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1. PREAMBLE

With the advent of a new millenium, it seems appropriate to begin with a brief historical
perspective on a topic that entails a remarkable confluence of ideas, spanning nearly 4000
years of geometry and algebra. Figure 1 shows cuneiform tablet No. 322 in the Plimpton
Collection of the Rare Book & Manuscript Library, Columbia University. This compilation
of sexagecimal numbers, composed in the Old Babylonian Period (~ 1900 to 1600 BC),
was discovered in the 1920s and subsequently deciphered by Neugebauer and Sachs [52] in
1945. Far from being a mere financial or commercial record, the tablet reveals profound
knowledge [8] of the fundamental characterization

a=u—-v* b=2uw, c=u’+0 (1)

for integer solutions to the “Pythagorean” equation, a? +b% = c?. After a thousand years,
Mesopotamian supremacy in algebra was superceded by the ascent of Greek geometry —
Pythagoras of Samos (~ 560-480 BC) is credited with the first proof that this equation
governs the sides of all right triangles, and is thus fundamental in distance measurement.
Unfortunately, geometry fell into a prolonged stagnation after the Greeks, until Descartes’
La géométrie of 1637 proposed a propitious marriage of geometry and algebra through the
use of coordinates. Although this opened the fascinating realm of higher—order curves to
mathematical scrutiny, the first steps were hesitant: Descartes blundered by categorically
rejecting the idea of “rectification” (i.e., arc-length measurement) of curves.

The calculus of Leibniz and Newton resolved the existential, but not the computational,
aspects of arc length measurement. Applying the Pythagorean theorem to an infinitesimal
curve segment allows us to express the length of a (sufficiently smooth) parametric curve
r(t) = (z(t),y(t)) as the integral

s(t) = /Ot \/:L"Q(u) + y?(u) du, (2)

but this does not, in general, admit closed—form evaluation for “simple” (rational) curves.
Ideally the curve parameter is the arc length, s(t) = ¢, an assumption that helps elucidate
the intrinsic geometry of curves. It is a matter of some subtlety, however, that this ideal
is unattainable by any rational curve other than a straight line [29].

Although we must relinquish the hope of rational arc-length parameterization, we can
nevertheless ensure exact mensurability of the arc-length function (2) by incorporating a
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Figure 1. Plimpton 322, the cuneiform “Pythagorean triples” tablet from ancient Babylon.

special algebraic structure in the curves r(t) = (x(¢),y(¢)) under consideration, based on
the recognition that Pythagorean triples of polynomials admit the same characterization
(1) as triples of integers [44]. Thus, by constructing curves whose hodograph (derivative)
components z'(t) and y'(t) are elements of Pythagorean triples, we ensure reduction of the
integral (2) to a polynomial in ¢. This is the key concept motivating the introduction [28]
of Pythagorean-hodograph (PH) curves, which offer many additional advantages (rational
offsets, superior shape properties, real-time interpolators, etc.), described below.

Apart from these practical advantages, the investigation of PH curves is of considerable
intellectual appeal for the wealth of mathematical ideas it entails, including the geometry
of complex numbers, inaugurated by Wessel, Argand, and Gauss; Hamilton’s quaternions
and the geometrical algebras of Clifford; medial axis transforms and the Minkowski metric
of special relativity; projective geometry and dual representations; the cyclographic map
and Laguerre geometry; and connections with classical geometrical optics.

2. POLYNOMIAL PH CURVES

The distinguishing feature of a polynomial PH curve r(¢) is that the components of its
hodograph r'(t) satisfy a Pythagorean condition, i.e., the sum of their squares is equal to
the square of a polynomial o(t). The satisfaction of this condition entails rather different
approaches in the context of planar and spatial curves, as described below.

2.1. Planar PH curves
The hodograph r'(¢) = (2'(t), y'(t)) of a planar PH curve must satisfy
2?(t) +y*(t) = o*(t), (3)

where o(t) is a polynomial. Satisfying this condition is equivalent [28] to the requirement
that, in terms of polynomials u(t), v(t), h(t), the hodograph has the form

/() = [w(t) —v* (1) ]h(t), ¥'(t) = 2u()v(t)A(t), (4)



and hence o(t) = [u?(t) + v?(t) ] h(t). Taking h(t) = 1 and ged(u,v) = 1 gives a primitive
Pythagorean hodograph, defining a regular PH curve (i.e., ged(z',y') = 1) of odd degree.

A direct consequence of (3) is that, for a PH curve, the cumulative arc-length function
(2) is just a polynomial (rather than an irreducible integral). Moreover, the offset curves
at each distance d from r(¢) — defined [21] by

r4(t) = r(t) + dn(t), (5)

where n(t) is the unit normal to r(¢) — admit exact rational representations, eliminating
the need for approximation schemes that can be inaccurate, data intensive, or lacking in
robustness — see [10,57] and references therein. The exact arc length and offset properties
of PH curves are extremely useful in the context of CNC machining (see §4 below).
Taking constants for u(t), v(t), h(t) reveals the trivial fact that straight lines are PH
curves. The first non-trivial examples are thus cubics, defined by choosing h(t) = 1 and
linear polynomials u(t), v(¢) in (4). PH cubics can be characterized geometrically in terms
of their Bézier control points py, - .., ps. Namely, if Ly = |pr —px_1]| are the lengths of the
control-polygon legs, and 6, 65 are the angles at the interior points p;, po, the conditions

L2 = \/Lng and (91 = 92 (6)

are sufficient and necessary for a PH cubic [28]. On closer scrutiny, the elegant simplicity
of this characterization reveals a deeper truth: modulo rigid motions, scalings, and linear
reparameterizations, PH cubics are all segments of a unique curve, Tschirnhausen’s cubic.
Since it cannot inflect, this curve is of limited value in design applications [23].

