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PREFACE and INTRQDUCTION

This paper wants to discuss the foundation of an approach tp an
intrinsic geometry in Riemannian manifolds with boundary. That means,
we wish to give a base for studies on shortest paths and intrinsical
distance - (which is defined for anv two points as length infimum

of connecting paths); we aim at finding out relations to global
topological properties of the manifold. This paper contains proofs
of some of the results announced by us in D}j and 321 .

Except from the recent independent work of R. and S. Alexander,

R.L. Bishop and I. D. Berg and several other geometers in contact
with this group, where we learned about by private communications
and by [29] there does not seem to exist any systematic treatment

of our topic. This omission is astonishing since manifolds with
boundary are so important for topologists as well in global as in
local considerations. The absence ist even more surprising if one
remembersthat on one hand intrinsic Riemannian geometry has been
useful for problems in science, technics and economy and that one
the other hand just in technics and economy various extremal
problems are posed together with inequalities and boundary consfraints
so one might think that Riemannian manifolds with boundary could
serve as unseful models for a description of many of those problems.
For instance the main subject of this paper - a shortest path in a
homtepy class - may be visualised as a ropc tightly stretched over
obstacles perhaps partly wrapped around extrusions.

Of course, there also should exist application possibilities for
problems in differential geometry itself. First methods and results
with similar intentions however mor:zdeveloped than in this paper
might be useful to study global topclogical vproperties of certain
open non complete manifolds which have been resistant acainst global
investigations until now. We have in mind Riemannian manifolds which
are weak deformation retract of their Cauchy completion. One may
perhaps study glcbal questions easier using the existence of shortest
paths, loops and eventually a generalized concept of cut loci only
available in the completion which may be a bordered manifold treatable
by our teocls.

Of course, it is desirable that an eventually new concept will have
relations and will contribute to understand still existing classical
problems. As far as we know there are at least two places where
intrinsical ad hoc considerations for manifolds with boundary have
beerused in the proofs of major theorems; those are the theorem of
Efimov [19] and the theorem of Cohn-Vossen i.e., the ceneralisation
of the Gauss-Bonnet theorem to complete surfaces /30 . (In 019

p. 535-541 J. Milnor proves a certain twe dimensional version of

our result on p. 47 the proof given there cannot be generalized to
higher dimensions.

We believe that those examples should not be the only places for the
application cf intrinsic gecmetrical considerations on manifolds.
with boundary. To underline this we will finally speculate - and
what we say now has to be relativated in this sense - about eventual
application possibilities on a much stdied class of examples being
of interest for a large group of ceometers. It can be shown that

if a simply connected metrically complet: surface with C? -smooth
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boundary curve is subsurface of some simply connected complete two
dimensional Rlemannlan manifold without conjugate points, then the
subsurface has a C'-smooth intrinsic distance function with locally
Lipschitz continuous gradient in the interior of the subsurface.
(More subtle considerations are possiblé.) This result may eventually
be the base to distinguish certain bordered minimal surfaces by
means of their intrinsic geometric properties for instance by
studying relations between boundary curve and shape of distance
circles i.e. curvature number of connected components, gradient
lines of the intrinsic distance function e.t.c. The condition of
being a minimal surface may eventuallv force certain intrinsic
properties. Since we hope that i{ 1is possible to develope a
generalized concept of cut-loci for manifolds with boundary there
may then eventually come out a helpful tocl to distinguish between
topological types of certain minimal surfaces.

We describe now roughly content and construction of our paper. If
one defines as usually on a Riemannian manifold the distance between
any two points by the infimum of arclencths of piece wise C' -smooth
paths connecting the points-(where the arclength is defined as the
integral of the tangent vectors norm)- then this distance makes the
manifold into a metric space whose . irpology acgrees with the
manifolds topclogy. The same holds as we will show in II for
Riemannian manifolds with boundary, if the boundary fullfils certain
conditions. Those metric spaces are examples for metric spaces with
an interior metric in the sense of W. Rinow and various results for
Riemannian manifolds can be prov ed without the presence of a

smooth structure simply within the frame of such metric spaces. What
is a space with an interjor metric? It is a metric space (M, 4)
which satisfies certain conditions. We need some explanations to
describe those conditions. In a metric space (M,d) we can define

the length of a path c:I— (M,d) as the supremum of sums of distances
between partition points taken over all finite partitions of the
parameter intervaill I. If this supremum is finite the path is called
rectifiable. Now if any twe points x,y in (M,d) can be joined by a
rectifiable path then one may define a new metric 4(,) by taking

for the new distance between x and v d(x,y) as 1nf1mum of lengths
over all rectifiable paths connecting x and y. If the metrics d and &
agree we say that (M,d) is a metric space with an interior metric.
Note in general even the topologies induced by the metrics d and d
on M need not acree. Take for instance as space (M,d) the metric
subspace of the eucledean plane cot from the unicn of segments
connecting the orlcln with the point (1,0) and with all points of
the sequence (1,2 )} n:N; here the points arc given in eucledean
gpordinates. Now uhe space (M,d) is compact but not in the metric

d since in (M,d) the sequence (1,4%) has .no clusterpoint. Further
also if the topologies induced by d and d on M coincide the metrics
need not agree take for (M,d) the real numbers with the metric

d(x,y%={fﬁL, , Ixldenotes the abolute value of the real number X .

In this example*(M,d) and the corresponding (M,d) are both ccmplete
metric spaces which are homeomorphii but not isometric.
Our use of the word metric in this paper may be ambiguous since
we use it for the distance funtion d(, ) if it defines a metric on
some set as well as for the such defined structure. If we speak of
a Riemannian metric or Riemannian structure we of course always think
as it is common of a form inducing scalarproducts on the tangent
spaces.
[* - aie foAaan "\ ‘. L! n ;f' B! \" qi¢ f'?-" ri"":?.l'";."_f ¢ 1-13;'1"0
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The paper is divided in three chapters and an appendix. In the first
chapter we only discuss results which hold for metric spaces with

an interior metric indemendent of the existence of a smooth structure.
The results we get in the first chapter are in the third chapter
applied to get the existence part of several results given in III;.
One of the main intentions in the second chapter is to show that
this application is possible and to clarify the relations between
the metrical space structure and the manifold structure on the
Riemannian manifolds with boundary which we describe in II; and II; .
Those clarifcations provide also several facts to be used 1in the
proofs in III; and III; .

in the first chapter much weight is put on the question: When is

a metric space Heine-Borelsch i.e. when does the space have the
proverty that his bounded and closed :subsets are compactt. We prove
in I, that a metric space with an interior metric is Heine Borelsch
iffit is locally compact and complete. The importance of the Heine-
Borel property lies the fact that it assures the existence of
distance realising paths in metric spaces with an interior metric.
Even if we wcould only discuss compact spaces, if we are interested
in shortest loops in homotopy classes the Heine-Borel property is
vet important. Since it 1is comfortable tc show the existence of
shortest loops in a homotopy class by prov ing the existence of
corresponding shortest paths in the universal convering space and
because the covering space needs not to be compact but will still

be Heine-Borelsch if the covered space is Heine-Borelsch with an
interior metric.

211l our results in IIT those are mainly existence theorems for
shortest paths and loops with certain smoothness gualities hold
for n-dimensional bordered manifclds which are locally diffecmorphic
to a convex set in E" . However convexity is no invariant property
under diffeomorphisms. Since we wish to investigate intrinsic
geometric questions we have to present a ccncept using intrinsic
definitions for those types of manifolds we discuss. That means

we must describe intrinsically what properties a set in E'
corresponding to a coordinate neighbourhood in the manifcld must
have and those prooperties must be invariant under a coor@inate
exchange. We think that the definition we give in II; by manifclds
satisfying a cone condition is appropriate for this purpose, since
it allows to define all later used objects and their properties
without any extendebility assuption beyond the manifold.

After the preparations in the second chapter we prove in III certain
smoothness properties of shortest rectifiable paths in Riemannian
manifolds with boundary, which are locally diffeomorphic to a convex
set in R'. One of the results given in III, p. 47 can be formulated
as follows: If M is a C'-smooth differentiable manifold with boundary
being locally c'-diffeomorphic to a convex set in E" and if M carries
a Riemannian metric ¢ which has locally Lipschitz continuous 'local
representations (g;; )then every shortest rectifiable pathdgiven in
arclength parametrisation ¢.: [0, al=—> M, 1is c' ~smooth on the open
intervall (0,a). (With an additional argument not included in this
paper we have that ¢ is C' on all [o,al ).

There exist independently proved results with similar and different
intentions which were civen by R. and S. Alexander in|[l!] and Dby

R. L. Bishop private in communications. The me thods used by them

are different from ours. We show in III, the smoothness
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properties of the shortest paths by applying the calculuvs of
variations to rectifiable curves. We justify this approach by proving
in III4 that for an absolutely continuous path c:J — (M,d) , —

(With (M,d) the metric space related to (M,qg) )=, the arclength
definition via the integral of the tancgent vectors norm, which we
will call shortly 'differentiaple length' and denote by Lpid

agrees with the so called'rectifiable length' dencted by Lg(dl o
which is defined as the supremum of sums of distances between partition
points over all finite partitions of the parameter intervall I.

This probably per se interesting result, which even holds,if the
Riemannian metric g is only continuous, allows us to say, that a
rectifiable shortest curve in arclength parametrisation has less

or equal energy than the test-curves used in the wvariation in III,.
The proof in III, is locally performed in a subset of EPcorresponding
to a coordinate neigbourhood, the proof consists in showing that

all difference quotients of a shortest path's derivative have a
common bound in the I -norm. During this procf we esgentially exploit
the assumption that the manifold M is locally diffeomorphic to a
convex set in R'. Namely, since the varation test-curves are convex
combinations of points of the given shortest path, they are admissable
since they stay in the due to our assumption convex chosen set in

R" related to the coordinate neighbourhood. We explain the background
analysis used in the variational calculus in the appendix.

It may be notable that the theorem in III; assuring the existence
of C' smooth distance realising paths in a metrically complete
nanifold described above-(which may be viewed as a generalisation
of a part of the theorem of Hopf and Rinow)- as well as all other
results in this paper areproved without the differential gecmetric
standard tools like Gauss-lemma, exponential map e.t.c..

The author takes pleasure in expressing his deep thank to his friend
Bernward Ripprich who helped with endurance to type down the
manuscript and read proofs in major parts of the typescript.



0 M ETRICAL PACEL WITH THTERIOR METRIL

, 3
//f”l When ¢ a _WT{{HL‘,M {pade Heine - gg;e{gch?_,

Definition: In = general metric space (M,d) we can define

the length L(c) of a continous curve c¢:I -M , I = [a,b] ,
by L(c) := sup {c{Z)]|2€2(I) ) with Z = (azto,...,tn=b)
a finite partition of I , c(Z) = d(c(ti),c(ti+?)) and
2(I) Aenotes the set of all finite partitions of I. If L(c)
is finite the curve is called rectifiable. If for all

pvoints p,q €M we nave

d{p,q) = inf { L{c) | ¢ rectifiable continous curve from p to q}

The following immediate proposition contalns an essential
proverty of spaces with an infterior metric. It will be used

in the basic theorem later on.

Proposition ; Let (ﬁ,d) be a space with an interior metric.

Purther let X e an arbitrary point in M and S(xo,r) =
{x] d(xo,x)mr] a distance sphere around x_ with arbitrary
radius r. ¥ow assume Yy £ is an arbitrary point with
d(xo,y) > r . Then for any given € > O there exists some
x' € S(xo,r) such that ad{x',y) = d(xo,y)— r+ €.

Proof : Since (M,d) has an interior metric there exists a

curve c:[a,b]l -M , c(a)=x_, c(b)=y with L(c)<d(xo,y)+€.

0
The function ﬂ(xo,c(.)):[a,b] R 1is continous, thus we have
t' € {a,b] with d(xo,c(t'))z r . Using again the definition

of an interior metric we get from this

Alxg,c(tr))+ale(t),y)

1A

Lo /ra, £0)) + 2o 00 n))
L{c) = alx ,y)+c¢

It

This yields d{e(t'),y) s d(x_,y)~-T+¢

Chosing x' = c{t') we get our claim.



We come now to the basic theorem, which we present here
with a selfcontained proof, because the proof of Rinow
([9%],p.174) is part of broader considerations and the one
of Busemann ([ 4 ],p. 4 ) seems to contain a gap (see remark
below).

Theocrem : (L3 7 , [471 , [231]) A locally compact metrical
space with an interior metric is Heine~Borelsch if and only
if its metric is complete.

(Heine-Borelsch means that bounded and closed sets are
compact. )

Procf: A metrical space beeing Helne-Borelsch 1s obviously
locally compact and complete. The Aifficulty consists in
proving the other direction. For this purpose let z be an
arbitrary point in M. Further be s = supi{r|X{(z,r)is compact},
here as always in this proof X(z,r):={xld(x,z)=sr,x€i} de-
notes a distance full-ball.

First, because of the loczl compactness we have 8>0

if s = o then there is nothing to prove. Assuming that

8 « o we will get a contradiction in two

steps. That 1s we show:

1) X(z,s) is compact

II) 'There exists a ¢ > O such that K(z,s+8) is compact.

Proof of I) : In a complete metrical space, total bounded-
ness of a closed set is equivalent to compactness (see [14],
p.87). Therefore we show K(z,s) is totally bounded, i.e., let
there be given an arbifrary ¢ >0 (here s>c¢), then we must

show that K(z,s) can be covered by a finite number of balls

where every ball has radius smaller than or equal To =.



To this aim we first consider the ball K':=K(z,s-10-6 g)
here by definition of s, K' is compact and thus totally
bounded. Thus, there exists for given '|O‘!+€ g fi-
nite covering (K(zi,uiq ¢j),12isn for K'. HWow for any
given Xg €K(z,s)\K*' we have by the above preoposition an
x'€ S(z,sﬂdg e) with d(x',xs)<d(z,xs)—~ (s=10" ¢) + 10° ¢ .
Thus d(x',x ) <s - (s—‘tO‘G €) + 16° ¢ ,
hence (fl(x',,xs)<?_3."1(56 & .

Since x' € K' , it must be contained in some K(zm,1d& e),

z, € {Z‘l”"zn} . This yields with d(zm,xs)éd(zm,x')+d(x',xs)

~ 0

d(Zm,KS)< 10 e +210 ¢ , hence d(z ,x ) <ic¢.
We just proved that any given x € K(z,s)\ X' has a distance
smaller %Eto one of the points zy » 1= 1 =n

Therefore (K(zi,e)) , 15i%n,is not only a covering of X!

but also of all K(XO,S) ; this proves I

Proof of II)} : For any siven x€MN we define

5(x) := 10 sup { r |K(x,7) is compact } . By the local com-
pactness for any given x €M we have &(x) > 0 . (If for
one x , 6{x)=o , then there is nothing to prove.)

Let now be (I%(x,&(x))x) with x€ K(z,s) an open covering of
K(z,s) , here EO{(X,S(X)) = {yld(x,y)<8(x), y €M }. Since
K(z,s) is compact, we have finitely many points
{x,,..,x}cK(z,s) such that (I%(xj,é(xj))) " XJE {xq,..,xl}
ig a covering of X(z,g). Ye now define ézzmin[é(xj)]7§j§1}
and will show in the following that K{(z,s+8) is compact by

proving that XK(z,s+8) is contained in the compact sed

U K(XJ,TOﬁ(Xj) ) .

