.2 Isometry and color images
Using the Laplace Beltrami spectrum for color images in-
troduces some differences from the monochrome case that
can be both advantageous and disadvantageous. First of
all, there are some well known cases of isometric but non-
congruent two-manifolds in spaces with more than two di-
mensions. A popular example is the pair catenoide and
helicoide (cf. [DoCarmo, 1976]): These are isometric but
not congruent. Since they are isometric we can construct
a parametrization so that both share identical gij values.
This way we have defined two color images (namely maps
from 2D to 3D) that are isometric but look notably dif-
ferent. This can be stated more formally as follows. Let
f, g : R2 → R3 be maps from the parameter space to the
color space defining the two images. Clearly most of the
time the manifolds defined by f and g are degenerate (cf.
figure 13), but the above examples show that there are non-
degenerate cases also. Suppose the resulting manifolds in
R3 are isometric. Then there exists some parametrization so
that the gij values are identical for both manifolds. Suppose
f, g are given by such a parametrization. Now define two
two-manifolds in 5D by the maps F (u, v) := (u, v, f(u, v))
and G(u, v) := (u, v, g(u, v)). Then the first fundamental
form for the manifold F are given by

gF
11 = 1 + gf

11 · g
f
11 gF

22 = 1 + gf
22 · g

f
22 gF

12 = gf
12

and they are identical for G. Figure 10 shows the resulting
helicoide and catenoide images with marking lines between
the areas where each prime color (red, green and blue) domi-
nates to emphasize the difference. Figure 11 shows the color
gamuts of these images. Note that these gamuts approxi-
mate the geometry of helicoide and catenoide in RGB-space.
Thus we have the disadvantage of non-similar images shar-
ing identical spectra here. Of course one could calculate
separate spectra for each of the colors, but in that case we
lose the invariance respective color rotations, which we will
describe below.

Another possibility to create isometric manifolds associated
with color images is, to apply Euclidean motions in color

Figure 10: Color images associated to helicoide and
catenoide

Figure 11: Color gamuts of helicoide and catenoide

space, most notably color rotations. In other words: the fin-
gerprints are invariant with respect to color rotations. This
can be a big advantage in some applications since color rota-
tions rather represent a change in the look of an image but
not in its intended content. Figure 12 shows an example of
a color rotation by 90 degrees. Figure 13 shows the two im-
ages from figure 12 in RGB-space (their color gamuts). Note
that the resulting two-manifolds in 3D are congruent up to
rotation. Also note that the gamuts almost fill the entire
RGB cube. In such cases color rotation angles are naturally
limited to multiples of 90 degrees. Further Euclidean mo-
tions in color space correspond to translations. These are
effectively linear changes of the dominant image color, once
again the principal content of the image remains unchanged.
Another advantage is, that the fingerprints are invariant to
changes of the color space, given that the color spaces are
connected by an Euclidean motion. E.g. one can obtain a
representation in CMY space from a RGB representation by

Figure 12: Color rotation
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Figure 13: Color gamuts

01

2

3

4
5

6

6
5

4

3

0

1

2

Figure 14: Two isospectral domains

the transformation0@ c
m
y

1A =

0@ 1− r
1− g
1− b

1A
Clearly this is an Euclidean motion (an inversion and a
translation) thus the fingerprint does not change.

6.3 Isospectrality
On the other hand there are cases, where two manifolds
share an identical spectrum while they are not isometric.
We have seen how to represent monochrome images as two-
manifolds, thus we have to investigate if it is possible for
a pair of two-manifolds to be isospectral. Indeed, examples
for non-isometric but isospectral two-manifolds have been
found, see [Conway et al., 1994] for some planar domains.
Figure 14 shows a typical pair. However, none of those man-
ifolds can be expressed by height functions over a convex
domain, i.e. their parameter space must be a non-convex
domain. Thus it is very unlikely that there exist isospec-
tral monochrome images, since they are defined by height
functions over rectangular (and therefore convex) domains.
Figure 15 shows a possible parameter domain for the mani-
folds from figure 14. From all we know so far isospectrality
seems to be a rare phenomenon. Only pairs of isospectral
domains have been found in 2D and all of them are non-
convex. Therefore isospectrality should not be a serious
problem and should not prevent the discrimination of im-
ages via their spectra.

When using the Laplace-Kirchhoff operator instead of the
Laplace-Beltrami operator one has to deal with isospectral
graphs instead of isospectral manifolds. Just like in the

Figure 15: Parameter domain for the isospectral do-
mains

continuous case the phenomenon is not understood com-
pletely but theories exist of how to construct such graphs,
see e.g. [Halbeisen and Hungerbühler, 1999]. Halbeisen and
Hungerbühler describe a method for obtaining an isospectral
“twin” for a given graph. An interesting property of their
method is, that the constructed graph is either not simple
or has at least two more nodes than the original graph.

7. SPECTRA AND FINGERPRINTS
Formally we have defined the Laplacian spectra in equation
5, 6 and in equation 10. Following the first definition a spec-
trum is an infinite countable multiset of real numbers, i.e. a
sequence 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ ∞. It is a multiset since one
can have eigenvalues with multiplicities larger than 1. Ac-
cording to the second definition it is a finite multiset of real
numbers with λ0 = 0. The first eigenvalue is always zero
if there is no boundary condition, since the sum of all rows
of the matrix D−A is zero, therefore its determinant is zero.

We define the fingerprint of an image to be a suitable finite
subset of one of the possible spectra. We will see in section
8 that for practical applications most of the time the first
n ≤ 10 eigenvalues suffice.