For shape flexibility similar to that of “ordinary” cubics, we must appeal to PH quintics,
defined by choosing h(t) = 1 and quadratic polynomials u(t), v(t) in (4). The PH quintics
can inflect and can interpolate arbitrary first—order Hermite data; they can also be used
to construct C? splines interpolating a sequence of points (see §3). However, their control
polygons do not admit simple geometrical characterizations [12], analogous to (6).

To ensure numerical stability [25,26] we always specifypolynomials in Bernstein—Bézier
form on [0, 1]. Choosing h(t) = 1 and degree—m polynomials u(t) and v(¢) with Bernstein
coefficients ug, . . ., Uy, and vy, ..., vy, in (4) defines a PH curve r(t) of degree n = 2m+1,
whose parametric speed o(t) = |r'(¢)| is a polynomial of degree n — 1, specified [11] by
the Bernstein coefficients

minz(%l’k) (T) (ij) (

1 ujuk_j =+ Ujvlcfj) y k = O, e, — 1.
j=max(0,k—m) ( k )

O =

Integrating o(t), we obtain the arc-length function as a polynomial s(t) of degree n with
Bernstein coeflicients

1k‘—1
so=0 and Sk:—ZO'j, k=1,...,n.
n
7=0

Note that s() is monotone-increasing, since it is the integral of a non—negative polynomial
o(t). Thus, although s(t) does not possess a closed—form inverse [15], the parameter value
t, corresponding to any given arc length s, can be computed to machine precision, as the



unique real root of the equation s(t,) = s., by means of a few Newton—Raphson iterations.
This property is especially useful in the formulation of real-time CNC interpolators; see
84 below. The total arc length S for ¢ € [0,1] is simply s, = (09 + -+ + op_1)/n.

To represent the offsets (5) as rational curves, we introduce homogeneous coordinates
(W, X,Y) and write the control points of the PH curve r(t) as Py = (1, xg, yx) for k =
0, R With APk = Pk+1 — Pk = (0, A.’Ek, Ayk) and

APk X Z = (O,Ayk, —A.’Ek),

where Axp = g1 — Tk, AYr = Yr+1 — Yk, and z is a unit vector orthogonal to the
plane, the offset ry(t) is described by polynomials W (t), X (¢), Y () of degree 2n — 1, with
Bernstein coefficients Oy = (W, Xk, Yx) given [11] by

min(n—1, n—1 n
Ok:' (Zlk) W(Jijj+dnAijz), k:0,,2n—1
j=max(0,k—n) k

As the offset distance d is increased, the control points of r4(t) move uniformly along fixed
lines, but their “weights” W) remain constant; see Figure 2. Although the offsets to PH
curves are of higher degree, this is not problematic if we adhere to the numerically stable
Bernstein form in their construction (note also that we may regard the offset as the sum
of a polynomial curve of degree n and a rational curve of degree n — 1). In §5 we shall
see that the rational PH curves entail no increase of degree in their offsets.

Figure 2. Left: interior and exterior offsets to a PH quintic represented exactly as rational
Bézier curves of degree 9. Right: as the offset distance d is increased, the control points for
successive offsets move uniformly along straight lines, and their weights remain constant.

2.2. Complex representation

By identifying points (z, %) in the plane with complex numbers x +iy, any plane curve
r(t) = (x(t),y(t)) can be regarded [75] as a complex—valued function z(¢) +iy(t) of a real



parameter t. For planar PH curves, this perspective proves to be extremely useful [12] —
since, if w(t) = u(t) +iwv(t) is any complex polynomial with ged(u,v) = 1, its image

wi(t) = u?(t) — v*(t) + i2u(t)v(t)

under the conformal map z — z? is a polynomial whose real and imaginary parts are

elements of a primitive Pythagorean triple of the form (4), with h(¢) = 1. Hence, in the
complex representation, the (regular) PH curves are those curves whose hodographs are
simply the squares of complex polynomials: t'(t) = w?(t).