123=1

1A
1A



In order to prove this c¢laim letd x" be an arbitrary given
point in K(z,s+8)\ K(z,s). Then we get again from our pro-
position that there is an X £ 3(z,s) with

A(F,x7) < d(z,x )-s+5 , thus

A(X,x") <s +5 -5 + 8 , hence d(X,x") < 25.

Since X € S(z,s)cX(z,s) , there must exist a point

X € {x1,..,x1} with EEIK(xk,é(xk)) , 2nd thus d(xk,§)< 6(xk).
Combining this, we get by d(xk,x+)§ d(xk,i)ﬁ-d(i,x+)
d(xk,x+)< 8{x, )+ 28 = 36(x,.) .

Thus we have proved that for any given x+€EK(z,s+5)\\K(z,s)
there exists a certain ball K(xk,105(xk) }  (depending on

x7) which contains x'. Therefore L K(xj,105(xi) }
1= 3=1 J

{iA

does not only contain K(z,s) but a2lso K(z,s+8) ; beczuse
every K(xj,105(xj) ) is compact by definition of 5(x) ,

the statement of II 1is completely shown,

~ . .
}wuﬁemarks on a counter-example named 'Jdimension-rambler!

A) After finishing the above preoof, some time z2go we reazlized

that in [ 4 ],0.4/5 a theorem is presented which the author

calls Theorem of Hopf and Rinow. Cur theocrem 1s included in

this result. However the proof there seems to contain 2 gap.

Famely in the proof an argument of the following type iz used:
"Let be in a metrical space (il,d) , K(p,r)={x/d(p,x)=r,x€M]}
a compact distance bzll, and let be (%(pi,ri)) with 1£iz2n,
0

* K(pi,ri):={xid(x,pi)<ri} y P; €K(p,r) =an arbitrary finite

open covering of K(p,r) ; then there exists some 5>0 such

1A
VA

. Q .
that K(p,r+s) is also covered by (K(p;,r;)) , 1=i=n ."

This claim is in general not true, even if (¥,d) is a



pathwise connected, locally path-connected, locally compact,
bounded, complete metrical space. For a counterexample we con-
struct a certain subset which we call dimensicn-rambler in the
Hilbert-space 12 of 2ll sguare-summable gsequences; for

x= (xi)iEIN €1, 1is defined ]§L2= (Z]|xi|2)%. In order to con-
struct the rose-creeper P let ' {EZIZGEZ} be a set of vectors
in 1, where we define x = 0 and for z€7Z\ {0} we define X, by
coordinates in the fellowing way:

1

- - iz . {2l
X, 1= sgn(z) {1 +|z!) 84 , where &, denotes

the Kronecker-delta and segn(z) is the signum of z. We connect

now the vectors (;cz)ZEZ by an infinitely long polygon. i.e.
ve define the mapping P: Ik -1, with
=) .= s_Ts1Y (% - -
P(b) H A[S]+ (b [S")(X[Sj-{-‘] X[S]) sy HlETE
[s]i=max((-=,s)NZ) ,(such that for z€Z [z]l=z-1 ). Considering

this vpolyzon plecevwise we see that we have segments

P o= P(lz,z+1]) = {X_+3 (X

. Le1-%y) 12 €10,11}

-
every segfment X_,X ;= P, connecting two vectors

7!z

X, , X

S (z£2)

It can be shovn by a shtraightforward computation that the man-
ping ?: R - (12,112 ) gives an imbedding of the rezl line
into (1,,] i, ) as a closed subset. The reader should note in
this context the fact that
"For arbitrary z,z'€Z with z<ez', the distance in the
@ 1l,-norm between the subpolygon P([z,z"']) and the set
P{m\ [z=-1,2'+1]) is always greater than .."
This means that, for any two points P(s') , E(s) with

lP(s)-P(s")] <%} we must have |s-s'| <2 , as can be seen

4

o

by taking the subpolyzon P{[ [s],[s]l+1 1) and applying <.



This last fact is useful by showing that P(IR) is closed
For our example (M,d) we will take now M:=P{IR) endowed
with the metric d induced by the lgﬁnorm on this subspace,
i.e. a(X,¥) := x—y| for %,7€ P(R). Clearly (P(R),4) is
a complete metrical space since P(MR) is a closed subset
of the complete space (lD,I 5 ) .
By defining (M,4):=(P(R),d) and taking in (M,d)
K(p,r):ziK(O,E"%) together with an arbitrary open covering
), r. <] , piEK(p,r) of K(p,r) , we claim now that we have

15

a counterexample to {(*).

R(
PisTy
In order to prove this we first show
a) in the space (P{R),3) the ball K(0,27~) equals the compact
i
set x| [M: FJ@ ]},
T

h) for any given 5> 0 we can find some number z £ Z with

IA

K(O,E";‘;'Té)ﬂ}?([z,z-k‘l]) + 0 .

e will get a) and b) by using the following estimaiion for

A(0,%(s)) , i.e. with s=z+x , O<»=1, |z=1>1 , we have

10,2(e)) = EP(S)E = I?(Z+})l = lizﬁ'}(—z+1—iz)b
= 07 Carg)®+ 0=0) G ?:L> 1/
> 0= s ;f* -

his inequality shows that P N (0,27 ) =9 for z£2Z\ {0,-1}

3

m

ni thus proves a). Further inserting s=z+5 we get from our
estimation that ||P(z+d )|CJ _3| is approzching O with |z| € ©
growing; hence the sequence P(|zl+% ), |zl €N , comes aroi-
trarily close to the ball K(O,Z-E) and this proves b).

Finally, 1f we take the open covering chosen above:



1 3
K(p;,r;) , r.l<1 , p; €X(0,27%) of K(0,27%) ¢ ®([-1,1]) ,

we have K(p;,r;) N P, =¢ for tzl >2 due to ®

This finishes the proof of our counterexample.

B) Clearly thig example of the metrical space (P(R),1) also
shows that the asssumpiion of an interior metric in the theo-
rem on p.q 1is not superfluous in order 1o get the metrical

space there Heilne-3Zorelsch.

C) Our exzmple (P(R),d) is also useful in disproving a common

error, namely the claim that the distance function attains a

minimum measuring the distance between a compact set and a
closed set in a complete metrical space (see for instance

4 73,0.66). For take the compact set {0} and the closed set
P(RN (=1,1)) in (P{(R),3) . Then we have for the Jistance
between {0} and P(R\ (-1,1)) the value 2"3 , but there
doeg not exist zny point ¢ £ P(R N\ (~1,1) ) with 4(0,q)= ?"%.
It may be noteworthy that 1f we modify the definition of

(P,4) only very little by defining the coordinate

{2 ]

= son(z) (2 - sgn(z)+ %) 5. , z€7Z+{0} , then we

t

AV

m
(4]

g21n The real line embedded as a closed subspace of 12.
In this case, %aking again the distance between {0} and

P{(ER\ (-1,1)) in the meiric induced by the 1?—norm, we get
again inf{ 4{0,q)| a €P(R\ (-1,1)}) 1} = =% , but in this modi-
fied case we have in addition that neither fhis infimum nor
the supf{ 4(0,q)l g eP(R\N({(-1,1))} =3 are atiained by points
in P(IR\ (=1,1)). Clearly our modified example of P(R) may

alsc be used for a counterexample against (¥) in the same way

28 the original example was used in A).



2

Shortest paths in metrical spaces.

fie now 2pply our main result of the first gsection in order tc¢
assure the existence of distance-rezlizing paths in certain
metrical svaces., For this we need the next result which we
state without proof, since it is well known and not hari %o
show, its proof being essentially an application of the Ar-
zela-Agscoli theorem; the reader may find proofs in [23],p.147

and [ 27

4

~ [ 3 -~ - . ——— .
shortest cennecting pzth for any two

F

terce-realizing connecting path for any two given points,
Temarik: The condition 'locally compach' in the preceding theo-
ram iz not sunerflous, 2& can be seen by the following example:

+ . H L 4 - - \ - — | = -
teke in the zuclidean plane I ,\; a gubsedv S orm o (erbn') ’

3
N e

s, to be the segment comnecting the points (-1,0) , (C,z} =2nd
Py 1A

1
s ' ig the segment vetween (0,-) , (1,0) . FHow since any two

chviously have zn interior metric & in S if we Zeflne A{s,q)
as the greatest lower bound for the length of paths within S

from p to g. Clearly 5 1is complete in its metric since every



Cauchy-sequence has 2 1limit; however there does not exist a
path in S from (-1,0) to (1,0) which is distance-rezalizing.
The points (~1,0) , (0,1) have no compact neighbourhecod in
(8,2). This can be seen as follows: in every ball K((?,O),%) ,

=(2n)_?

n€¥ , in (S5,4) we have tne subset A_:={xe3nz“] {(1,0)-x
il

we see that A contains = sequence cf

oints in K((?,O) - ) Wi
out clusterpoints in 3. This i3 clear because the interior

distance hetween any two different points in A equals 5
L2 L

Covering spaces and shordtest loous,

We want to prove now some results on the axistence of reciifi-

acle shoritest loons in homoteopy classes of loops in a gpace

-

(=1

9]
o

n1th n
s v . vy = PR oo r ] =]
tozether with considerations on the universzl covering gpace

of the nmetrical s3I

- -~ =
cevt of covering spaces we refer to [327],Chan.3 znd [ 417

O]

A |

Chap.

¥y comnected metrical space with an
intericr metric. Then since {i,7) is obviously arcwise connsc-
ed and locally arcwise commectel, the wnmlversal covering epace
denotel by U owith covering projection m:M -1 exists (see for

-

y. Initizlly X is a topolozical space

s

0.0

V]

since m ig a lecal homeomorvhism the metricel structure of
o . | C o~ T .
) can be cally Lifted to I via m. Thus 1T U is & neigh-

boatheod of some poiat i BRI with w(T) sl PP where K{ﬂ,lﬂ i< evenl
Coveied (Le‘ the covnfonen{? og ﬁ:” K(f

| y
u,ﬂfn are each muppe& humeomoqﬁ’

{.,.) on U by

ful
Y

Ll ! .
““w “Iogﬁbﬁdlma“ﬁ), we define the distance

idi a

naths in i 2re rec-

fold

3(B,T) :=aA(n(3),n{(T)) for all T, €U ., ow

ti

w

iable if their orojections via mw are rectifiable in Il
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Since M is connected and because the set of points in M which
can be Jjoined by a rectifiable path with some given point is
obviously closed and open in I, 1t makes sense to define an

interior metric on all M , by defining q ¥,4) = inf{ L(¥) |
T is a rectifiable path comnecting T and § } . (Of course this

1s compatible with the preceding local definition, since K has
an interior metric, ) FPurther d really defines z metric on M :
the triangle ineguality is $rivial to prove so we only check thast

L ~ (-4 - - ~ Pt - i ~
X #7 €N implies &(%,¥)>0 3 now if n(¥)£n{¥) we get for

5

b

every rectifisble connecting path ¢ between X and ¥
L(T)=L(=(T)) =2 a(=n(X),n(¥)) = 0O
)

he definition of a2 covering sp=ce

, S8ince II is a2 metrical space,

we have in i 2n open neighbourhood, which can e chosen here o

be an cnen vall K(#(X),r) with center =(¥) and rajius r>0 ,
such that n~ (K(n(¥X),r) is =2 disjoint union of open balls

'—\; ~ Pt —‘} — A-: . - -~ —— _—~— -
X zi,r) , X & (7(%)) in 4 ; this yields A(F,¥)>»>0. I% is

'Y ~ ~

trivizl that the topology induce? by 3 on il agrees with the
existing topolozy since the small balls whereon the restriction

of 7 ig injective, form 2 basis of the tovology in I, By our

(%,%) = a(r(%),7{¥)) for any two ziven poinis ¥, T, (Of
course the =zbove concert of definition for an interior meifric

in I works in arhitrary covering spaces. )

ve Will essenticlly exnleolt The following
]
. - P P Sy A
Assertion: Zet i be a space with an interior metric and mwilli-I
~ N
- - H T R nT - - e .
te any covering space of II, with ¥ carrying an 1nterior neirlic



A4

Proof: Ve will only need and only prove that the completeness of (M,d)
implies the completeness of (ﬁ,g). For this, let be (%n) an ar-

bitrary Cauchy~sequence in M. Then we get by

a{m(x_),m (¥ = d(%_,%_) a Cauchy-s % n zing

{r{ n)- (Ym)) ( D hy-sequence 7 n) converzing

agalnst some y€M¥. Ve now choose some r> 0 that the balls

Y ma ~ —1 . . - T b

I(‘i,r) y ¥y €T (v) , are 2ll disjoint ana ﬂ]:K(yi,r)—-K(y,r)

iz isometric. Text we choose n <N so large that ﬂ(ﬁ(%w),y)<2§
lL

’

r

fal - T
it (1((3’,1‘)) =

U, K(F,,r) nust be contained in some ball K(¥. ,r) ,

e L i

c T Nd o

.)l .

but then 211 % must be in K(T. ,r) for n=f., This gives by the
s .LO k

homeomorphy of H/:Y{?4,r)—*K(y,r) that #_ 1s converging o

. ond wroves our clain,

lo -

2) Let be p,5 any two voints in iy, let e ¢ any »n2th from v To
¢, then there exigts 2 rectifiazble shortest poth in the ho-

c) If i1 is cempact and not simply connected then there exists

Proof: Tor the following m:l-I1 dencies the above described

by a2 Zistance~realizing patihh, because I is Heine-Borelsch,
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being complete and locally compact, see ».d . The completeness

o~

i was proved in the preceding assertion. (For the existence

1

distance-realizing paths in a Heine-~Borelsch metrical space

=1 . . C e
2) Take any point T&rm (v} and 1ift ¢ beginning in P and con-
nect the endpoint 4 of the 1Liftel path by 2 distance-rezlizing

ath Z with D ; the projection {7-7) gives a chortest path in
the same homotopy clasg as c. Suppose ounarwise, then we would
o F

1ift a shorter path g' homotonic with ¢, azain beginning the

-~ ey mr T a3 S R . = r i L N * ] —
11ift in 9, The 1i7ted path £' would hzve the same length zs 5!

N ~ 7 B el P ~ A - 7 S Y L K
{7 is local isomesry) and woull end n 4§ , being homotonic
L 1 ] Fal g 5 3 ~ TR carem A
bo the 1ifd of ¢ 2 contraiiction hence, gince 2 was distance-

b 9 =
~
reallzing 1n il
; g
1 T oAb e oy o~ 4 " =y i ERENY S - ™= K -
2} Let De 5, any polnt in w (o)., Tirst (7 {3)+ (B 1) is clocge
d

~

T — - ] — an 3 an 4 - - 4. - =
in 17, since it hasgs no clugtervoinit hecnuse there sxists r> 0
1, mly bl R TR £ = = B - ™oL Fe IT maer deln
such that 1(n,2')s2r>0 for 211 2,8 € ) , B F D ow the

; ~,
— 1 . T - > >~ 7 3 . — = -
set A= X(F 000 (n7 (0)N (B 1) with rr=A(3 7 (pNET. 1)+
0 o) o
3 ~ (~x o] EEES 4 £ LT i 3 ~—
ig comnact being = cleosed sunset of the closed defined and
S P . ey 41 - o = 34

hence by theorem p..J compact ball with center 2s and rsdilus r

oy S ~

T - r T - ~ Y v 1
in ., Therefore we have & o_ = L with

1id

i(3,,3,) = ninf 3A(F 3.0 1% 21 =793 -Wm\"’%")
R P RO S !\;O"I'Ji i i‘it:J = -.,..\;\.0:,7 \ \ L o .
e . - 3 L. Y 1L =
e take now 2 distznce-rezlizing path T:[0,1]1-1L , 0)= “

~ . =7+ 5. [ [ ; 3 mam 4 "
E(1)=%, , (T(+) in arclength varameirization) , then the pro-

jection of T, i.e. the loon 7T i=c¢ will Fulfil our claim in b)
*

Zj

~+ T4 fogy : 1 =+ . i+ 1 s FV
irst € is really a shorlest noncontracianle loon Ty o similar

v

- - P s — + in -1 LN -
argument as Ziven in a). Tor the remaining clzim it suffices

1 ] . . . - i
to show that d(p,c(g;): = , since then any subpath ¢ :10,%]-I
t
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1 :

I
R} N o

) . Suppose otherwise d(p,c(%))<<% , then we have a path
g from c(%) to p with length smaller then %. Tow we describe a
path denoted by c, by first moving along c from c(0)=1p %o c(%)
znd then zslong g from c(%) back to p .Lifting c, beginning in
50 we zet 2 path 31 in 1T which must end ur in 30 because 1ts

length ig smaller than 1. But then that vart of 31 corresnon-—

Jding to

04
448
',._I
Y
o
w
it

. 1 L
path of length smaller than = from c(;) to
E(O)::?O , this is & contrediction beceuse T was a distance-

realizing path in 1.