To effectively compare two images one has to compare their
associated fingerprints. This can be accomplished defining a
suitable metric on the space of the fingerprints. If we choose
our fingerprints to be the first n eigenvalues the embedding
becomes the vector space Rn, where we can choose between
a large number of well known metrics. For our tests we have
used different p-norms given by

dp(u, v) :=

 
n−1X
i=0

|ui − vi|p
! 1

p

with u = (u1, . . . , un) and v = (v1, . . . , vn) being finger-
prints. Furthermore we have tested the Hausdorff distance
and the Pearson correlation distance:

dc(u, v) := 1−

˛̨̨̨
˛̨̨̨ (n− 1)

n−1P
i=0

(ui − ū)(vi − v̄)

n−1P
i=0

(ui − ū)2
n−1P
i=0

(vi − v̄)2

˛̨̨̨
˛̨̨̨

where ū and v̄ denote the arithmetic means of u and v. We
observed that for most applications the Euclidean distance
d2 yields acceptable results (see section 8) while being easy
to implement.
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Figure 16: Original test image and modified versions

Since we know that scaling an image can be transformed to
an associated scaling of the fingerprint (see sections 4 and
5), one could use a distance that is insensitive against lin-
ear scaling. For example the correlation distance has this
property by definition. Other possibilities include dividing
the fingerprint by its first non zero eigenvalue or normalizing
the slope of the best fitting line of the sequence of eigenval-
ues to 1 before comparing. This way one makes sure that
fingerprints being in fact scaled variations of each other are
considered identical.

8. EXAMPLES
To test the implementation of the methods described above
an image from the collection of Snodgrass [Snodgrass and
Vanderwart, 1980] was modified (see figure 16). We calcu-
lated the eigenvalues of the Laplace-Kirchhoff operator with
Dirichlet boundary condition. All images were scaled to
32× 32 pixels to allow a fast computation. The fingerprints
were divided by the second eigenvalue (since the first one is
always zero), cropped to 10 eigenvalues and compared via
Euclidean distance. Figure 17 shows the result for the 15
best matches. The computed distances are shown in the fig-
ure, note that the distances plotted are not linearly scaled:
the shorter distances are scaled up.

The experiment was repeated using the Laplace-Beltrami
operator obtained from the height function. The fingerprints
were computed using 338 elements and cubic form functions
(cf. [Reuter et al., 2006] for details of the FEM calculations
used). They were divided by the first eigenvalue and com-
pared via Euclidean distance. Figure 18 shows the result.

To test the robustness against scaling each image from the
collection of Rossion (see [Rossion and Pourtois, 2004]) was
scaled by a factor of 2 and added to the collection. The
fingerprints were calculated using the Laplace-Beltrami op-
erator obtained from the height function with 338 finite ele-
ments. They were compared using Euclidean distances with
best fitting lines (see section 7). For 511 of 532 the double
sized images were the second best fits (behind the respective
image itself), for the remaining 21 images the double sized
versions were the third best fits.

The experiment was repeated with the images being changed
in contrast instead of size. For each image a copy with 50%
of the original contrast was added to the collection. In this
case all of the 532 images could be matched to their low
contrast counterparts.

Figure 17: Distances for the Laplace-Kirchhoff op-
erator

Figure 18: Distances for the Laplace-Beltrami oper-
ator

14



Figure 19: Original colour test image and modified
versions

Figure 20: Distances for the Laplace-Beltrami oper-
ator (colour images)

To test the methods developed for colour images an image
from the collection of Kambeck [Kambeck, 2005] was mod-
ified in different ways (see figure 19). 30 eigenvalues were
calculated using the Laplace-Beltrami operator for gener-
alized height functions with 338 finite elements and cubic
form functions. They were compared using the Euclidean
distance with best fitting lines. Figure 20 shows the cal-
culated distances for the best matches. Figure 21 shows an
MDS plot of the best matches depicted in figure 20. One can
clearly identify the cluster of the microscope images. Using
the Pearson correlation distance (see section 7) yielded sim-
ilar good results in this case, whereas using the Hausdorff
distance showed inferior results.

Finally we generated a family of images containing a moved
full disc (see figure 22). Clearly, this is a one parameter fam-
ily of images, so one should predict the set of fingerprints to

Figure 21: Cluster for the colour images (Laplace-
Beltrami)

Figure 22: One parameter family of images

depend on one parameter as well. Figure 23 shows an MDS
plot of the calculated fingerprints. It forms a one parameter
curve.

9. CONCLUSION AND OUTLOOK
We have presented three methods for obtaining fingerprints
from discrete monochrome or color images. Namely the
Laplace-Beltrami operator with height functions, the Laplace-
Beltrami operator with density functions and its discrete
counterpart the Laplace-Kirchhoff operator were used. We
have shown an interlink between the discrete Laplace-Kirch-
hoff operator and the Laplace-Beltrami operator. Further-
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Figure 23: One parameter curve of the fingerprints
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more we have introduced concepts from the theory of Rie-
mannian geometry into the field of image fingerprints. We
have demonstrated these techniques to work in a set of prac-
tical situations. The methods were shown to be especially
useful in presence of rotations or color rotations of the im-
ages in question, since the calculations are invariant against
such transformations.

Future work will include investigations on how to apply the
Laplace-Kirchhoff operator and the Laplace-Beltrami oper-
ator with density functions to color images. Furthermore
methods would have to be provided to cancel the effects of
special non Euclidean transformations (e.g. most color space
transformations) on color images.
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