The complex form plays a key role in simplifying the construction and shape analysis
of planar PH curves [3,12,13,17,18,22]. Suppose, for example, that

r(t) = gpk (Z) (1 —¢t)>F¢

is a PH quintic in Bézier form, obtained by integrating the hodograph (4) with A(t) =1
and quadratics with Bernstein coefficients ug, u1, us and vy, v1, ve for u(t) and v(¢). In real
arithmetic, we obtain the rather cumbersome expressions

1
($1,y1) - (anyO) + g(ug _U(Q)aQUOUO)a

1

($2,y2) = (xlayl) + g(uoul — VU1, UgV1 + ul“O)a

(z3,43) = (To,92) + — (v — v}, 2uv1) + —(uguy — VoV, UV + Usy)
15 15
1

(z4,ys) = (x3,y3) + g(um — V1V, U1Vg + Uy ),

1
(z5,Y5) = (74,vs) + g(u% — v3, 2ugvs)

for the control points' py = (z,yx). Writing px = x5, + iy, and w; = u; + iv;, on the
other hand, yields the compact characterization

1 5
P = P0+5Wo,
1
P2 = P1+5W0W1,
2W%+WOW2
Ps = P2+Ta
1
Ps = P3+5W1W2;
1
Ps = p4+gw§. (7)

By means of the complex form, one can easily see [12] that the set of (regular) PH curves
and the set of “ordinary” (regular) polynomial curves are of the same cardinality. Familiar
algorithms for the construction or modification of polynomial curves always admit analogs
in terms of PH curves — although the latter are inherently non-linear, use of the complex
form can greatly simplify their formulation and implementation.

INote here that pg is an arbitrary integration constant.



2.3. PH space curves
By analogy with (3), a PH space curve r(t) = (z(t), y(t), z(t)) satisfies
2(t) + 92 (t) + 2%(t) = o*(1), (8)
for some polynomial o(t). Such curves were introduced in [30], using the form
/() = [u(t) —v*(t) —w (1) ] (1),

y'(t) = 2u(t)o()h(t),
Z(t) = 2u(t)w(t)h(t), (9)

and hence o (t) = h(t) [u?(t) +v?(t) +w?(t) ]. This is not, however, an entirely satisfactory
spatial extension of the hodograph (4). Whereas the latter form is sufficient and necessary
for a plane PH curve, the form (9) is only sufficient for a PH space curve. The failure of
(9) to describe all PH space curves is apparent in the fact that this form is not invariant
with respect to re-labelling of the axes (the invariance of (4) under such re-labelling can
be seen by replacing (u,v) by (i, @), where we define /2% = u+ v and V29 = u — v).

Subsequently, a sufficient—and—necessary characterization of polynomial solutions to (8)
was given in terms of polynomials u(t), v(t), p(t), ¢(t) by Dietz et al. [9]:

#'(t) = w?(t) +v*(t) — p°(t) — ¢°(t),
y'(t) = 2u(t)p(t) + 2v(t)q(t),
2'(t) = 2u(t)q(t) — 2v(t)p(t), (10)

and thus o(t) = u?(t)+v?(t)+p?(t)+4¢*(t). Moreover, this defines a regular PH space curve
with ged(z', ', 2') = 1 whenever u(t), v(t), p(t), ¢(t) have no common factor, whereas for
(9) with h(t) =1, the condition ged(u, v, w) = 1 does not guarantee a regular curve.

As with planar PH cubics, the twisted PH cubics can be characterized by geometrical
constraints on their Bézier control polygons. In fact, the spatial PH cubics are all segments
of (non—circular) helices [30] — i.e., their tangents maintain a constant angle with a given
axis, and they exhibit a constant ratio of curvature to torsion.

The arc length s(t) for PH space curves is obtained by a trivial extension of the methods
given above for plane PH curves. The spatial analog of an offset curve is the canal surface
with a given space curve as its spine (i.e., the envelope of a one-parameter family of fixed—
radius spheres, centered on the spine curve). Since PH space curves admit orthonormal
frames? (t, e, e;) dependent rationally on ¢, where t is the tangent and e, e, span the
normal plane, the canal surfaces with PH spine curves are rational [30]. Lii and Pottmann
showed that the canal surfaces associated with any rational (not just PH) spine curves are,
in fact, rational [47] — but their rational forms are more difficult to construct [55]. Jittler
[38,41] describes applications of PH space curves to the modelling of swept surfaces.

An important difference between planar and spatial PH curves is the lack of a compact
intuitive model for the latter, analogous to the complex form of plane PH curves described
in §2.2. Ueda [71] expressed PH space curves of the form (9) in terms of a special class of
quaternions. For a comprehensive theory of the algebraic form of Pythagorean hodographs
in spaces of different dimensions (and under different metrics), see Choi et al. [7].

2In general, e; and es do not coincide with the principal normal n and binormal z — for a discussion of
curves with rational Frenet frames, see Wagner and Ravani [72].



3. CONSTRUCTION ALGORITHMS

Since PH curves are defined by hodographs that depend on the squares and products of
polynomials u(t), v(t), etc., the determination of coefficients for these polynomials so as to
match given discrete geometrical data (points, tangents, etc.) typically incurs non-linear
problems with a multiplicity of solutions.

3.1. PH quintic Hermite interpolants

The first—-order Hermite interpolation problem is concerned with constructing a smooth
curve, r(t) for t € [0,1], with given end points and derivatives: r(0) = py, r'(0) = dy and
r(1) = p1, r'(1) = d;. As is well known, there is a unique solution among the “ordinary”
cubics; to obtain sufficient degrees of freedom within the PH curves, we must appeal to the
quintics [22]. It is convenient to use the complex representation, and assume® that py = 0
and p; = 1 (note that bold characters denote points, vectors, and complex variables).