¢) Let be c_ & sequence of rectifiszsble noncentractoble loons

e
-y 47 T -~ 3 > - T - +7 =1 S0
witn basepolnts n, 1n L. Assume that the seguence of Their

arngths denoted by L(oﬂ) 135 mOonoTonicalily decreasing and con-
verzing against the infimum o of the leagthe of 211 rectificshle
noncontracyzile loons 1n I, Since M Ls comnpzct take nov
8 surseguence of B also denctved by D, WHlch 1S converging
azoingt 2 opoint oofEH. Talking 2 gecuence of distance~realizing
vaths from Do to n, demoted by 3. , we can describe a2 new Se-

~—— L

guence of paths 'c_ which 211 have basepoint i.,e, we gew

3 - - L e -~ LA, -
note the 1lifts by 'C.. The sequence 'C_ nmust conitoin z subse-

n n
cuences whose endipoints 'ﬁn converge against some voint P from
ﬂ'1(p) due to the Heine-Borel-vroperty of . We denote this
subsequence;xf'ﬁﬂ zlse by 'En, Since '5nﬁfﬂ-1(p} and hecause

the distance between 1 {p)N\{T} and T is srezster thsn some con-

than a certein number., How the lengtas of the curves 'c_ are
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03

converging against o since the lengths of 8, are convergin

1A

to zero, thus we have d(ﬁo,ﬁ) ¢ . Therefore the projiection

L

~
from D

ol

(m+¥) of a distance~realizing path .

with length £ o , which is homotopic to 'c, . Thus teking

{(re.c) we have the ¢laimed noncontractible l1oop with minimal

length in 1.

Remark: Cf course the condition 'locally simply connected' in

the preceiing theorem ig not superfluous in order to assure
the exiztence of a shoriest noncontraciable loon in 2} and ).

This can be seen in the following excmple: take in the Eucli-

| o 1 ! LR
— _ o s ! [ - ~r P 1 .
7 o= {x! xe=w | %= (=,0) < ={2-or) 1} nEN . Tow we lefine
T ‘ L 8 9 LY+ ’
~ i-) .
o ap - L~ rT - - o _ - R . i A 4 TN -
the following subset I of B, 1= {x ez [ l.{-—-'\O,\J}; =10 \T,
2
1 =7 4 - vy 111 o Tms - EREY

n= U T . Olearly I is o compact subget of Z7 for 2ll U are

. oo IE n

P a

A(.,.) in 1, i.e. for x,y &1l , A{x,y) = inf{ L(e)| c is a rec-

tifianls path in M from x to y ! . Note here that rectifiability
and lenzth L(e) of o path ¢ in Il are initially deflined re-
spective to the Euclidean metric 4. {x,7)= lx-y, in T .(Tor the de-

Finition of length L(c) of a curve ¢ in = metrical space see

agrees for curves in M with the lengtn definltion resnective to

,ﬂ‘ =0 )

the just defined metric a(.,.), thus &(.,.) really defines an

T T

interior meftric on M. How beecause we have 1= d(x,y)/!x-y!

-

L

nr

or 211 %,y , Il i compact not only in the Euclidean but also in its

Hy

interior metric, thus any two points in M can be
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ginal intention of this example, although I is certainly not

ah
simply connected, there obviously does not exist any shortest
noncontractable loop with basepoint (0,0), due to the fact
that ¥ is not lecally simply connected at the point {0,0).
Furthey, it it npl

) | havd 1o ree thet {he space i his @Xgpww(; o deins
paihx tohich nave no peo i

24&,LWWN{D$Ef fafh
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1/3‘ Supplemented  temark om

Distance between points in a covering space of a Riemannian Manifold

L.et M be a Riemannian manifold with its canonical distance function
dM: MxM-1R , making M into a metric space (M, dM) .

In a general metric space we can define the length L(c) of a continous
curve ¢ :1-M, [=[a,b], by L{c) = sup{c(Z)/Z,63(I)J2 with
M(C(ti), clt

5(I) the set of all [inite partitions of I, If L{c) does exist the curve c

Z = (a=to, cee s tn=b) a finite partition of I and c(Z):= T d M

i+l
is called rectifiable,

If for all points p,qeM , dM(p, q) = inf {L(c)/c rectifiable, continous
curve {rom p to q} the meiric space is called a space with an interior
metric in the sense of W, Rinow. In a Riemannian manifold the definition
of arclength via the integral of the tangent vectors length agreeé with the

above for piecewise C~ curves. Therefore a Riemannian manifold is a

space with an interior metric in the sense of W. Rinow.

If we have a Riemannian covering (f\v/[,-rr , M) of M we can ask:
Is for all pairs of points p,q¢M the distance dM(p, q) also attained by some
1 N PEY i ~0B ) = By = =Y = ?, e
pair B,qeM, i.e. dp(B. @) = dy(p,a), m® =p ., n(@=q \(dM the
distance function in M )
For a piecewise C~ curve g connecting p and g in M its lift o via n
H

(for any given initial point Per (p) and uniquely determined endpoint

The same does hold if we consider analogue coverings of spaces with

interior metric in the sense of Rinow, since here the covering pro-

In the Riemannian case isometry has a double meaning. One for
the form measuring length of tangentvectors and the other in
the sense for ordinary metric spaces. In the Riemannian case

T is a local isometry in both senses.

Now if M is a locally compact, complete metric space with an interior

metric there exisis by a theorem of Rinow a distance realising curve ¢

fromptoq , i.e. L{c)=d (p.a). Alifted curve € of a rectifiakle curve C

has the same length as ¢ and therefore the distance dﬁ(p, ) between

the endpoints of the lifted curve must equal dM(p, q).
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In the case of a Riemannian manifold the distance realising curve is a geo-

desic and its 1lift too. )

This consideration shows that the answer to the question (*) is Yes for

M assumed to be complete,

We give now an example of a Riemannian manifold for which the answer

to (*) is No.

.

S
D /'//
P '1

We define in the Euclidean plane E2 -an open.subset

Q = { (x,¥y) ’ max(lxl,]yﬂ <2;€ and a subset D =.{{x,y) /max(ixl y+1])r=1 } .

Further we define a sequence of segments Sn = {(x,y)jy=i-ll REY } .

Let the Riemannian manifold M be now Q\(DunL‘)NSn) , compare picture.

Define now two points p = (- ; , =-1) and q =( :-;’ , =1) . There does ob-

viously not exist a rectifiable curve from p to g within M having length
Lic) = dM(p, q) . Now il for a rectifiable curve c:I-M from p to g

1 .
L{c) < dM(p, q)+ 5 then we have c:(I)r\Vn ¥ /®/ for exactly one n_€ N,

1 1 .
= z — > 2,
here Vn [ {y, 0)f r1<y<n-l } , NeEWN , n=



15,

A look at the picture tells that for any curve ¢ : I—-M connecting p

1 -
and q with length Li{c)<d(p,q) +5 and c(I)p Vo4 ¢ ,c cannot
C

2
be homotopic to any other rectifiable curve c¢ from p to q with
FICEDVICAN
length L{c) <d(p, q) + (\/(E} +(5) -7 ] where k >nc .

In order to answer (*} we consider now the universal covering
(M, 7, M) of M. Assume there exist two points Pe '1(p) and
aéw-H

€ with L(¢) = dM(p, q) from T to § because then moc would be a

q) with dm(p, q) = dM(p, q). There cannot exist any curve

distance realising curve from ptoqg, i I{mec} = L{c) = dM(p, q).

. e,
Assume therefore it exists a sequence ¢__ of rectifiable curves
from P to § having lengths L(€ ) converging against dp(Pal .
All those curves ?:Jm are homotopic since they lie in a simply
connected space. But then their projections noe e must all be
homotopic curves from p to q whose lengths L(mo cm) converge
against dM(p, q). This is a contradiction to our conelusion

above,



;/} INTERI0R METRIC ON MAKIFOLDS WHICH [UFEICE A LONE-LONDITioN

i&qufferentiable manifolds with not necessarily smooth. boundary. fui-

filing a cone-condition.

In the following sections we will consider certain differentiable
manifolds with boundary where the bouniary need not be smooth

but only satisfies =z so-czlled cone-condition in every point.

For this concept we need some preparations,

For our purposes it will suffice to use very srecial types of cones.
e have fo arrange several notations. Let be K(p,r) 2 closed ball
with center p and radius r in En, with the origin not contained in
K(p,r) , thus |y} >r . If we take a2ll points lying on the rays
isguing from the origin and passing through some point in XK(p,r) we
get an unbounded closed convex cone denoted by Co(0,p,r). Ve omit

2 proof of this obvious fact and refer in this context to [ 6 1],
v.17. for arbitrary >0 we define now the following compact,

convex cone C(0,p,r,s) := Co(0,n,r)NK(0,s) ; C{0,n,r,s) is com-

T3

act as a closed subset of the compact ball XK(0,s) and convex being

the intersection of convex sets. As usually S(0O,!p| ) denotes the

=

Euclidean distance-sphere with radius (p| around 0 . It is obvious

that fthe boundary of Co(O,p,r) is built by the rays corresponiing

to the set of directional vectors | tg& bx es(o,r)yns(o,lnl) 1.
Thus we can describe the boundary of the convex body C(0,v,r,s)

by a union of two sets, namely

i

aC(0,p,r,8) = {t x| x€3Co(0,p,r), |x|=1,0=t=s)

U (c(o,p,m,s) N S(O,r) ) ,

I
Lef]

where {tx| x€3Co(0,p,r), Ix/=1, 0=+ 1 equals

{%X‘XES(p,r)ﬂS(O,]pl) , 0=t=s 1 ,
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We omit the proofs of all those facts since they are intuitively
clear and can easily be supplied.

Further we know that C(0,p,r,s) as a2 compact convex body is
homeomorphic to the closed n-dimensional unit-dise, thus 3C{(0,p,r,s)
is homeomorphic to the (n-1)-dimensional unit-sphere. (See for in-

stance [ 6 1, p.21.) We now define the ovening-angle of the cone

C{0,p,r,s) Dby the angle between the central axis , here the segment
ftplos té%s|pf'1} , 2nd an arbitrary segment issueing from O and
lying on the boundary of C(0,p,r,s). Clearly the opening-angle de-

noted by a=2(0,p,r) is well defined and we obviously have

: T . : . :
szncxz-ﬁyi, O<a<zm . Mow we will also Aescribe our cones via their
: : - _ o . r
opening-angle, i,e, C€{0,D,a) := C(0,n,r,s) , with sine =5 (re-
member r< lp| ) and T=s— . This notation expresses the dependence

i T

¢ the three deta describing fhe cone which zre the vertesx voln
{(here 0), the direction and lengtn of the central axis expressed

by the vector D , and finally the opening-zngle Q.

Il

Definition: e say that a set & in E fullfills an n-dimensional

cone-condition or shortly a cone-condition at 2 point g in & if

there exists some cone Cf{g,p,2) contained in G,

g) Differentiation of functiong defined on sets which suffice a

— — e m—. S S e e e e S G e e S e mmm e mme e Emm e mme e wmm e e e S e

cone-condiftion

Even for sets K in EN which are not open, it makes sense in certain
. - . r . _
cases to say that a function f:K-I& is C -smooth , with 1Z2r=z .

Assume that K suffices a cone-condition at a point p in XK.

1]

[

usually we call T differentiable a2t p if there exists @ linear map-
. - 1 .
ping Df(p}:E -] with

1im  fla)-£(p)-Df(p)(a-p)

| p~g| =0 | g-p

-
m
P

for g
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The linear mapping Df(p) is uniquely determined since there zre,

for a given basis (vj‘) , T=1=n,in En, fixed prescribed values for
Df(p)(vi) . This holds because, due to the cone-condition,p can be
reached by n linear independent segments t - p+ syt , \vilz? and
t£[0,e) , contained in K for some €>0 and because,due %o the
Aifferentiability of f at p,the right-hand derivatives

f(p+tvi)— £(p)

i . .
v (f) &= 1lim exist
+ P( ) t-0, >0 t ’
prescribing Df(p) (v') = +v;(f) .

Now let us assume that X fullfilles a cone-condition at all of its
voints. Identifying the differential Df(p) and the corresponding

gradient vector (viz the canonical isomorphism related to the

P
i

Zuclidean secalar product) we say that £ is T on X if Df exists on
2ll K and defines a continuous vector field there. Relative to sone
fixed basis,Df defines on K a2 mapping with values in R7, Clearly
Df is Cj if all components of Df are C1-smooth , and ¥ is called

C- if DT 1is C1—smooth ete. .

Using the materizl collected in A) and B) we wish tc vrove now the

Tollowing oroposition basic.

s

\HC) Proposition: Let c(0,p,a) be a cone in " as described above.
Turther let n:C (0,p,a) - 5 pe an injective continuous mapping,
differentiable in 0 , with derivative hy = L:E ~ B a linear
isomorphisn.

Then the set h(C (0,p,x) ) fullfills a cone-condition a2t the point
h(0).

Proof: It is obviously no essential restriction if we assume that

n(0)=0 . Pirst we take a cone Ca:::C(O,p,ﬁ) with O<a<a

thus Cz has the same central axis and length as Ca::C(O,p,a) , and

' 3 ; L. - 1 . Lol e 4 \
(% We tuw prove that (] onPomrmw fooalso valid withaat the mygativicy astympting $¢; the QhwgmUPpn1}1
4 /
¢
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Ca contains Ca..Let te ¥y a boundary point of Ca vnich is not
in S(0,|ol) , then an elementary geometrical consideration
shows that the Euclidean distance between y and G& , denoted
by d5(y,C5),equals |yl sin (a-&) , since the segment realizing
the distance between v and the interior cone CE is normzal to
the boundary of CE at the polni where 1t touches it, If we de-
fine 2 constant m(L,a-%) := sin ( a-) min1]L(x)| we Zet for
the Euclidean distance between the poiéi i(y) and the set
L(CE) the following estimate from below:

1(2(y),1(C3)) = m(Ll,e-8)lyl . (Note that m(L,a-3)>0 ,
since L is an isomorphism.) How since h is differentiable at O,
vie can choose a 5O>'O s0 small tha

of

p . . -1 - .
lhéky)-h(o)—a(y)l= | L(y)-n{y)l <107 m(L,x-3)ly| if <8, .
Therefcre we get for any given boundary point h(y) of h(CQ)
a distance estimation from below to L(C&) , namely:

Ag(a(y),0(C5)) 2 3 m(T,a-8) |yl if Iyl <5, <ol .