To define a PH quintic, we choose a hodograph that is the square of a complex quadratic
polynomial w(t) expressed in Bernstein form,

r'(t) = [wo(l — 1) +wy 2(1 — t)t + wot’ % (11)

With the integration constant r'(0) = pg, the coefficients wq, wi, wo are determined by
the Hermite interpolation conditions

1
') =do, Y1) =di, [ r@)d=p-p =1,
0
which yield the system of quadratic equations
Wg = do, Wg = dl) (12)

QW% + Wowy

3 + wiwy + Wi = 5. (13)

wg + wowy +
This system has a simple formal solution: equations (12) furnish two complex values for
each of wy, wy and substituting them into (13) allows the latter to be solved as a quadratic
equation in w;. Although there are 8 solutions, they define only 4 distinct PH quintics:
if wg, wa, Wy is a solution, so is —wy, —wq, —wq, and it yields exactly the same curve.

Empirically, one “good” interpolant is observed among the four distinct solutions —
the others typically exhibit undesired loops or extreme curvature variations. The good
interpolant may be identified as the one that minimizes a global measure of shape, such
as the absolute rotation index or elastic bending energy (see Figure 3):

Rups = %/01 K@) IM@)|dt, £ = /O1 K2(0) (1)) dt. (14)

The complex form facilitates exact evaluation of these quantities [13,22]. For this purpose,
it is convenient to re—write the hodograph (11) as

r'(t) = k(t—a)*(t—b)?,

3This “standard form” for the Hermite data helps simplify the analysis — it is a trivial matter to map
arbitrary Hermite data to and from it.



in terms of which the curvature can be expressed as
0 Im (¥ (t)r" (t)) 2 Bt —al>+alt —b)?
K = - 0 = — ,
' (2))? k| |(t—a)(t—Db)*

where o = Im(a) and § = Im(b). The locations of a and b in the complex plane relative
to the interval [0, 1] play a key role in determining the shape of PH quintics [22].

(15)

E=185 Ry=0.723 E=30.0 Ryps=0.960 E=352 Rgps=1.040 E=7092 Ryps=1612

Figure 3. The four distinct PH quintic Hermite interpolants to the data po =0, p; =1
and dp = 0.24410.60, d; = 0.38+10.52, together with values for the bending energy and
absolute rotation index (14). The derivatives have been scaled by a factor of 5 for clarity.

An alternative approach to selecting the good solution employs a qualitative criterion

— “absence of anti—parallel tangents” — based on comparing the PH quintic and ordinary
cubic interpolants [50]: one can show that, for “reasonable” Hermite data d,, d; satisfying
Re(d;) >0 and |d;| < 3, (16)

the “good” solution can be directly constructed by a specific choice of signs in the solution.
The conditions (16) ensure that the derivatives have positive components in the direction
of the displacement p; — pg, and their magnitudes are commensurate with the distance
|p1 — po| =1 (as would be expected in most practical applications).

3.2. Shape properties of PH quintics

A remarkable (empirical) feature of the “good” PH quintic Hermite interpolants is that
they are generally of fairer shape — i.e., they exhibit more even curvature profiles — than
the corresponding “ordinary” cubics, as is evident from the examples shown in Figure 4.
This is true not only for individual Hermite segments, but also C? splines that interpolate
a sequence of N points (see Figure 5 below). The superior curvature behavior of PH curves
is advantageous not only in free—from design applications, but also in path planning for
mobile robots — where physical limitations of the steering mechanism incur constraints on
the allowed path curvature [5]. The curvature (15) of a PH quintic is a rational function of
the curve parameter, with positive denominator — expressing it in Bernstein form yields
an algorithm to compute rapidly-convergent bounds on the curvature of PH curves using
only rational arithmetic on their coefficients [50]. Finally, note that the availability of a
closed—form expression for the total arc length S and the elastic bending energy £ in (14)
opens up the possibility of quantitative “shape optimization” for PH curves [13].



Figure 4. Comparison of “good” PH quintic (solid) and ordinary cubic (dashed) Hermite
interpolants to various end derivatives dg and d; (shown scaled by a factor of 5 for clarity).

3.3. C? PH quintic splines

Apart from individual Hermite interpolants to end—point data, the ability to smoothly
interpolate a sequence of points pg, ..., Py is a common design requirement. As is well-
known, C? cubic splines satisfy this need and incur only the solution of a tridiagonal
linear system. An analogous construction is also possible [3] for C? PH quintic splines —
the defining equations still have “bandwidth” 3, but are complex and quadratic, and thus
computationally more challenging. As compensation for the greater computational cost,
however, we shall see that the PH quintic splines provide much “smoother” loci (with
more even curvature distributions) than their ordinary cubic counterparts.