< |p| assures that p is not in $(0,|p! ) ; the

Tote here |v ¥
invariance-of-domain theorem assures that every point in
a(h(Ca)) has a preimage in aca , Since h is = homeomornhism
onto h(Cm).

Tor those boundary points of h(Ca) naving preimzges in 5(0,|lpl)
we can at least say that they stay out of some ball K(O,ms)
for some mSZ>O ; this holds by =z compactness arzgument,

b=,

. - =1
Therefore if we choose mg = %n%;( max |L{x)!) , then
x| =1

L(K(O,ES)) will be completely coniained in K(O,ms) and thus
stay away from those boundary points of CP wnich have theilr

.

Bl) .

preimages in 5(0,
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Pinally using the just established constants,we define

B := min{ & s Mg} and claim that the convex set

D - . .
L(c(0 ﬁréf,a)) ig contained in h(Ca)
Avbreviating c(o,ﬁ%,&) with Cz , we see that

L(Ea) is a convex body since EE is a convex body (see p.46.1%)
and L 2 linear isomcrrhism.

In order to prove the inclusion L(Ea) c h(Ca), let us remark
first that above we have chosen T such that for any point hiy)

in a(h(Ca)) we get (n{y), L(C ) > 0 if h{y)=0 . This holdis

S
I

becauss the above estimates imply for h(y)E€ a(h(c&))

. That means that the only

=+

3.{nly), L(u~) z %Inhl{ms, m{L,c-2)

L

e

O

undary point of h(C%) contained in L(GE) is 0.

If the convex set L(Cz) contains an interior point Ay of h(Ca)

. . v—sn 3
together with a point qy of E \\h(Ca),then by the Jordan-—

Brouwer separation theorem the segment qT,q connecting ¢

1

B
with g5 necessarily meets the boundary 2 (h C )) at some point
qy which must be 0 then. (Remember h(C ) is homeomocrphic $o the
closed n-dimensional unit-diisc!) On the other hand, if qI ig
in addition an interior point of the convex bedy L(EE),then the
sesmendt @ET@E can only meet B(L(Ea)) at’ the endpoint Qs

hus because 0£3(L(Cz)) we get az=0 , if 0€47,dy . Bub this
is a contraliction since g, is not in a(h(Ga)). Therefore the
inclusion L(EE)C:h(Ca) is provedi if we show that the convex
boly L(Ea) has an interior point which is alsc interior point
of n{C ). To this aim,note that tne iistance 1,(sp,3C3)
equals min {|H-!sp|!,|sp|sina ¥ ; thus if we take s> 0 so small
that |splsind <|F-|spl|, then the ball K(sp,|spisin& ) is

contained in EE . Therefore defining m:=min {{T(x) | |xl =11}
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we get the following inclusions

K(L(sp),m|splsind) < L(K(sp,|splsind)) = L(C;) .

Using now the differentiability of h at O, we may choose some

s,> 0 so small that iL(sOp)—h(sop)|< Y msinals p| , hernce the

o
point h(sop) being an interior point of h(CQ) is also contai-
ned in the interior of L(EE).

This proves our proposition completely since it 1is obvious
that one can find some cone with vertex G in The convex

body L(EE)'

L8 can snarven now our proposition in the following

Assertion: Let be A 2 subsgset of B wnich suffices a cone-conii-
hy : o hl ’__""l 3
tion 2t a point g# A. Let n:A-h(A)S 327 be a homeomorphism

differentiavle in q with 1ts derivative 2 linear iscmeorohism

n  -n . C .
hé:EJ-*zL. Then h(A) fulfilles a cecne-conidition in h{g) an?

the inverse of h, h
)—1

de omit 2 proof of this assertion since it is not hard to show,

n{A)- 4 ig differentiable in hig) with

derivative {(n!
q

now welng essentizslly 2 ceorollary of the preceding provesition.

hny

n . . -
Corollary: Let he A & subset ¢f 7 gsatisfying =2 cone-condition

. . \ n
at all of i1ts points., Further let h:i-n{4)C E be a homeomor-
whism differentizable with mzximal ranzg at 2l1ll points in A.

Then h{(A) satisfies a cone-coniition at 211 of its noints anid

.
the inverse n” :h{i)-4 is differentiable on 211 h(aA), with de-

rivative (hé)—1 =% every given point n{g) in n(a).
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Although all cur preparaticns zre made to treat the case of
manifolds having a certain nonsmcoth boundary, the concept we
nresent below shall include the cases of smooth boundary and
no boundary as well. Therefore we give the following

Nefinition: An n-dimensional Cr-smooth Aifferentiable manifold

ti

w

fying a cone-condition:

S

Il with or without boundary 2% s

ional Hausdorff-manifold with *)

4]

1) It is a tooclogical n-dimen
or without mounlary, which is connected and hag a countable
base ;

) further i carries a C'-smooth differsntiable structure in the

following sense:

AY we can cover Il by a family of (in I cnen) cocrdinate-

neighbourkocods (Ui

I 1

Wi

,©. ) , every ©. belig & homeomorphism
° _— EN

re

-

- AY —
n s (U, )T
onto gl(Jl)

A') each wi(Ui) gsuffices a cone~cendition at 211 of its

points, (ses p.1¢).

. -1
B) for all i, with U.NU.=¢ , g.o0. ,:0.(U.NU.) -
! lJ’lJ/J—'-J
n , T .
e, {U.NTU.) « E° shall be C -smcoth;
i i J
B') as usuzl the differentiable sitructure shall be meximal,

i,e. it shall contain 211 possible compatitvle coordinate-

neighhourhcods.

-

*¥): If boundary occurs, it shall be as usual an (n-1)-
Adimensional tovolozgical submanifold, i.e. we wish that any
boundary-point has 2 nelghbournood homecmorphic to the

n-dimensional Euclidean halfspace.
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. -1 . . N .
Remark: Since ejo¢i//: wi(biﬂUj)—imj(UiﬂU ) is obviously the in-

J

- _ =1

verse mapping of ©..¢.  , , condition B) assures that ¢.ow.
195 / 1°95 /

. L - . - i -1
are diffeomorphisms, tihause clearly the differentizls of @iogj/,

nave rang n everywhere. It should be said at this place that

our provosition on p.{{ obvicusly assures that the set
—1 7 11 . ardt 1 - .
e.oo. (o (U.NU.) ) B, U.,NU.#¢ , will automatically satis-
1 J/ J 1 1 )
fy a2 cone-condition everywhere if ﬁﬁawj—' ig injective and 4if-

ferentiable with maximal rzng on all @j(U NU,)C E°, This means

H.

J
that there exisis for the above Type of manifolds =z largse num-
ber of fairly rnatural mappings appropriste to serve as coor-
dinate~ exchanges.

L

Totation: Ve will often s=y chorily 'Iifferentisble manifold

sufficing a cons-condition' where we always mean an object as
described in the preceding definition.
Definition: Let Dbe I,IT differentiable manifolds satisfying =

cone-condition, as usually 2 manplng fili-10 is called cf-smooth ,
(rz 1), if v.efegy / (U, 7)) — bw () is c¥_smooth for
all coordinate-neighbourhoods (U l) of M and (VJ v .) of M for
which this coniition makes sense, i.e. Vjﬂf(Ui)# o
Clearliy a c'~smooth dlffeomorphism between [ and I is cf ~smooth

. . . . T
hemecomorpanism with the inverse manping zlso € -smooth.
A by =2

We will now Zive only scetehy indications in which sense we wish
to understand several basic objects relatel to the manifold i,
which are to be used in the sequel.

We restrict ourself to that besause the corresponding concepts:

developed for manifolds with smooth boundary)as for instance

descrived in (L% 5, »n.140 literally carry over to our case.
& }
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We only remark that we always understand by a tangent-space TpM at a
point p in II a full n-dimensional vectorgpace, if Il is an
n-dimensional differentiable manifold satisfying a cone-condition.
Note, that due to the cone-conditio, n~dimensional vectorspace

TPM roughly speaking canr be got as 2 linear combination of tangent-

vectors corresponding to curves which end up in v and are con-
tained in M; thus T M is really zan object intrinsicelly related
vl b o) J

to the manifold M. We denote the tanzentbunile of 11 by TM. IT

1

s r . , : -
M is C -smooth , rZ1 , we discribe as usual 2 CT-smooth

"

{r>1z Q) Riemannian metric # on ¥ as =z C -smooth function

3]
.
Pt ]

—~ 2 ” ™ earl ? 3 . o 11 o R B -
Z: T~ =L , where Hois as usual the fibre bundle over

. . . . _ . s s
©ownlth fivre T M X T I at 2 point » in M , and

g,,)(., L) o= g e TMxT M-I defines a8 usual & scalar product
onn T_IH.
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JMQ Interior metric on manifolds which satisfy a2 cone-condition

and carry a Riemannian siruciure.

. N . . r , - 15
Assertion: Let I be an n-dimensicnal C -smooth , rz 1 , diffe-

rentiable manifold a cone-condition; further assume

that I carries 2 continucus Riemannian metric g.

Then the following basic facts hold.

1} 4ny two given points in M can be connected by a continous
{piecewise) C1~smooth vath.

2) As usuzl we define the length LD(c) of any plecewise ol
smooth path c:la,b] -1 by LD(C):= afbg(c',c')% .
Further we define the distance d(p,g)

T -
£ b

between two given poln

I,
[4)]

_J

2

for

(p,q) :=inf{ L.(c) | ¢c arbitrary C -smooth"from v %o g} .
)

Li

e claim:

F
L
()]
-t
I,,.J
0
D
n
2
13
}_.I.
a1
ck
D
H
l_].
[
Ij
B
D
ct
s
'_J.
(@]
8
d

4) the function A:lx -
{see p.4 )3

B) for any given point pOEIﬁfﬁe have & coordiinate neighbour-
hool (U,e¢) of B, Such that for arbitrary points »',g' €U

the following ineguality holds, i,e.

A{p',a') = lelo")~ola" ) v{p) , with | the Euclidesan

E n .
norm in BT and ble) > 0 some constant depending on t

*

coordinate pair (U,o) and g ;

<1

) the topolozy induced by 4A(.,.) on I is finer than the
manifold topoloegy.

Proof of 1): The manifeld If is pathconnecta? sinece 1%t is easy

to see that a pathrcomected component of an arbitrzry point
is nonempty, closed and open in M, thus equals Ii, because we

assumed Il to be connected. FTurther, it is clear that (M \23N) is
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connected because any path in I, connecting two poinfts from
(M\3M) , can obviously be replaced by a path avoiding the
boundary., If we consider now for some point p € (M\ 3H) the
subset C;C:(M\\BM) containing only those peints which can bhe
joined with » by 2 (piecewise) ¢ -smootn path, it is again

clear that C_ is nonempty, open and closed in (MN\ 31) a2 thus

1

equals (M \ 2M). Therefore in order to connect two arbitrar
*}

to

[on

. L. . . 1
points in ¥ by a (piecewise) C -smooth path, we only
connect each of them with some interior point of M, but this

is obviously possible due to our cone-condiition for thes mani-

defined on 21l Mx M with real values grezfer than or egual to

that the triangle inequality holis, e only show that for

©,q I with p# q necessarily 4{p,q) >0 holds, e know that
i ig o Haousdorff swvace with ezcn voint having a neighbourhood-

hasis of compact sets. Thus we may assume th2at p has a compact
nelghbourhood Uv with qE'UK and UK being conitzined in scme co-
ordinate neighbourhood (E,@). Text we tzke an oven nsignbour-
nee? U of p contained in UK‘ Pirst only using that U is open
in 1, we see that «(U) is a relative open subset in EY, since
v is 2 homeomorphism. This means there exists an in
set O with 2(U)NnC=¢(U). If we take now some Tuclidean bvall
An(c(p},r) , T>0, lying in 0, then we getl the following rsla-
tion (Kg{e(p),r)No(U)) < (CNo(U)) < ¢(Uy).

Tpem this we infer that every continoug path c(t), c:la,v]-U

| J— ]

connecting p with q , i.e. c(a)=p , c(v)=q , necessarily has
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s subpath c:[a,tm]-+M y <t <D, with @uc([a,tm])CZK?(@(p),r)
and 1m(p)~m(c(tm))l=:r . Ve may define here
t oi=minf{ ¢ | lo(p)-¢(c(t))=r} . Now let be ¢ in addition

. . 1 : .
plecewise C -smooth, if we can estimate the length of c¢

vy in-

c :[a,tm]-*M from below by some constant number v>0 ,

dependent of the specific choice of the path ¢ comnecting »
with g, then we have d(v,q)Z vy >0 ani are finished. For this

we describe the length of the tangent vector ¢! in local co-

ordinates, i.e. glc’,c')= {{o-c)’, (g, ){osc)') , (.,.) the
3 1
Zuclidean secalsr proluct ani the matrix g, := =(3/3xr,3/3:%)
where {x1,.,.,xn) := o , How since ohviously
1
£(%,%) := (i,(gl“(i))(§)>2 defines 2 continous Function on the
. n-1 =73 ! ant=] - il
compact set (D(DT)X s Yo 7P x 1 , ST =k g3 | 1,
- [ — ~il— 1\
we nave a:=mnin{ £(%,7) | (3,%) < ( (Tp) x5 1>0 .
Avbreviating {(g-c)'=: ' we zo2% the estimation
T = f G -, 2\5 . % c! S \B=, 12\
[ = SWallel)® = B GET (2 e R AE ) )
ft v =1 % ft £ e ' %
= /m e, (g den® = [Imogler,er)®

#*): 2t points with ¢'= 0 we define ths value of the integrand

to bhe zero,

WS E=1 T { - = T {
Consequently uD\V) = QD\C/Ea,tm])
z o ( Buclidesn arclength of E;r" e o)
a, %,
z a]8(a)-c(s )| =ar
ol
thus we have {p,q)}Zar >0 . This shows that 4(.,.) is =2

metric on 1.
It remains to explain why 4(.,.) gives an interior metric on
M. (Se2 lefinition p. 4 ). Since we kpow that (II,4) is a meiri-

cal sgace we can Jefire for a contincus curve c:la,b] -1 the
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cti

fia

so-called able length!

Iy (c) = sup{f‘fd( o(t;),0(5,,)) | m3=(

In order to show that 4(.,.)
mains to check that always LR(C)éti
necting any two points p',q' €1il.

sequence of the ftriangle inequality

2 ale(ty),e(t;,;)) = ale(a),e(b))

ives an intericr metric,

18

R ’tl+1..) arbitrary {ini

partition of [a,b] 1 .

it re-

(p',q') for any path con-

But this is zn immediate con-

which yields here

A(p',q') for an arbitrary

parultlon (..% Ty = ti+1") of {a,v] , thus LR(C)g A(p',a’).
Proof of 2), B): Using the estimate developed zbove it is
now clear that for any two woints n',q! with o(p') and o(q')
elements of *E(n(p),%r) we have

a{p',q') = m 1fam(w)QM'L,mr?zzaL%de%qﬁ, , thus
in the reighbourhood @ Aﬁ(”(?) sr)ne(U)) of p we have
the claim of 2)3) valid with o(w)=a.

Proof of 2),C): If a sequence (pn} is converging against some
point p in the metrical space {I,41), then the ectimations
established zbove show that for sufficiently larze n £ I the
seguence ‘Q\U J—o(p)l is defined = converges o zero. Thus
the segquernce P, is converging zgzinst p in the manifold-tonclo-
gy and this gives tiae continuity of the identity

1d:(i,45) = (M,manifold topeclozy) and proves 2)C).

nemark: Although it was possible to define via a Riemannian

gstructure an inte

4o

condition, this class of manifolds

Por instan

TJ

18 ne

lozies

(

is

for our purposes.

i,3) on M need not to

not so nard to give examples for

riocr metric on manifolds

agree with fthe manifold

which suffice a cone-

still =llows too much patho-

the topelogy induced by

!

vopology. 1t

-

this fact, even in fwo

i
" dm
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mensions., Even if the boundzry curve is c” everywhere except
at one point, it is possible to have 2 seguence P, converging
agazinst one point p 1n the manifolds topology, while the inte-
rior disiance (pq,u) is unbounded.

Wle will restrict our considerations from now on to differenti-
able manifolds a cone-condition and having the addi-

tional property that every point has = neilghbourhood diffeo-

morvhic to a convex set in =2,

Interior metric on manifolds which are locally diffeomcorvhic

i) convex get in T,

m

- = T B A+ 3 -t 1 T3 - p
Lessertion: Let II Le arn n-dimensionzl C =gmooth differaenitiable

manifold with or without houniary a cone-condition

- : . 1
and let every point have & nelghbournood C , T2 1=
Alffeomorphic To a convex set in TV, We assume

carries a continous Riemannis=sn meiric =.

I

ko

Every neighvourhood of any given peint p contains compact
s . 1 ..

and open neighbourhoods of » which are T -diffeo-

morphic to convex sets with interior points in E.

Cq) For every neighbourhood U of any given point P, Ve have a

coordinzte neighbourhood (U,0) of p_, USU , with two con-

0
stants (o) , Blp) > 0, such that
o(n) 2 3{p,a)/ le(p)-e(a) = B(g) holds for 21l p,q€U .

Horeover this neighbourhood U may be chosen =28 o distance-

vall K{p,r') = {qgeu| d(p,a)<r'}.
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02) The topology induced on I by the interior metric 4(.,.)

coincides with the manifolds topology.

CB) Let (Mi,di) , 1€{1,2} , be metrical spaces, let further
lq:(M?, Yo (m,a) , fg:(l‘fI,d)ﬂ (M;”dZ) be two continuous
mappings. Then
a) f1 is locally Lipschitz-continous iff there exists for
any given x € M, =a distance-ball K (x,r) = { x' €1, |
d1(x,x')<:r} and a coordinate neighbourhood (K(f1(x),r'),@)
1 M such that f1(K(x,r))CIK(f1(x),r') and (¢°f1) is (local-
ly) Lipschitz-continous;
o) f2 is locally Lipschitz-continous 1iff f any » £ 3 there
exists 2 neighbourhool (U,®) such thai {f27¢_?): o {(U) -
(Mz,ﬂ?) iz locally Linscnitz-conftinous,
Proof of 4): This haes been shown in the asserftion v.43 .
Proof of B): By assumpbtion we have a ceordinate pair (U,») with
© Cl-smooth and with 2 set Co U , C neighbourhood of p» and (C)
convex in E. Hext we take eighbournoods A and C of p with A

compact, O open and CCACCCU, Tow o(C) 1is relative oven in

©(U) hence there is & set O, open in 7 with C,Ne(U) = ¢(0) =
] e
= 0.Ne(0) 3 o(p). Ve itake further = Tuclidean ball K (o(p),r)=
e ’ ol
={x€8" | |le(p)-x =r} contained in C,. Ve clzim

V., = ﬁw(m(p),r)rlw(U) is a compact convex set with interior
L)

™ ¢
9! g
ﬁﬁ(p{ Jor) =1 xe i | lo(p)-xl <r?}, we claim V. is convex
—t —
*‘!1’]- 1 _1 xT
with interiocr vpoints in 5. Under those assumptions o {(V..)

. ) - 1
1z 3 nelghbourhood of D CT=diffecomorpvhic to a compact, con-

; bl I . .
vex body in 27, and ¢ (VE) is =& neighbtourhood O —=diffeonmor-

phic to a2 convex set with intericr peints in =7, It remasins to



show that V. is a compact,
ad

usin
thus Vo< (K (e(p),r) N o(0) , hence

Vo= Ke(o(p),r)N ¢ (0)

It

convex body in E

34

. Tor this goal,

Ko(9(p),r)c0y we get Vp=(Xg(o(p),7)N0(U))=(05Me (V) )=0(0)
by 0<CU we Zet

Therefore CTACCCTU yields

E
VE=:KE(w(p),r)fi¢(C) = K. (o(o) r)Ne(A) . Taus Vg is compact,
convex being intersection of convex sets (i) and compact sets
(ii); (i) 21lso shows the convexity of the relative open set
9 S1,0 . . .

Vo oy clearly (VP) 15 an oyen nelgnoourhood of » contzined

- . . n o .

in @ (VE). Pinelly Vo= Z° , V4 being homeomorphic to an open
get in the n-Adimensional Zuclidean halfspace mu contain inte-
ricor voints by the invarisnce of Jdomain theorem.
This proves 3 ).
Troof of quL In an analogue way as in the proocf of 2),4) on
v. 4 we estimate {from below znd above) The distance hetween
tro points p',q' € (Vg) , Tgi= K (s(p),3r)ne(0) , v, and
2{C) 2z in B). Thus defining bl ) :=nin{ f(i,?)l(ﬁ,F)EVEXSH"q} ,
3(p) i=max{ £(3,%) (5,%) €V, x 871 with £(3,%) as explzined
on p.-? we set the claim of C.) for the neighbourhsod ¢_1(?E)
of the point p. Nole, here we use Tor the estimetion
A(pt,a')=Ble)]e(o)-plqa" ) , a',av e (Vo) , that there

o]

exists a Euclidenn sesment in ?E condectlng_?gj:m“mf th ggg )
due To the convexity of sﬁ.

Proof of Cﬁli The statemen®t of 01) clsarly proves C?) , Since
the convergence of a seguence < against a voint v in the mani-
folds topology means that the sequence |o{p, )-¢\0)| {explainel
for n larze enough) converzes tc zero andl thus bty C ) forces
d(p,pﬂ) tc be = zeroc seqguence. Now for the remaining claim of
C,) we define r*'="2{y)3 r and have w(KE(p,r'))Ciﬁg. {We lmow
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fray

that KE(p,r') is a neighbourhood of p also in the manifolds
topology. ) Now the last inclusion assures that the estimations *
are valid for the neighbourhood Kﬁ(p,r') of p. This means that
the resiriction o :(KE(p,r'),d )~ (e{Kz(p,r")), || ) is =
Lipschitz-continous homeomorphism with Lipschitz-coniinous
inverse with Lipschitz constants o(v) , B(o)

Here X (p,r') shall carry the metric induced by 4(.,.) and
Q(KE(p,r')) the induced BFuclidean metric,

Proof of C

O
Q
8]
ot
i..l -
ja
O
o
[0/]

J: Since %the composition of Lipschitz-

2
maprings is again Lipschitz-continous, the last statement im-

nediately implies all CB)

Ths existence of enouzgh examrles ©

ot
]

the 1las ssertion even with the =244l roperty of metri-

cal comunleten

i

]
(1]
n

s i3 guarantesd by the following

- o . 1 .
Assertion and corollary: Let M be an n-dimensiocnal © -smootn

]
1
S

maznifold without boundary, with continous Riemannian metric g.
Let il be complete in its 1nterior metric d(.,.). If we have =&
topological n-dimensional submanifold 5 with boundary such that

ohic to a con-

£

. 1.
every voint on 238 hz2s 2 nelghbournood C -diffeomor

U o1 o s C o ;
vex set in TV, then 5 1tself as manifald in the sense of the
l2st zssertion, is complete in its own interior metric iff 1t

1 1

is complete as = metrical subspace of (M,3). (For the interior

distance cn 9, da:83x 3~ , we only consider paths which are

p—

in S,
The cprocf is an immeliate application of the preceiing asser -

tion, especially of C,) and C,) .
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j’/{ ,TbiMa{h of aw alsolutely ¢ wvnl inuous path

We want to make some preparatlons now, for the subsequent

smoothness investigations of shortest rectifiable paths

in Riemannian manifolds with boundary. To +this purpose

we prove a result which compares the different definitions

for arclength of a curve in 2 Riemannian manifold. This

result, the following lemma, seemS to be

of interest by itself.

Lemmu Lot fuo (Mg d) on acdimononnl’ g uv.ffgi 4o dza Zed in Lhe

Asceition gn 2 D7 T his menns gwepy prie n Moz aows > ey rrood 4 - ‘j Dmﬁf" t 40

o wweact oryer wtin R Acap P:_Q( 4 dlwg{a’i here 2 continis
Riemannian megric and d{.,.) the cor-

responding canonical distance function on M. Then for an

arbitrary absolutely*éontinous path c:I=[a,b] ='Mdl w have [.(:-

IIg(c)d)1/2 = LR(c) , Where LR(C) denotes the rectifi- l

able length of ¢ related to the distance d in M. (See page 4, ¢
F¥ for a definition.)

Proof: It is sufficient to prove the statement for some given
part of ¢ which is contained in any arbitrarily small
neighboutrhood U of some given point g of ¢ in M. (We de-
note this piece of ¢ also with c.) The following estimation
procedures can be performed more easily 1in. a vector space.
Therefore we consider a 01-smooth isometric embedding
f:(U,g) - EL  of some small compact, in R™ convex subset

U which carries the Riemannian structure induced by (M,g).
Here the restriction of g on U is also denoted by &. El is

a Euclidean vectorspace of sufficiently high dimension.

That such a Cl—smooth isometric imbedding exists at least
for a sufficiently small open neighbourhood around some
given point in a C%-smooth differentiable manifold which
carries a continuous Riemannian metric is not so difficult

to prove, and is assured for instance by a more general theo-

%3 e &EﬁfJfM” e RaLE wacfnciﬂmo boovapyd F?ertrfy We menn 67
(o, 2; ayepteatalioe i Pocal cootolingd -

%) /‘/0{6 by e ’1“’“6'4!'” F a3 (yany petia ¢ J*—/.M r;[ 1S un‘o'ui ‘/ vl uonl in
wﬂ @f»(f eaf s o T u {M ow/ Jcoar;’m ,om (¢ Ui Wi ‘{"UJ o pact, eonvek
LRI J”"fff'f%"frua¢'an E” Tnt duc{olfc {ar !na Lipicaiiz-

g 4 p
fow i g "”]f-\f-" DRTeitive {ﬂe QU)"':II'C&WII/‘J"“ o ing BN /l
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rem of J.Nash (see [23], p.3f3, ). In order to
get such an open neighbourhood of 4 appropriate in our si-
tuation, we first construct a Riemannian prolongation of
(U,g) to an open set ﬁ which contains U and on which we de—
fine a metric &. For this purpose we take some fixed inte-
rior point m in U. For each single ray issueing from m we
define the metric & at the points of the ray outside of

U by taking the metric g at the intersection point of this
ray with the boundary of U. On U we define g by g. Using the
convexity of U we see that our construction of & is well de-
fined and that & is contlnous on E if g was continous on U,
Some in U open neighbourhood O of q, carrying the metric
)1nduced by B can now be isometrically imbedded into some El
by the theorem above, Next we consider an in R% compact,
convex neighbourhood of q contained in 6. The intersection
of this neighbourhood with U is agaln compact, convex and
contains g. Restricting the isometric imbedding to this sub-
set carrying the metric induced by g, firally yields an
isometric imbedding of a neighbourhood of ¢. But this is

now a neighbourhood of g relative to the topology in U and
thus to the topology in M. Without changing notation we de-
note this neighbourhood of q in U, together with i$s metric
again by (U,g).

The lemma is proved now in two steps. In the first step we
prove lLhe ineguality

(I) L, (e} s (c)
Rg LDE '
in the second step the ineguality
(I1) L, (c) = L, (c)
E{U RE 4
here LR (c) , LR (c¢) denote the rectifiable length of c¢
U E

in (U,z) and the Euclidean space Bt respectively,

*):u et O i3 hFPEW 88 fn E we W’G 1 X
YARERL reie Uu S0 0f o0
Mg 0 wond gy b g I (Og) (7= mam»&y{c,l iy

’ Cmanninn VY'\P iva Tn - Ha- /:f‘ -Hqgg;rp/w [25_-," f1y ﬁ ilffCLU f)—ea/apf.fd
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LDE (¢) , LDﬁ(c) denote the differentiable length(ﬂepqef?hnwe

related structures. Because ¢ in (U,g) is isometrically im-
bedded together with (U,g) in - , we get L, (¢} = Iy (e).
B U

The interior distance in (U,g) defined by those paths which
lie completely in U defines a distance-function which
agrees with the Adistance-function c¢f M at least on a suf-
ficiently small open neighbourhocd of g in U, Thus at least

within this neighbourhood we can say LR(C) = Lp (c) .
U

Combining now both inequalities we finally et the claim

of the Lemma, i.e. LD(C) = LR(C)

1

Proof of ineauality (I) : Let c:[a,b? - BT %be zn absolute-

ly continous curve; to vprove (I) it suffices to show

ig (c(aj,c(m)) :=]c(a)-c(b)i = ( %ﬁici(a)‘ci(h) !)%

5o b o . &
(a%) = [ (Zler TR
At first the existence of the right-hand-side of the 1in-

equality (Al) can be seen as follows: oy’ is in Lj(Fa,b})

A . o1
for i=isl, thus = >4 [le 'l = [flje
& Lo 2 L
o M [ - o
= [ (Zlegn ™)

The proof of (Al) goes now by induction over the number of

comporients of c¢' ., The inequality (Al) is valid with 1=1

(Aq) ({e,(a)ci(p)l ” )% =< !@’81' | is true becsuse
01(b)—c1(a) = (j}c1' vields

oq(dl-cy(@)i = [ J ey i g [legn
Using the abbreviation ]x{ K T ( ; xi2 )% , 1Zk=1l , x an

l~7)

element cf El. the induction hypothesis (A reads as

(a1 | e(a)-c(b) | 11 = jo1c't 1-1



From (Al—?)

and (A1) we get | cla)-c(b) | 1

1A

et 5y + oytermey @) ¥

&
(et oy 10?3

We now apply a wellknown inequality from the theory of

L -spaces: for k>1 and F,G € Lq(ra,b],R) we have

o N ;]
CE I e e R e g Cir iR e )T
see for instance (48], 0.77 . If we =apply this inequallty
to F:\C'!luﬁ ,G-:iC

inequality zbove, we Zeti

1'1 and k=? and use the last

1

1c(a)-c(b)]l < ffHC”iq*ﬁC'?" ) E

1

For any vector c'{t) in &7 we have the identity

) o] >
f = FA: !” 3 o I =
| et (%) ] 1-1 + | Cl'(‘c)Z L et (%) 1 . Using this,
we finally obtain inecuality (I) in the notation

| ela)-c(®) | = !?IC' 1

Proof of ineguality (II)_: for any given ¢ > 0 we show

the existence of a #(e) with

Sﬁ(c,z(ﬁ)) £ Sa (c,Z2(A)) + ¢ for all & < 5{g)

Here denotes Z(&)

fl

(a=t1<..<ti<..<trzb) an arbitrary

partition of I with O<ti+1—tisﬁ for 1=i=n-1 , further
e ‘
SM{C,Z(é)) = L %(c(tl),c\ti+1)) and
5 (e,2(5)) 1= 2| Fle{ty))-tle(t; 4))

J6



We have f' uniformly contincus on U, thus there is a

so(e) with | £1(x)-£'(y) | <e(Ig (o) y =1 for all

il

x,y € U with |x—y| < 6f (here the Euclidezn norms in

1

R and R~ are both denoted by l.[ ). Purther, since f is

Gq—smooth, the remzinder fterm

_ f)=f(y)-1 (x) (x~y)

R{x,x~y) Ea

is a uniformly

continous funcition R(x,h) (with y=:x+h) on a compact
- . . n . ,
set U x K(8,r) in R , where K{(9,r) ig an aporopriate

chosen compact ball of ralius r around the origin @ = O

Pt

(see for instance p.ba ). Therefore it exists &.(e) such

T
that I R(x,x-v) ]| <%¢e (L

TJ
O

e finally choose our &(e regulired zbove s0 small that
, B

| e(t)-c(E) | < minfs.(c),n.(e)} for |t-%! < 5(e)
Note that for the fixed given mapping f and curve ¢ ,
5(e) 1o indeed only depending cn €.