The construction of a C? PH quintic spline, interpolating a sequence of N + 1 points*
Po, - - -, P~ and satisfying specified end conditions, entails solving a system of N quadratic
equations in N complex unknowns zi,...,zy. We begin by writing the hodograph of the
k—th PH quintic span ri(t) of the spline curve, between py_; and pg, in the form

r(t) = [S(zeot +2) (1= 0)2 + 2e2(1 = 0)t + 3z + zes1) 2] (17)

which ensures that successive spans satisfy the continuity conditions rj(1) =r}_,(0) and
ry(1) =} ,(0). Assigning the integration constant r;(0) = px—; to this hodograph and
also requiring that ry(1) = py then gives the equation

fi(2z1,...,28) = 32z, + 272z, + 324 + Zj_1Zp
+ 13 (Zk—1+zk+1)zk — 60 Apk = 0, (18)

where Apy = pr — Pr—1. Such an equation holds for each span k£ = 1,..., N of the spline
curve, but the first and last equations, fi(z1,...,zy) = 0 and fy(z1,...,2zy5) = 0, must be
modified to embody the prescribed end conditions. The modifications appropriate to (a)
given end—derivatives dy, dy at the points pg, pn; (b) cubic (Tschirnhausen) end spans;
and (c) periodic end conditions, are described in [3].

Tt is understood here that the points are specified in complex form, pr = zx + iys.
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curvature

PH spline cubic spline

Figure 5. Comparison of C? PH quintic and “ordinary” C? cubic splines interpolating a
sequence of points with uniform knots and periodic end conditions. The PH quintic spline
yields a much “smoother” curve, as indicated by the curvature profiles shown on the left.

The system (18) is “tridiagonal” in the sense that each equation contains only three
consecutive unknowns. Its non—linear nature, however, makes it more challenging to solve
than the linear tridiagonal system for “ordinary” cubic splines. In general, there are 2V**
distinct solutions,® among which one “good” PH spline may be identified (see Figure 5).
For N < 10, the homotopy method [4,51] is a practical means to compute all solutions of
this system — using a predictor—corrector method we track [3] the solutions to

hk(zla"'aZN:)‘) = (1_)‘)gk(zla"':ZN) + )‘fk(zla"'aZN) =0

from the known solutions of a “simple” initial system, gi(z1,...,2zx) = 0 at A = 0, to
the solutions of the desired system, f;(zy,...,zy) = 0 at A = 1. Since the system (18)
is typically well-conditioned, the homotopy method often yields convergence to machine
precision. However, the cost of computing all 2V** solutions is prohibitive for N > 10. As
an alternative, a method to compute only the “good” solution is described in [17], based on
estimating an initial approximation to the solution (by comparison with the ordinary cubic
spline), and invoking the Kantorovich conditions for guaranteed convergence [43,53,65] of
the multivariate Newton—Raphson method applied to the system (18). The Kantorovich
test is facilitated by the fact that, in the co—norm, the Jacobian matrix with elements

Mkl:% fOI‘lSk,lSN
Z

satisfies [17] the global Lipschitz condition
[M(x1,. .0 %xn) = M(y1, - ¥w) loo < 120 [ (150 xn) = (3155 YN) oo

Reference [17] also presents a generalization of the system (18) to PH quintic splines with
non—uniform (rather than integer) knots tg, ..., ¢y for the points pg, ..., pn-

SHere k € {—1,0,+1} depends on the adopted end conditions.
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3.4. Geometric Hermite interpolants

Jiittler [40,41] has proposed an alternate approach to the construction of polynomial
PH curves, based upon geometric rather than parametric Hermite interpolation — i.e.,
intrinsic geometrical properties (tangent directions, curvatures, etc.) are specified in lieu
of parametric derivatives. A scheme for interpolating G! spatial data (points and tangent
directions) by PH space cubics is described in [41], while interpolation of G? planar data
(points, tangent directions, and curvatures) by plane PH curves of degree 7 is treated in
[40]. The methods are well-suited to approximating given (non-PH) curves, from which
tangents, curvatures, etc., can be computed. Conditions for (and rates of) convergence
to the given curve, as the sampling interval diminishes, are also addressed.

3.5. Further constructions

Many other constructions, suited to specific applications, have been discussed by various
authors. Walton and Meek consider the imposition of a curvature-monotonicity constraint
on PH curves [73,74]; see also [14]. For the design of smooth cam profiles, PH curves of
degree 9 have been employed as second—order Hermite interpolants [18]. Least—squares
fitting of PH curves to point data has also been investigated [27], as a means of making G
code part programs accessible to real-time PH curve CNC interpolators (see §4). Finally,
several special PH curve contructions have been explored by Ueda [67-70].

4. REAL-TIME CNC INTERPOLATORS

Certain properties of polynomial PH curves are especially advantageous in the context
of computer-numerical-control (CNC) machining. For a CNC machine to cut a specified
curve® r(£), the tool center must follow the offset path (5) where d is the tool radius. As
previously noted, PH curves (unlike general polynomial curves) have rational offsets, that
are amenable to exact representation in CAD systems.

The ability to formulate exact real-time interpolators, for constant or variable feedrates,
is another fundamental advantage [32] of PH curves. To produce a desired motion, a CNC
machine drives several independent axes in a coordinated manner. The controller employs
digital descriptions of space and time — the sampling interval (~ 0.001 sec) is defined by
a “clock” running within the algorithm, while the basic length unit or spatial resolution
(~ 10 microns) is determined by position encoders on each axis.