For an arbitrary given from now on FTixed vartition Z(8) of

. . i 1
I, 5 < &(e) , we define a plecewise C -smcoth curve F:I-0

t=1.
~ i - — l —
by F(t) := c(ti) s (C(ti+1) c(ti)) for
i+1 "1
t. st = tioq 0. b € Z(8) ; the convexity of U assures
that P(I) is contained in U. Ve get
S
5,(c,2(8)) 2L [ (£22)'(%) | =
R e, 4 /=city) . :
=D [ leree)) —3 | = 20 (R(ag)) A(5g,0) ]
T L i 1
2 1+1 1
with %, < a; < LTI and A(ti,c) i= c(ti+?)—c(ti)

o (DT A fxeyl=lnl < Bo(e).

3t
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Applying now the estimations established above, we have

SM(C,Z(a)) é;JUf"(c(ti))&(ti,c)]+ e (Lﬁw (c))-ﬁlA(ti,C)”

i

f'(c(ti))a(ti,c)[ + 5

2
11

HE

%(lf'(c(ti))ﬁ(ti,(})i—‘R(C(‘ti),ﬂ(ti,(}))l 1A(tiyc)i) -l-?'%.'e

=T | f'(c(ti))a(ti,cnR(c(ti),a(ti,c))\a(ti,c)i | + ¢

So inequality (II) is verified and the Lemma completely

proved.,
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. 4&5 gmath“fﬁﬂf{ChmeashUHEﬁ mﬂh

(5] Theottun: Lol M hea G- smooll m@m:{ﬂd s dmersed 0 Lhe Auariion p-JE,fe{
1 i 1Al . [ ? .
every point have a weith;mihaed C-ﬁmoo{'n -ifﬂéiomarp;nﬂ toa wnver @l in £ This means every
d .

point in M has a neighbourhood Cz—diffeomorphic to an
n-dimensional compact convex set in RT (see p.J% ). Further
we zssume that M has a locally Lipschifz-continous Riemann-—
ian metric. Let be c:[é,gj -~ M an arbitrary (rectifiable)
shortest path in arclength paraﬁetrization.

If then [2,b] is any subinterval of [5,5] not containing

a and b , then the restriction of ¢ on [a,b] has an absolu-
tely continous first derivative and and square Lebesgue-
integrable second derivative on [a,b].

Proof: We can cover the path c¢([3,b]) by a finite number of

charts (Ui,@i), 1=ism , with ¢i(Ui) compact convex sets in

n

R™. PTurther we can assume that there exists ho with

O <h, = minf{la-3|,|b-b]} such that every U; contains a

subpath c([ai—ho,bi+ho} , 1=ism , with the following con-

ditions for the subpaths: a,=a , bmzb y 8;<b, for 1si=m ,

a. 1<bi for 1=ism-1 ; then clearly

1+ [ai!bi] = [a,b].

v
1=1sm
We will restrict our considerations now to one subvath

¢ C :[aj“ho'bj+ho] - wj(Uj) =: 0, ; we denofe vj.c also_

by ¢. We are finished if we can prove that for arbitrary

given je{1,..,m} P40 C :[aj,

continous first derivative and square Lebesgue-integrable

bj] - ¢3(Uj) has absolutely

second derivative on [a bj]‘ The proof will consist in

j!
showing that we have a constant B. that gives an upper
D 5 2 21%
= J -
bound for ;ﬂahc|1 (a{ \Ahcl + ](Ahc)'\ ) for all

c{t+h)-c(t)
h

h*:hO/Z , here (4 c)(t) :=
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Since ¢ is Lipschitz-continous we get our claim then by
theorem p.5% in the appendix. Voo wlialy ¢ & Lipreaitz wpfisvous in
the metrical Space (M4} . buf by p2f, 4 wehave here abso o0
Lipecnitz ontinuus resr/oec‘fr‘w the Fudideow melive in E"D()j.) ;

In order to show the existence of a bound fox'j\Ahcl1 we
will procede now in several stsps.

I. In the first stepr we prove that for any Lipschitz-conii-

nous curve o:lx,y] - M , [x,y] < [&,b] , with 8(x)=c(x)

1A

ani ¢{y)=c(y) , we have 17 E(er)

I Z(3 "
» Xf z(S') , where

F{et) = glct,c') 1is the quadratic form related to %the
Riemannian scalar-product (more detailed written

gleret) = grorg))letet), telx,yl ).

II. In what follcws we will consider ¢ := ®.oc - O3
o
onn the interval Eajnho’bj+ho] =: [le,1] . de introiuce a
; 2
specific fest-function o©-c? , with 2, 1==2 d{n“ahc} ,

h<ho/4 , where 7 is a O -smooth cut-off function with

Hii

n=E 1 on faj,bjj and N=0 on [e,e+%hoj and [d-%ho,ﬁ]
{(n is only depending on ho).

We will show in II that for any such glven @h we have zan
e(@h) , 1.2, an e depending on @h, such tThat for all

0= €<fe(§h) (c—eéh)([e,d]) c Oj . This will mean that

%, is an admissible *) testvector for any given h<h /4 ,
since it is Lipschitz-continous. The Lipschitz-continuity
holds because multiplication of a Livpschitz-continous func-
tion with a Lipschitz-continous function again gives a Lip-

schitz-continous functlion, and because A w is Lipschitz-

continous 1if the function w was go.

#) Admissible means here that the energy of c—e@h can be com-

pared with the energy of ¢ by I, since I only makes sense if

C-Eéh stays in M.
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III. In the third step, knowing that c-e@h is admissible,

we use the inequality I with ¢ := c-e? : [e,d] = Oj

05 [P(FE)-F(e")) = SH(Bler—er )=Flcr)) .

1A

Taking the limit lim ~{ fd( g(c'-eé r)- g(c ) )Y
€0+

d d
£ - % '
0 = Zef 5y g(cye' + 28f | c

'F]ﬂl@h( ;

(for the definition of g(c), see p."3).

IV, In the last step we will finally use the inequality de-
rived in III to show thatJ|Ath is bounded by some constant

Bj for all O < h = h0/4 .

Proof of I_: In order to prove I, remember that ¢ is a Lip-
schitz-continous curve and the manifold M has a boundary
such that we can apply lemma p.3: , which szys that the rec-

tifiable length LR(C) and the differentiable length LD(c)

agree; further because ¢ is an arclength parametrized shor-

test curve between the endpoints, we have
Lo(e) = ST )= fYE(er) = ly-x| = Lg (8) = Ly ()

= STEE Y

because ¢ also is a Lipschitz-continous curve from o(x)

to c(y) . Therefore
1
g{c')® = Iy Ty—x Ipfc) = 7 e(@') , by using

{1A

the Schwarz-inequality (Xfyfk)2 fyfg xfykz with f=1
A
and k = g(c')® . This gives

MEEY = ST EE)
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Proof of II : In order to prove (c~e§h) ([e,d]) 1is con-
tained in the convex set Oj y We 8imply show that
(c-e@h) ([e,d]) can be got by convex combinations of
points from c¢([e,d]) and thus will stay in the convex set
Oj' FKamely

(C—eéh)(t)

2
c(t)~e@h(t) = c(t)+ea_h{n (t)Ahc(t)}
= dqe(teh) + npe(t-h) + (1=x,=a5)e(t)
where A, =—5 nz(t) , A =-Ji-n2(t—h) ; hence ,
1 h2 2 h2

he
for 0 < ¢ < 4%—- , We have that ,0 =)

4

o T3
Thus we infer that for all téfe,d] , (c(t)—e@h(t) }  is

a convex combination of the three points c(t+h) , c(t) ,
c(t-h) . Here for (t-h)= e we define mn(t-h) = 0 and

c(t-h) = c(e) ; analogous for (t+h)z=d ; see also [ ],p. /.

Proof of III_: Ve know that 0= _/*{F(ct=cd, ')-F(c')]
If we denote by g(e) the matrix related to the symmetric

bilinear form g,(.,.) , relative to the local coordinates
in Oj’ then we can describe g(c') by crt z(c(.)) ¢* . The
notation c'té(c)c' indicates that the bilinear form is de-
pending on the feootpoint of the vector c', With this nota-

tion the above ineguality reads as

0

HA

efd{(c'—e@h')t é(c—e@h) (c'~e@h') - c'té(c)c'} , t.e.

efd{—zeé Vtg(cqeéh)c' + e2§hft§(c—e§h)éh' +

0 “h

ItA

+ et P(Z(emet,)-E(c))e"]
(Te use the symmetry of the matrix.) Now because 2(.) is
Lipschitz~continous, we have Ié(cueﬁh)—é(c)I = M|e§h| ,

which implies



43

S8 B (E(omery )-E(c) et = Jertmels, et = /el Puels, ) .

Therefore we get

. d 2
ii%+ f {-e23,! v 3 (e- -e3, Je' e @h g(c- €3, )8, " +
+ el Me]@hl}
o4 1 d t : 3 - 5
= gig+ s € ef {-2§H b(c-eé Je' + ¢ B, ! z(e eéh)”h

+ |c'M~M]@hl}
Because we started azbove with O = e efd( ee.) , the
integral efd( ...) 1s greater or equal to O for all £>0.
Prom this we get
2 o
0 = efd—Eé' g{cle' + finc'fTﬁl@h|

This holds because

d 4: L = 4 = .t = I i _
]ef -28 ¥ g(e)er = /70221 " g(c-e? Yot + ey g(c—e@h)ﬁh'}l

= | fd—?é't(é(c%é(c 23,000t + [Tea P E(emen, )50 ]
=2 h 2 =

= 2 |5 [leri emls, | + ef €|@hf| ﬁggjlg(xﬂ

= fd |c'l2 M 15 | for all e>0 sufficiently small.

Proof of IV : In the last part of our proof we will use

rules from the calculus of difference-quotients, which we
explain in detail in the appendix, see p. 5§ to p. 064 .
Choosing another constant N 2 M]c'ﬁ , we write the in-
equality got in IIT as

G

1A

a _ -
—ef éhftg(c)c' + deI}©h| ’ i.e,

S Ee)er = TR

Using (%) p.od , (V4) p.55 and the condition that
1 _ 1 1
0 < |ln} < Zrlhol and mn =0 on [e,e+ZhO] , [d-ihc,d]
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A0 (—a_ (" e} ) E(e)er

A

SO L—A_h{nzahc}l ’

1A

JA-a_ (078,001 Eeder = _/4H |D(nPa,0) |

Applying now (R4 ) p.%4 and the product-rules (%, ) p. 6/

?

we get
d 2 % - dz 2 2
I (D{n"syc)) s fele)er} = /7N D" (s, c)+n Do, el .
Next we apply (%) p.44 and introduce the shifted vector
th) by czh)(t) := (De){t+h) to find out that
4 2 2 t > ] -
o/ T ID(n")(byc)en™Day e} " (ayg(e))ery y+e(e)ayDe} =
-
= efd M n- |Dﬂhcl + B , Wwhere B is some constant
= 5
real number with efd it an‘(Ahc)l = B . This gives
i 2 5 = -
e[ n (Ath) zg(e) aDe =

edeAhDCI{ﬁn2+nglﬂhé(0)iICEh)l+lé(°)|IAhCliD”E‘} TE+D,

d 2 -
E := f !
where E = | Dn (Ahc)||ﬁhg(c)||c(h)l . In order %o
prepare for applying the Schwarz-inequality we derive

from the above inequality the following one:

e ﬂzﬁAhDCFzmén{ Bingfele) x|}

1A

efdrlIAhDCL{ﬁn+n|Ahé(c)|Iczh)|+|§(c)llahcl|2Dn|} +E + B

Abbreviating min § 1%?§1|é(0)1‘|} =: X (clearly K>0) ,
: n

fgg){ﬁvw+71Iahé(0)|ICEh)i+‘|é(c)|iéh01[2Dnl} =: P and

applylng the Schwarz-inequality, we get

1A

a 2 a 1
ef (ﬂIAth|) ef T]lAthl§ + E(E+B) =

2

(S laypel )2 JME/R% )7+ L(5B) .

1A

This yields
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HA

(3P e PO = (10@/m2 )+ L) /(%2 aDel JE

Thus we finally have

(SEPIa,0eP )R 5 (122 ) v LzB) + 1

We know that n2 , ¢, g(c) are Lipschitz-continous func-
tions, hence their difference-quotients and derivatives are
bounded, therefore the right-hand side in the last inequa-
1lity is bounded. So we finally conclude that

b, 2
a f N |AhDC|

J
stays bounded by some number, consiant for all h with

| 2 . 2
jiAhC|1 = ajbe IAhCi +

0 <« h < %ho , because 1 = 1 on [aj,bj] < [e,d]

This shows that we have a common bound for all_JAhch and
oJ

finishes the proof of our ftheorem,
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Remark: It is possible to sharpen the preceding theorem, i.e.
it can be shown that under the game condition =22 given

in theorem’I), a2 rectifiable shortest path is everywhere C1~
smooth with absolutely continous derivative and square inte-
zrable second derivative., However the proof of this stztement
does not simply follow from the precedinz theorem, it needs an
additional argument, it is nossible te give 2 proof using the

theoren above 1z combinzvion with & geometrical congideration.

Ve will finally present several z2nplications of our theorem

AL, 5~ N I aurle = 1 T = 3 - Ty
w113 DOAnEY VWALCH VERD TCRLLNE aXCLUELVE~

it}

. R ) : e [ 5 P S I A3 LS A P R e
17 witn meitrical syoces without Tthe 24ditional assumption of

e 3.0 Lo Ay
o 8Tigoha gxructure,

%) Tor the following, 1if there is 2214 nothing differexnt, I
. . 2 .
shall zlways Le an n-dimensionzl Cr-amooivh 4ifferensilable mani-
]
fold satisfying 2 cone-condition, being locally C -dlifeomor-

-
in R, Turther i1 shall corry a locall

F
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topy class of paths from » to g (p and g may be equal).
Then ¢ 1s C —snootp with absolutely continous derivative
and square integrable second derivative on every compact
subinterval of (0,2).

B) Let ¢:[0,8] -1 be any rectifiable, on all Il shortest, non-
contractible loop, i.e. c(0)=c(=z).

1 . . . :
Then ¢ i1s € —-smooth with absolutely continous derivative

and square intesrsble second derivaiive on all [0,al.