The controller compares the actual machine position (measured by the encoders) with
the intended position (computed from specified paths and feedrates by the interpolator) in
each sampling interval At — the error is used to generate control signals for the machine
drives, ensuring that the desired paths and feedrates are accurately realized. The timed
sequence of curve points computed by the interpolator are called reference points; they
correspond to a discrete sampling &, = £(kAt) of the solution to the differential equation

d¢
i Vv, (19)
where (&) = |r'(§)| denotes the parametric speed and V' = ds/dt is the feedrate (which
may be either a constant, or dependent upon physical variables such as elapsed time ¢,

6We use ¢ as the curve parameter here, since the variable ¢ will be used to denote time.
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arc length s along the path, or the local path curvature k).

For a general polynomial curve, equation (19) does not admit a closed—form integration,
even when V = constant. Hence, it is common practice to use piecewise-linear/circular
“G code” approximations to curved tool paths. Apart from its data—intensive nature, this
approach can severely impede the ability of the machine to achieve and maintain high
speeds [66]. Alternately, one may retain the analytic representation of a curved path, and
use a Taylor series expansion

/! I 2
§k=§k1+KAt+KZ<VI_r 21' V) S L (20)
o o o 2

(where primes denote derivatives with respect to &, and o, r’, v, V, V', etc., are evaluated’
at £x_1) to approximate the reference points. Ordinarily, only the linear term is retained,
and no attempt is made to account for the accumulation of truncation errors. Moreover, as
noted in [33], this method has often been compromised in the context of variable feedrates
by erroneous derivations of the appropriate Taylor coefficients.

The PH curves circumvent these problems in a simple and elegant manner: their special
algebraic structure permits closed—form integration of (19) to give an equation of the form

F(&) = ce-1, (21)

where F'is a monotone (usually polynomial) function, and ¢ is a constant that is updated
at each step. The monotonicity of F' allows & to be computed to machine precision by
just a few Newton-Raphson iterations, starting from &;_;.

Complete details on PH curve interpolators can be found in [32] for feedrates that are
constant or simple functions of the arc length s or curvature x; in [19] for feedrates that
maintain a constant material removal rate at fixed depth of cut along a curved path; and
in [66] for any time—-dependent feedrate function that has an elementary indefinite integral
(the latter are especially useful in achieving smooth feed accelerations and decelerations).

Dramatic improvements in feedrate performance have been observed [66] on replacing
G code interpolators by PH curve interpolators, primarily due to the “block look—ahead”
problem associated with G codes. Further practical aspects concerning the use of PH curve
interpolators include: conventions for specifying PH curve part programs [20]; control of
cutting forces by feedrate variation [19]; path planning for contour machining of surfaces
[34]; and the determination of feedrates and feed accelerations, compatible with the known
torque and power capacity of the machine drives [35].

5. RATIONAL CURVES WITH RATIONAL OFFSETS

Although rational offsets are a key attribute of the polynomial PH curves, these curves
are not the only “simple” curves that possess rational offsets. Lii [45,46] has shown that by
suitable (improper) re-parameterizations, certain polynomial curves — whose hodographs
are not Pythagorean — also admit rational offsets. Moreover, it seems natural to extend
the domain of enquiry and ask: what is the complete set of rational curves whose offsets

"A varying feedrate V should be specified as a function of a physically meaningful variable (e.g., time ¢,
arc length s, or curvature k) rather than the curve parameter . Accordingly, the quantity V' = dV/d¢ in
(20) must be cast in terms of derivatives with respect to such a variable — see [33] for complete details.
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are rational? The theory of rational PH curves, as developed by Pottmann [59] and Fiorot
and Gensane [36], addresses this problem conclusively. We can only skim the surface of
this elegant theory — the reader should consult the references for complete details.

5.1. Rational PH curves

A basic difference is apparent upon turning our attention from polynomial PH curves to
rational PH curves. Whereas the former can be constructed by integrating any polynomial
hodograph satisfying the Pythagorean condition (3), this fact does not extend to rational
PH curves: a rational hodograph satisfying (3) does not necessarily define a rational PH
curve (transcendental terms may arise on integrating rational functions). Thus, a different
approach to the construction of rational PH curves is advantageous.

A rational curve r(t) = (z(t), y(¢)) can be specified by homogeneous point coordinates
W (t), X(t), Y (t) such that z(t) = X (t)/W (t), y(t) = Y (t)/W (t). Alternately, we can use
homogeneous line coordinates K (t), L(t), M(t) such that the curve tangent at each point
t is described by

K(t) + L)z + M(t)y = 0. (22)

As shown by Pottmann [59], the latter approach is preferable in the theory of rational PH
curves. Such curves have rational unit normals n(t) = (n4(t), n,(t)) expressed in terms of
polynomials u(t), v(t) with ged(u,v) =1 by

u?(t) — v*(1)
u?(t) +v%(t)’

2u(t)v(t)

na(t) = w?(t) + v2(t)

ny(t) =
Now the tangent line can also be written in the form

ng(t)x + ny(t)y = f(1), (23)

where f(t) specifies the (signed) distance of the tangent line from the origin: this function
must be rational, since (x,y) = (x(t), y(t)) satisfies equation (23). Now we may, without
loss of generality, set [u?(¢)+v%(t)] f(t) = — p(t)/q(t), where p(t) and ¢(t) are polynomials
with ged(p, ¢) = 1. Comparing (22) and (23), we see that rational PH curves are defined
by line coordinates of the form

K(t): L(t) : M(t) = p(t) : [w*(t) = v*(t) ] q(t) : 2u(t)v(t)q(t). (24)

Writing ¢ = max(deg(u), deg(v)) and v = max(deg(p), deg(q)), this defines a rational PH
curve of class® m = 2y + v. The corresponding point coordinates can be derived [59] as

W(t) = 2[w(t) +v* (1) ] [u(®)' () — ' (t)o(t) ] ¢*(),
X(t) = 2[u/@)v(t) + u(®)' @) |p(t)g(t) — 2u(®)o(t) [P (t)q(t) — p(H)d' ()],
Y(t) = [w'(t) =" (@) ][/ ()a(t) — p(t)g' (1) ] — 2[u()u'(t) — v(t)v'(t) | p()g(t),  (25)

from which we deduce that the rational PH curve is of order n = 4pu + 2v — 2.

8The class (the degree of the line representation) indicates the number of curve tangents incident with
any point in the plane, and the order (the degree of the point representation) indicates the number of
curve points incident with any line in the plane [62].
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Clearly, the dual line representation (24) is much simpler than the point representation
(25). Algorithms for the design or construction of rational PH curves, analogous to those
described in §3 for polynomial PH curves, thus rely exclusively [1,58,60,64] on the rational
dual Bézier form, introduced by Hoschek [37]. The offsets to rational PH curves can be
easily constructed, by noting that their tangent lines are parallel to those of the original
curve at corresponding points. Writing f(¢) + d on the right in equation (23) amounts to
simply displacing the tangent parallel to itself by distance d. Hence, by the definition of
p(t) and ¢(t), the offset at distance d from a rational PH curve is obtained by replacing
p(t) with p(t) — d[v?(t) +v2(¢) ] ¢(t) in (24) or (25). This has the remarkable consequence
that the offsets to a rational PH curve all have the same degree as that curve; recall that
the offsets to a (regular) degree—n polynomial PH curve are of degree 2n — 1.

The arc—length function (2) is another important difference between the polynomial and
rational PH curves. For polynomial PH curves, s(t) is always a polynomial. For rational
PH curves, however s(t) is not always a rational function: although the parametric speed
is rational, transcendental terms may arise in its integral. Pottmann [59] has shown that
any rational PH curve for which s(¢) is rational must be the evolute® of a rational PH
curve and its family of offsets. Conversely, rational PH curves can be characterized as the
involutes to rational curves with rational arc-length functions s(t).

An elegant exposition of the theory of rational PH curves in the context of Laguerre
geometry was subsequently developed by Peternell and Pottmann [56,61] — this reveals
interesting connections between rational PH curves and the caustics and anticaustics of
geometrical optics [16], as emphasized in the theory of rational PH curves developed [36]
by Fiorot and Gensane. Unlike the polynomial PH curves, rational PH curves also admit
a natural generalization to rational surfaces with rational offsets [59], although practical
design schemes for such surfaces are not easy to formulate — see, however, [39,42,54]. For
a detailed reconciliation of the properties of polynomial and rational PH curves, and a
comparison of their relative advantages, see [24].

5.2. Improper parameterizations

For PH curves, the parameterization (5) of the offset is induced by that of the original
curve r(t). It is conceivable, however, that polynomial curves exist whose offsets are not
rational in the original curve parameter, but become rational under a re-parameterization.
This circumstance was completely characterized by Lii, who showed [45,46] that, in the
complex representation, it corresponds to complex polynomial hodographs of the form

r'(t) = (kt+1)w(t) h(t), (26)

where h(t) is a real polynomial, w(t) = u(t) +1iv(t) is a complex polynomial, and k is
a complex constant. Clearly, expression (26) subsumes the polynomial PH curves as the
special case k = 0. The simplest examples with k # 0 are those with w(t) = 1 and h(t)
either a constant or linear polynomial; they define a parabola and cuspidal cubic. These
curves admit rational re-parameterizations that correspond to double tracings: once in the
“forward” direction, and once in “reverse.” In terms of these improper parameterizations

9The evolute of a given curve is the locus of its centers of curvature (or, equivalently, the envelope of its
normals). A locus whose evolute is a given curve is called an involute of that curve — there is an infinite
family of involutes, which are all offsets of each other.
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the two—sided offset curve, at distance +d, is found to admit a rational parameterization
of degree 6 for the parabola and 8 for the cuspidal cubic; see [31,45,46].

A subset of the curves with hodographs of the form (26) are algebraically rectifiable [63]
— i.e., the arc length is given by the square root of a polynomial in the curve parameter.
Writing f(¢) = |kt + 1/, the condition for algebraic rectifiability of the curve defined by
(26) is that

h(t) [u*(t) +v* ()] = 3f/(t)g(t) + 2f(t)g'(2)

must hold [46,63] for some polynomial g(¢) — the cuspidal cubic, for example, satisfies
this condition, but the parabola does not.