. T - 1 N
Remari: If we acsume 1 only fo te T -zmooth, and local-
p ‘
17 C -smooth diffecmorphic to & convex set in 7, but having

- a n L - ? s - - T =
2. )0 (U)=T loezlly Linschitz-confinuous for cvery coorli-
Lo

nate neishbourhood (U,s) ;3 then cgoin A) and B) held, hul only

]
nyet . 1 . 4o - .o 1 ~ e %, A | )
with the C —omooth propsrty of the poihs there. This is evi-

dent 1f one remembers that the remgulorisy considerations were
loczlly nerformed 1in the Zuclidezn charuspace 7 relatel Yo &
cocriinaie neizbbourhood (U,v). Thus we gel agzin by the same
Local arguments az in the oroof of gur theorem I ». 3! that we

E) 1 -, - T T = e 3 3 - 3 1 v 3 Rl 4 P
the chnartspace 2 out this gives in the manifold structure

P

veraion of theorem I on ».27 =2z it is described without procof

in the zbove renark, )

Troof of A): Ve toke theuniversazl covering I with covering

N
2nd a locally isometric (lecal) diffeomorpaism: I is also 2
space lth en interior metric 2(.,.) , see p.3/M0. Tow we tak
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e =1 : ,
any point PEén (p) and 1ift the path c, thus we gZet a path

is =a

£
al

T:[0,2] =M with meC=c , T(a)=q € m (q) The patl

~
T

,q in Il ,

~
-

rectifiabkle shorftest commection befween the points

&

since otherwise there would exist a strictly shorfer rectifi-

-4 ~
T

. . ~ s - . . ~ R
able path T vetween T and T in li, whose projecition w(T7) would

give a rectifiable loon in the same homotony class as ¢ but

A

shorter than c¢; o contrziiction hence. Therefcre we have our

o~

claim by applying now *heoreW( ) 7. 3% 10 T in I

=1

tinzg ¢ by the C -gmooth orojection 7 Irom C.

Proof of B): Clearly by A) ¢ is Cq—smooth etc. on every comn-
wact subinterval of (0,2). If we taoke now 2 path
Z(s):i=clgsz):le,a+2] -1 , O0<e Small, we obtoin 2 path of
eguzl lenzth =nd in the same free homevopy class as ¢, thus also
A

noncontracichle., This zives by A) again that € must be C'-smocth
etc, on every compact subpath of (£,a+¢) anl proves B),.
The following corollzsry is dbtained by combining the preceding theo-
om: with the existence theorem on .8 wd p Al

Qﬂcorollarrz 2) Let M he as Jescribed in ¥) on ». 4§, further let

I be complete in i%s interior metric 2(.,.); then we have for
any two points v,q €01 o distance-realizing ozth c:[0,3(2,q)]-,
vhere ¢ ig C -smooth, with zbsolutely continous Jerivative

and asguare integrable second derivative on every comnact sub-
interval of (0,3(»,a)).

~1) The existence of = path oo described in A) in

ne preceling

neorem is assured if (1,4) is complete. [ e fhe timply wnnected e

1

the thorviedioeg o aroulianid gy e twto the oo ool
t .
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i) |

a) If M is complete znd not simply connected, then for every
p €Il we have a homotopy class of loops which contains a with
rezpect to the given hasevoint p shoriest noncontractable loon

c:[0,al-1 , c(0)=cla)=p (bvy assertion bjp 4 ) which is by

i

1 .
(ITA) everywanere C -srooih except eventually in Lhe baceporat p.

path as described in B) in fthe preceding

o

©) The existence of

theorem is assured if II is compact {(and not simply connected).

Assertion: Let I D2 as described in *) on p.46 , let us a2ssume

in a2ddition the Riemonnisn metric g to be C —-smooth and the

toundzry of

La a D Y

e comecting

o]

) A1 p - T B! Soos - 7
nth c:00,4(n,a)l =¥ be 7 i3 = zeode-

ic om all [0,4{p,c)l.

[ 0]

—

Froof: Since ¢ is C -smooth with absclutely continous Jderive-
tive on every compact subinterval I of (0,4(»p,q)), we zet by the

T 3 <5 ~ - = m . L bl o o ~ 2,
come variztional procedure 23 for € -curves thait c suffices the

diflerentisl equations of geodesics almest everywhers on I,
4+ ' £ =T ERY i" }:'
i.e. in local cooriinates ¢ (%)= —Lik(c(u;) e” {%) ™ (%)
R - 9 TR T 1 T D . Y 2 1 ~ I s I
holdis for almost all t&€I. Using the continuity of I'y, (c(t))
a2n? the Lipschitz-continuity of ¢ (4), we zet come consitant B
- - ¥ . rt? '
intepenident of the chosen subinterval T cuch thai 10 () <B
nolds almost everywhere on I. Exhausting TO,a(p,q)] by 2 i ta-
. T -
ble sequence of subintervazls, we have le® (%) <3 zlmost every-
waere on [0,1¢( i. Thig soon yields +the existence of some con-
oo g‘—-’-’/ B > !E = | A 1’! At vy s ~ r ™ L -i
stant B il D c I AT |o DY using v on -D.JE’ ere & o7 i’)e
e .

| o { ! A o = = 1e -
noTTS §§1 and !io [see p.&fwiquwﬂU the integral i1s taken over
wvery tompact interyall  in fO,ﬂPM}) . . Avplyinz now the rezulsrity

\ X ', ,

theoren B)p 52 , we have that ¢ (%) is absolutely continous
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on all [0,d(p,q)] , thus it can be represented as an integral
of its derivative cr"(t) which coincides almost everywhere
with the continous function ~T (c(t)) et ( ) c&'\t) There-
fore cF (t) equale an integral of a continous funciion and thus
is necessarily ¢! _smooth on all [0,d(p,a)]. This proves that c

2 .
ig 2 O —smooth curve sufficing the equavions for geodesics on

¥

all [0,4(p,q)] and hence is a gecdesic =23 we claimed.

(IV)Corollary:

2 . _ .
1) (Hopf and Rinow): In a CT-smooth metriczlly complete Hieman-

nian menifold we have for any vwe voints =2 listsnce-reclizing

« s

zeolesic connection.

A%
S
o

3
3
o
]
]
b
v
Lo
@]
4
e
[©]
3
S
|_
|m
* y)
)]
I
l¢)
@]
1
'S
@]
cl
(@]
t
4}
=t}
e}
O
<t

monifold then we have = shortest closed noncontraciuiible geo-

lagic, 1if M is not simply connected.
Proof: The combination of corolla W(;Il)with the »receding

assertion proves this siotement,

(V) Corollary: Let Il be a manifoll ag described in *) on p.¥6

differentiable on all ¥, then ¥ 1s necesgsarily simply connected
Proof: Assume other ; then we have by (III,&)a shortest non-~

-
in =2ssertion n. i we have A{z,c(t))=1t for O=tz=3 , and

2 - . .
1{o,c(t))=a-t for =< %tTa . Since the function % - A(n,c(t))
ig not differentiable 2t t= % ., ve see that the directicnal de-

rivative of the function 4(;
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tion of the tangentvector of the curve ¢ there, i.e. for

c'(Z) cannot exist.

[Re N 4y

[2c],2.297 nence beinz of the szme homotopy type as I (s

[§+]
&)

r
-
[

b

o]
J
[WY]
N
[}

7

["_..J

1
ot
£

il

ot
¥}

i

"

open simvly connected twodimensio-

+

n2l tonponlosical manifeld iz homeomcorphic To The open tvwolimen-—

7 5 £ 47, L s T 3 e 47 - by I
that 1f the manifold I in the »recedins corcl

1 B -

- 1 . m TS LS A n 1., * T m e T 3 1
gionzl, then under the coniitions of the corollary Il 1s homeo-

- - 47 - A - - T I T I Fram v -
mornhic o the ( onen WWOOALTIenE1l 21 uwnlt Arso WIS 8n onenl

] L m o1 R 1 . 3 ot . v R U
guosaey B 01 tase wWaLv Ccirelg,, Wiere gnien coinnec ted ¢ CIIPOTLeliy

A [l A

£ - = - T + R q sy = oy Y
of 3 corresnonad T¢ 4 DOWUWLTrY Comnmponent oo i,

M+ = i~ 3 < P — 3 am - P I ER} Falpig| verd 4m
This result mny bhe infteresting in relation with the fellowing

e | b 1 | r -
one wnich K Zicwop proved in (3] wud we proved i D270 g
- . 3 37 = Riemannisz
If 1 iz an n-dimensional open (i.e. 3l1=¢ ) comvlete Riemanniszn
monifold having at lezgst one point » with the sguare digtance

’) - -
funciion 7 {»,.) direcctionally 41f

E P 5 77 1 X4
ferentisble on all I, then X

3 Noopo T~ - 443 -- .
igs diffeomornnic to the omen n-1
. T - 4-7 - 4

Tr. thig Sheorom the

i)
C ~smootn.



hd

AFPWL” A? Am(ﬂsc fools

Wepresent in the seque( several b \.c foc ﬁom Am it in ordet 1o
ma!\e the whole poper more Ul wntained

The tpew H, and H, and i bed olww resafls.

The mmddmg rfruf 5 m“qrrlpamﬁlm}oh ot cpecial e uf theovems mainly
mwm/ dutt _fo (fich and “Pw(u V.

Let Z" be an n-dimensional Euclidean vectorspace with

Buclidean scalar-product <.,.> end corresvonding norm | |

Given any closed interval [a,b] , we consider the follo-

wing spaces: first the Hilbert-space Ho([a,b],En) , Short

H, of square (Lebesgue-) integrable curves of la,b] in -

i.e. for f in H  we have afb<f,f> <= , (More precisely an

element in HO is a class of mappings where the members need
only to be defined almost everywhere on (a2,%3] , none the
less with an abuse of language we

always speak zboutl square-integrable curves where we real-
1y mean certain classes of alimost everywhere defined measu~
rable funcitions; two members of one class coincide almost
everywhere on [2,b].) The scalar-product <"'>o on H_ is
defined by (f,g)  := fh:g> £, € H, , and the norm

| lo by |75 = <f,f>O

Purther we consider the spaces H1([a,b],En) , short H, ,

(O BNV

of absolutely continous curves from [a,b] into E® with de-

rivative contained in HO

It 15 z basic fact from rezl- analysis that a2n absolutely

continous funection 'Jf‘:[a,‘b]-'b?1 is z2lmoest everywhere diffe-~

rentiable on [a,b] , its derivative f' is mezsurable and
fbhﬂ < o , further f can be represented as =zn integral of

its derivative, i.e. f(t)zaftf'(s)ds4-const. , t€la,b] ,

see [ 1, p.283,

The space H, with the scalar-product (f,g)3:<f,g>0+(f',g'>o

and |£| := (£,), is in fact a resl Bilbert-space

L 1,

Since the polynomials are dense in (H_,{|.) (even those
I

, See

1

with rational coefiicients), it is not difficult to see,

that the polynomials are also dense in (H1,M1) .



S0 both HO and H1 can 2150 be got as = completion of the
pre-Hilbert-space of ¢”_smooth functions over [a,b] {or
even of the polynom-space), relative to the norms Ho . H1.
We also use the Banach-space of continous functions
CO([a,b],En) with the norm |f|, := supf|£® | , t€la,pll .
Purther we employ the following facts:
Assertion: The incluslons

HT([a,bj,En) - 0% [a,p],5") - HO(Ea,bz,En)

more oraclsely:

3

are continous
(1) if 7€c® , then [T, = if], |2 | ,
(ii) if g€H, , then |zl = lgl; 2 ([aD Fila-pl) .
(iii) Moreover the inclusions H, = ¢° and H, - H

A =

1
i

are compact operators; we even have that bounded,
closed balle from H, are mappved onto compact sets

by those inclusion-cperators,

We first prove the following useful inequaliiy for a curve
fin H, {see also (137, ».178).
For an arbitrary finite set s, < t = 5 4 < Ty
a o5, ., jri . =b , we have
(iv) %}If(s.

= (?\sk_tkif=1f31 . Hamely

)2

1A
—
—
of
2y
b
—
ot
g
e
o+
|
i

(2 £(s, )= (5,)]

( ‘__Jﬁflf'(t)i Pat ) o= UNMdt TAE A1

53

(k=1..7)

where Ug := U [sk,tk} . To get the last ineguality,

N

we may interprete the left side as an integral over (a,b]
where the integrand equals zero on [a,b]\Uﬁ and apply the

Schwarg — inequality with this integral over [a,b]. Tow we

HhY

T i 2 h] | 2
have («?If(sk)-f(tk)1) Uﬁf 1 4t Uwfif'i

iA

(Zls(s )-t(E)1) (£,

which proves (iv).



(iv) explicitly reproves that f is absolutely continous.

Specializing (iv) with W=1 , we get

D

1 a .
| f(s)-F(t)] = |s—t12(f',f')o2 = sy |f|1 , what means

that f is HOlder - & - continocus.

Proof of (ii): we choose toe[a,b] with

lz($,)) = min {[g(%)l , t€la,p] } ; then
lg(to)ila-bi = afoig(t)i , which implies
lz(t) ] = fa(t )i+ ls( 5 )-2(%) |
(iv) 1 i
s ( / E(t)l)la—b‘[ +1a-b) {(g',g') =
3 0
N 5 -1 &
= [p-pi? (g,g>o°tﬂﬁb . <g',g'>o“ia—bt
, L X
g(!?ﬂ"bl = {_‘q_oi) ((E,__\)O& . (!_-,-"%4)02)

0
Proof of (i) : we have FPAF(E) " 2180 7 la=bl, thus
(£, 0% = i, fa-ni )

Proof of (iii) : we want to show first tast

(HTJ.%1} - (Co,.im) is a compact operator (synonym to
completely-continous operator). For this we show that
bounded sels are mapped onto sequentialiy relative-com-
vact sets. (In a metrical space, segquential compactness
and compactness agree.) The proof is an zapplication of
the Arzelg-Ascoli-Theorem, since =z bounded subset in q,

15 a unifermly bounded, eguicontinous family of functions,
where eguicontinuity of the family is assured by the HGl-

der-z—continuity in {(iv).



]

Hence any in H1 bounded set contains a seguence converging

in the norn .im against a continous function. Since we
have established (i), the same sequence 1s also converging
in (HOJ.[O) against & continous function. Therefore

1 O 1 -
Byl 1) = (C L) oand  (Hyl. ) - (",
indeed completely continous operators.

.

Now in order %o prove thzt bounded closed balls from
(H1 ,
ficient to show this Tor the closed unit-ball
X := {x, x€H, and
H, endowed with ite related weak tovology denoted (Hq,W).

), () = ()

are seguentially continous, since the corresvonding opera-

.1.) are mapped onto compact sets, it is clearly suf-
'] px Bl b4 y

. =11} . ¥or this purpose we view at

Then the inclusions (H,,W) - (e,
tors viewe? over (HW!H1) ars completely-continous overators
Letween normed swvaces (see (347, p.177), How K is sequential-
1y compact in (H1,W) Tecause (F31ﬂ1) iz a Hilbert-space
(see [427, p., 68, where this is proved for the more general
cage of reflexive Banach-spaces). Using now the seguential
continuity we see that ¥ is mapped from (ﬂ ;1) onte sequen-
tially comnact, thus comnact sets in the metrlcal spaces
(010, ) .
Remark: the last considerations outlined a »roof that in
ceneral a compact (completely-continous) operator defined
on 2 reflexive Banach-svace going into a normed vector-
snace maps indeed closed balls onto compact sets.
Thogse considerations were made for the sake of comnlete-
ness andt to give a more structural dhackground. Whal we need
esgentially is the following theorem which is now an immedi-
ate conseguence of {iii) (see also (3], n.196, where & more
general case 1s vroved)
Theorem: If v is a fynction in HO and if there is a seguence
v, of functions in H, such that |v,-v -0 \v.l, =¢C ,

|

= n'l
then v is in H, and vl =0 .,
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Turther we present here several elementary facts from the

calculus of difference-auotients, see for instance [A%1],

0,634 . We follow here closely [45 ], 12%-1% .,
From now on we will consider a function ¢:[%,51 - ET ,
3 <D , which has a compaci support in ET,EJ , i.e.

c =0 on [5,5+ﬁ0] , [5—ﬁo,gj , 0 < Eo < #(a-b) .