6. MINKOWSKI PH CURVES

Thus far, we have defined PH curves in terms of the Euclidean metric in two and three
dimensions. In some application contexts, it is also advantageous to consider curves that
exhibit the PH property under certain special, non—FEuclidean metrics.

6.1. Minkowski metric of special relativity

The Minkowski metric of special relativity characterizes the distance between points
in a “pseudo—FEuclidean” space-time, spanned by one temporal and n spatial dimensions.
With n = 2, for example, the distance d between the two points or “events” (z1,y1,t1)
and (xg, Yo, t2) is given by

d2 = (.TQ - $1)2 + (yz — y1)2 — 02(t2 — t1)2 s (27)

where c is the speed of light. Events are said to have space-like, time-like, or light-like
separation, according to whether d? > 0, d?> < 0, or d*> = 0. It is convenient to employ
time and distance units in which ¢ = 1: the Minkowski metric (27) then differs from the
usual metric d? = (z2 — 21)% + (y2 — y1)? + (22 — 21)? of Euclidean space (z,y, z) only in
the subtraction, rather than the addition, of the last term: we say that the Euclidean and
Minkowksi metric have signatures (+ + +) and (4 + —), respectively.

Moon [48,49] showed that Pythagorean hodographs in the Minkowski metric are very
useful in recovering the boundary of a planar domain D from its medial axis transform
(MAT). The medial axis is the locus of centers of maximal disks, touching the boundary
0D in at least two points, that can be inscribed within the domain D. If c(t) = (z(t), y(t))
is a parameterization of the medial axis, we may superpose a radius function r(t) on it,
specifying the size of maximal disks centered on c(¢): the MAT is the three-dimensional
locus (z(t),y(t),r(t)). Introducing the unit vector

(=r'@)a'(t) F L@)y'(t) , —r' )y () £ £(1)2" (1))

i) = w7(6) + 700 ’

where £(t) = \/ x2(t) + y'2(t) — r2(t) is the parametric speed of the MAT in the Minkowski
metric, the envelope of the one-parameter family of circles described by (z(t), y(t), (%))
has the parameterization [48]:

e(t) = c(t) + r(t)m(t).
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Clearly, e(t) is not a rational locus, unless we ensure that the MAT hodograph satisfies
the (Minkowski) Pythagorean condition

2?(t) + y2(t) — () = o*(?) (28)
for some polynomial o(¢). Moon has shown that a MAT hodograph of the form

o'(t) = w?(t) = v*(t) = p*(t) + (1),
y'(t) = 2u(t)p(t) — 20(t)q(t),
r'(t) = 2u(t)q(t) — 2v(t)p(t), (29)
and hence o(t) = u?(t) — v2(t) + p*(t) — ¢*(t), is a sufficient and necessary condition [49]
for the satisfaction of equation (28). Thus, MATs with hodographs of the form (29) are
called Minkowski Pythagorean—hodograph (MPH) curves.*®

Note that, apart from signs, the hodographs (10) and (29) for PH space curves and MPH
medial axis transforms have essentially the same structure — the sign differences ensure
satisfaction of the Pythagorean conditions (8) and (28) under Euclidean and Minkowski

metrics; see also [7]. The reconstruction of a rational domain boundary (and of rational
offsets to the boundary) from an MPH MAT is discussed in [6].

2. Minkowski metric defined by convex indicatrix

A generalization of the PH property to a different non—Euclidean metric, also associated
with the mathematician/physicist Hermann Minkowski, was introduced by Ait Haddou
et al. in [2]. They consider the geometry of the Minkowski plane whose metric is defined
by choosing as “unit circle” a strictly—convex, centrally-symmetric locus &. In terms of
this indicatriz, the distance between points x and y is given by

[x—yl
dy(x,y) = 2 , 30
SR P )
where x' —y’ is the diameter of U parallel to x —y, and || -|| is the usual Euclidean metric.

Ait Haddou et al. give characterizations of curves whose U—offsets, under the metric (30),
are rational — they call such curves Minkowsk: isoperimetric—hodograph curves.

7. CLOSURE

By virtue of their special algebraic structure, Pythagorean—hodograph curves provide
ezact solutions to a number of basic geometrical problems in computer-aided design and
manufacturing. Apart from the issues of accuracy and data volume, the primary attraction
of such exact solutions lies in the enhanced robustness of their software embodiment.

Since its inception [28] about a decade ago, the Pythagorean hodograph concept and
its various extensions and generalizations have been remarkably fertile fields for further
research and practical applications. We have only been able to sketch a bare outline of all
these developments, and it seems fitting to conclude by citing the “grand unified theory”
of PH curves developed by Choi et al. [7], which employs the Clifford algebra perspective
to gain insight into the algebraic structures — such as (4), (10), and (29) — incurred by
the PH condition in various spaces of practical interest.

10Tt is universally agreed, even in Europe, that the speed o of an MPH curve should always be specified
in miles—per—hour (never kilometers—per—hour).
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