Tor our further considerztions we will work with a restiric-

. . . - . n -
tion of ¢ , i.e. with ¢ :l2,b] - E° , where =2 = a+h_ .,

o ="b-h, , h = QHO . Those clumsy exnlanations are neces-
sary if one wants to be precise when working with the shif-
ted vector, which we define by ¢y 3 la,bl - B,
C(h)(t) = e(t+a) , hfho , ond the difference-gquotient
S . rd
e Ll Co th-{-ﬂ)—.c!\"c) C(l’l){‘t)—”c(t)
En® [a,p] ~ E7 (Ahc)kt;:Z‘“ﬁf"g” - = Th T

here we always use the same notation for c and its restric-

tion.
Ye supply two assertions concerning difference-guotients:

-— T
(V1) Tor C€EH1(La,o},E ) we have
| | = lc] and tooc | o led h <1 5!
| a,el, = lel nd Ih_h | = lei, , b < h  an

the integrals in the norms iaken over f(a,bl.

(v2) If c€H,([d,b],8 ) , then 1118 iDe-pel =0,
n— :

Q_J
4]
@
09
)
H
)

where the integral belonging to the norm

taken over [a,b].

(Jote in (V2) we don't need the above general support as-
. N, s .
sumption but c € Hj([a,bj,m ) is sufficient for (V2}.)

Ve now first prove two assertions which will be helpful

when we derive rules for the calculus of difference-~guo-

tients.

(81) Let f be 2 real-valued funciion, Lebesgue-summable
on [a~ho,b+h0] , With £ = 0 on [a-ho,a+ho] and

[b—ho,b+ho] , then we have

afbf(tm) = /Pf(x) it |nl < o



Proof of (A1): By a basic theorem of integration theory

(zee [2%], ».d80) we have zn absolutely continous function

O,b+ho] - R such that ?'(t) = f(t) holds =l-

most everywhere on [a—ho,b+hoj end F(x)-F(y) = fof(t)dt

? : [a-h

for all x,y¢€ [a-h_,b+h ] . If we define wh(t):=t+h , h>0 ,

then o ©y iz absolutely continous on [a,b], (mh is Lip-
; \
A

schitz-continous) , hence 3T (Fowh)(ﬁ) = f(t+h) almost

everywhere on [a,b] , and

afof(t+h)it = (Fry )(0)=(Fro ) {a)

Il

(7:0,) (5)=7 (s, (5-2))47 (s, (5-0) )=F (v, (a-1))

+T(wh(a~h))-(W wh)(a)

fo . S a -
= biht (t+n) 4t + *(nH)=-T(z2) - aihi?(t+n)ﬂt
b

= 13(1,)) - ,i.:i‘(':l.) = = ﬁruf‘(h}‘-’f{t .
(Anslogous for ~]hol < n <0 )
(a2) Let he 1 € HO(LE—HO,HIQO],T) , then

: 1 ‘2 1 1
Lin (/Pla(t)-s(+n)i%) =0, |al < .

n-0
Proof of (A2) : Tor arbitraryly Ziven £>0 there exicts a

— S e e vmea beem e

continous function Be [a~ho,b+hoj - B such t

1

1 . . - .
s < = 2 , Uping the uniform coniinuity of z_. , we
- [

T
i o]

e ‘o

1

chose now h{e) 8o small thst

|2 ()=, (++0) | < 1 cla=d[™ for all jnj<n(s) ,tela,b]
s i
This gilves { &f-bl s(t)-z(z+n) | ~)y» =
- b - 2y b . SRR
= (G a(e)-g () + (/P e (8)-g, (3+0)F)7 +
’jo * | —? o

+ (77 Ta(s+n)-g, ($+n) 17 )

L T T . thus
3 3 2
.0
af_b[g(t)-g(t+h)t’ <z for all |nl <« h(e)



. _c(t+h)=c(t) _
_______ . “h h

thus we have

thc'(t+s)ﬁs :

i G

2 _ 1 /h Vael? o< <N N
1; AhC(t) i = ‘E O[ C'(’t-'—o)dbl = h? ( 0[ 10 (t+o)! ,15)
= ﬁ; h thlc'(t+s)l ds . This gives
b 21 b oy, 2.
a[ lahc(t)l = - qf ( O[ lct(5+s)] “ds)dt
1, b > . 1 N
= - Of ( af et (t+s)} “dat s : hera the last
LD
equality holds by viewing at le'(t+s)) ~ =: f{s,T) nz a hme-

tion in two variables over the rectangle @ = [0,alx[a,b]

where s theorem of Tonelli (see [41, 2.571) assurss that

Hy

(s,%) is a summable funciion on O , since for instance

t = f£(z,.) ig summable on [=,b]) for =almost all (here even
; . - - Io¥ ]
211) 5 in (0,h] and "(s) := _ /7| f(s,t)i 1t is summable

on f0,n] . (ficte that by (A1) we get 7 s) = »(0) ') Then

Tuhini's theorem (sse [ 151, ».50) gives she last egunlity

above. Turther ©(s) = T(0) gives
; th( afb¥c'(u+s)§2ﬁt)ds = é th( ﬂfb!c’(t)%?dt)is

= afbic‘(t)i At = l0179
This proves Eﬂhcﬁo < jel, . the vproof of la_el g = lel,

is anzlofus,

Prool of (v2) : One easily zets

Dc(t)-ahc(t) . th{ c'(t)+c ' (t+s) 1t ds , thus

1

applying the Schwarz-inequality in & similar fashion as 1in

the proof of (V1) lezds to

1 2
|Dc(t)-&he(t)|2 = Jgh_Ofﬂic'(t)-c’(t+s)!"ds . Hence
1 e

¥



| De - Ahclo =
= 1
T h
1
" n

where the last eguality

—
3

and Pubinits theorem in

T o, b

sSun

)
ct{t)-ct{trs) | A% ) 4=

5

oI De(t) = ae(s)]”as

h

P e () - et (tes) |73

- g )4t
ol b
ARG

<

o ct(t) - er(t+s) |7 A% ) as ,

ig preoved again by using Tonelli's

a gimilar above. Mow

wWay ag

=

= . ()= (t+s “dt = s(h
o28n P e (5)-er (ten) | (a)
vhere s(a) = 0 23 h -0 , by (42) .
The nreceiling in the gnable WS te
sresent new A theorem whicn is the centrzl analytic tool for
tire nroc? of the smoothness progeriies of the rectiliable
=l 4= 4 N .-
shortest curves, 1l.e.
£ H ~a by A R PR PPN B o
“naorents (.ote we will oftan uge The fame netetion for =
- . 3 - ~ 3 3 . - -7 /i LT i -
function 2nd its resiriction!) Let ve c €1, ({fa,n1,27), 2<b,
A) et p2 s <t , [a ,b lc{a,t) , 1f theres iz some con-
0 0 0’0o
", T . . I T a -
gtant number I such that |A.ci. =17 for all
o' Tt
O« n<mi [ ‘ Ty 1 [i L E 3 ~T e 1 I o T ?Or +ih s
[ S S T g HES R P | E -l v y io2i e J i .] NoLbmeat Lo L R uilz
0 o o

. 1 . " a Im Lo e U TN o - 1. Doam b e

qorm | L, with the intezrzl tsken over the interval

{ao,hoj , then the Jerivative ¢' iz centained in

hd P - ! —-‘ﬂ . ) A e T - 1 ~ Y t 2 ] A7, v e

11(_ao,uoi,m ) . Further we have _ic |4 #II, this means

i - -‘j 1«
1) [ e Y0 [ A P P la

! @ Lere RN snd thug  _ f letr] =1 L; - A

(_LO r’)o O O

- - - r - . T - - - .
B) Let be I, :={a,,n. ], 1% , a<a. <h.<b 2 monoione in-

1 1 1 1 1

creasing sequence of intervals exhzusting (2,b) ,

- - : T — I o . )

e for all 1 €10 and (e,b)= W I. , If we have

1 1'5'1 _'i 7T L
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”

some fixed number I gsuch that for every given T,
P

la,cl, <M for all O<n<min{ lt.-b!', |a,-2l 1 (waere

it hvt1

the integral in fthe norm is taken over the interwval Ii) ’

F

then ¢’ is contained in H,([2,2],E

if we combine V, on p.56 with the theorem on p.5% . The es-

. . . Oy )
timations for the intesrals [HOigrr

drectly follow from t

4 o~ X T wm 3 P ] S
e Sehvierz inequallisy,
T o3 —~oa N M I - fa TR L1 o 1a .
B) Using &) we can define 2 segquence of summatle Tunciions
l".‘-
o - | 1 . 0 Y i - -~ 3 o — - nl A Y -
T, om La,b] by L=t n I, and £,:=0C on {a,b] " I
1 b i I 1
-
£ omw -1 - 2T o ro s T R e =R R ] 1= oofEYy LA £
10r Sii 1 oolhh, alnce | T.o< L O Decause LIni it =|C G J;
) e - -
Yol i PR b T S R W | PRI VO 1 — [ roaon
for almost &1l v % la,n! , we et by Favou's lammz {sce 1],
o) . “
i~ o ey & 0 B2 s, B Fe - £ 12 ey
5.8 ) That ety 18 swmmsois on l4d,b) and Tjc?tT =11,
4 1 s a - + =3 g = - k! T 4 R T
‘e waow by A) that (i) exists on all ond ThaaT o we nave

For inastance for =211

_'.) V.f't C”(:‘

! ! 5 / '
A — _ - , ER -
e’ {t) = =2(%) = _ s)ds + et {a,) , c'{t) azgrees
a .
T
r .y .
2imost everyvhere on La,,n] with on absolutely continous

Tunction, for

E T o T o T ay - - a3 -y t T 1
, (%) io =bsolutely continous on all la,,»l ,

b Y o S R S, -~ v b i A1 - [ | N
being intezral of 4 swmmable Function (see T2¢7,0.280) .

T Aar e -~ Ty v T oy - - Er ' ~ oo
fow ¢ peing abhsolutely continous on all [a,b) can he written
. N =z X / )
a3 zn intezral of its derivative: o(x) = . ct{%) -—c(aq, =
.4
FE . T 4 - o farY 5@
. {%)1t + el=z,) for all x%[a,,b»] . This means c{x) isg



Further we supply some rules for the calcul
quotients which don't prove since they a

forwari calculation. Only for E. below one
let have

), then we have

)

64

ug of Aifference-

2}
D
)
O
<t
o
(47}
ct
R
o
I.J
0
1,
ot
i

at least one of the

Lo
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Agpwdu B:

1 .
Arclength of C -smocth curves in a Banach syace

q

Tor our applications of variation=zl technicues in order 1o

¥

-

prove the smoothness properties of rectifiable shortest
tiong of arclength

it was important fto know that the two defini
agreed for z2bsoluiely continous curves in a Hiemsnnian mani-
Toli, gee lemmz D. 33 . e will nrove here the aralosue result

for C -smooth curves inm 2 normed vecior space , our nroof

geens to be simnler than those found in the literature (mecre-

over tvhe curves may be contained in 2n infinite-fimensional
spzce). Jor the proof we neel the following asseriion also
wel in the proof of the leomn n, 33 @

Aggertioa: Let he V,

Te¥ =% any O «3m0ctlr meT

-b'?n 5 e R N ey = -t“n:, li--s.gr:_ A S I A, e AT -
e Telolniagr-selti 00X Lis LiaenY [l L NG L SRR R u...o--,

o= a - L I - ) JOS ~r

the spzce of continous linear mannings from V into W, the
I ey B e E| | . LN : . 7~ 7T }.,_}__ 3

Tnorm in ;kf,”) 19 Jderined by 1A = ﬂuﬁfii(x): xeV o, Ixi=1 7

for A2 L(V,W). Ve claim now that B{.,.}:VXxV-7 is = con-

Proof: For noints with n# 0 the continuity of R is clear

B

thus we must check that R(x,h) converzges to 0 1f (x,nh) con-

verses sgainst some point x ,0).
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oo s | £ (x+h)=F(x)=£" (x) ()] _

IR (x,n)| = L(xHh) 1h(IX) o)l _

£ (xen )= (x)h - Fx+0)=F' (x)0}
Pnl

£ sup |'£ 0 (x+sh)=F" (x) ] , Wnere the ineguality
O=g=]

is goi by the 'Schrankensatz' (see [14]1,9.58) (generalized
mean value theorem). Mow because £' is continous, the right
cide of the above inequality coaverges to zero 1f (x,h) con-

=

verges agsinst (XO,O).

Theoren: Let c:I=100,1]-%¥ De & C -smooth curve in =2 nocrme-
T 1 ] ]
vector space V. Then Lic) = Of ler(t)lat , where we define
- e | ! ~ h]
T(n) 1= suz{ L(C,Z)-:L:'c{ti)-c(t;_ﬁ)! P toe%, L zo(1)1}
o _ P _—

weins the set of =211 finite partitions of L,
Troof: As in the nreceding asgsertion we may Jeccrive Ior
= A T ol . A . 1 . A
e,n)sIxI ~{s+h)=clsy+c'(s)h + R(z,n)n (%3
Y
. clg+h)-c(s \ - ) .
thus oooin D{e,h) := ( ; (=) c'(s) , where we define
c(s+h) for s+h i [0,1] By *he risht hand side in (¥). Tov
7(3,h) is continous by the nreceding assertlon and um%wm con-
tinousg since I x I 1s compact. e aave
} sl s |- - _ kR o i 1 f 1y
Loy C"\t)x1t~u(’3,2)f = L o(, /= et {t)i- \_,("G‘-_L4)--C\'TSW) J
i L:i Lo 4

SR, e e (e = Ter (5 ) (b, =5y ) # R{B,, b5 =5y )
= . o o] -‘,\.i [ . i+‘1i_bj- + il 4 9 j..+1-'ui' \

i in e i = g

(ty 4-83)0 1 =08

= st M - o e ER} - o LT,
., 5. .0, using the mean value thecorem o Tas
: .1

- o R TR L - Y
CoLCULls O 1nweIrfvioll. )
=0 i ! ! oy v PR _
B2 Do et {as ) i- et (G )t =t )il y=t 0 = 09,
i 1 -1 1



any ¢ >0 =2 5(2) such that lc'{s)-c'(3)l<%e for

lan5] < 6(e) 2nd !R(s,h)—ﬁ(%,ﬁ)%*<% g for !(s,h)~ E,E)E*ﬁé
)

Therefore if we choose now any partition Z= (.. ty ..) with
! L P o + 7 Y -
ltiw{-‘l—uj_? < ’5 Ior b‘ll Ui - dd 3 'e get
g i | £y b +
oo = 2, | et (L. + v )+ ! S J Bl ) Tl -
2| et (s ¢ )+ Cler(e ) bes )l 1o, -5
. g ) i i 1
aith iy | .l <%¢
L Yl i d Vl
This gives o0 =2, lel itiﬂ—-tii = ¢ and proves the theoren.
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