Bézier- and B-spline techniques

Hartmut Prautzsch
Wolfgang Boehm
Marco Paluszny

March 26, 2002

Paul de Faget de Casteljau

Preface

Computer-aided modeling techniques have been developed since the advent of NC milling machines in the late 40 's. Since the early 60 's Bézier and Bspline representations evolved as the major tool to handle curves and surfaces. These representations are geometrically intuitive and meaningful and they lead to constructive numerically robust algorithms.

It is the purpose of this book to provide a solid and unified derivation of the various properties of Bézier and B-spline representations and to show the beauty of the underlying rich mathematical structure. The book focuses on the core concepts of Computer-aided Geometric Design (CAGD) with the intent to provide a clear and illustrative presentation of the basic principles as well as a treatment of advanced material, including multivariate splines, some subdivision techniques and constructions of arbitrarily smooth free-form surfaces.

In order to keep the book focused, many further CAGD methods are excluded. In particular, rational Bézier and B-spline techniques are not addressed since a rigorous treatment within the appropriate context of projective geometry would have been beyond the scope of this book.

The book grew out of several courses taught repeatedly at the graduate and intermediate under-graduate levels by the authors at the Rensselaer Polytechnic Institute, USA, the Universities of Braunschweig and Karlsruhe, Germany, and the Universidad Central de Venezuela. These courses were taught as part of the curricula in mathematics and computer sciences, and they were regularly attended also by students from electrical and mechanical engineering, geophysics and other sciences.
For the careful proofreading of parts of the manuscript, we like to thank Stefan Bischoff, Bernhard Garz, Georg Umlauf, Claudia Bangert and Norbert Luscher. Especially, we thank Christoph Pennekamp and Natalie Spinner for preparing the LaTeX file and Bernd Hamann for his critical, thorough and final proofreading.

Wolfenbüttel, Caracas, Karlsruhe,

Wolfgang Boehm
Marco Paluszny
Hartmut Prautzsch

Contents

I Curves

1 Geometric fundamentals
1.1 Affine spaces 3
1.2 Affine combinations 4
1.3 Affine maps 5
1.4 Parametric curves and surfaces 6
1.5 Problems 7

2 Bézier representation
2.1 Bernstein polynomials 9
2.2 Bézier representation 11
2.3 The de Casteljau algorithm 13
2.4 Derivatives 15
2.5 Singular parametrization 17
2.6 A tetrahedral algorithm 17
2.7 Integration 19
2.8 Conversion to Bézier representation 20
2.9 Conversion to monomial form 22
2.10 Problems 22

3 Bézier techniques
3.1 Symmetric polynomials 25
3.2 The main theorem 27
3.3 Subdivision 27
3.4 Convergence under subdivision 29
3.5 Curve generation by subdivision 30
3.6 Curve generation by forward differences 32
3.7 Intersections 32
3.8 The variation diminishing property 34
3.9 The symmetric polynomial of the derivative 35
3.10 Simple C^{r} joints 36
3.11 Degree elevation 37
3.12 Convergence under degree elevation 39
3.13 Problems 40
4 Interpolation and approximation
4.1 Interpolation 43
4.2 Lagrange form 44
4.3 Newton form 47
4.4 Hermite interpolation 48
4.5 Piecewise cubic Hermite interpolation 49
4.6 Approximation 52
4.7 Least squares fitting 53
4.8 Improving the parameter 55
4.9 Problems 56
5 B-spline representation
5.1 Splines 59
$5.2 \quad$ B-splines 60
5.3 A recursive definition of B-splines 61
5.4 The de Boor algorithm 63
5.5 The main theorem in its general form 65
5.6 Derivatives and smoothness 67
5.7 B-spline properties 68
5.8 Conversion to B-spline form 69
5.9 The complete de Boor algorithm 70
5.10 Conversions between Bézier and B-spline representations 72
5.11 B-splines as divided differences 73
5.12 Problems 74
6 B-spline techniques
6.1 Knot insertion 77
6.2 The Oslo algorithm 79
6.3 Convergence under knot insertion 80
6.4 A degree elevation algorithm 81
6.5 A degree elevation formula 82
6.6 Convergence under degree elevation 83
6.7 Interpolation 84
6.8 Cubic spline interpolation 86ContentsXI
6.9 Problems 88
7 Smooth curves
7.1 Contact of order r 91
7.2 Arc length parametrization 93
7.3 Gamma-splines 94
7.4 Gamma B-splines 95
7.5 Nu-splines 97
7.6 The Frenet frame 97
7.7 Frenet frame continuity 98
7.8 Osculants and symmetric polynomials 100
7.9 Geometric meaning of the main theorem 102
7.10 Splines with arbitrary connection matrices 103
7.11 Knot insertion 105
7.12 Basis splines 105
7.13 Problems 106
8 Uniform subdivision
8.1 Uniform B-splines 109
8.2 Uniform subdivision 110
8.3 Repeated subdivision 112
8.4 The subdivision matrix 114
8.5 Derivatives 115
8.6 Stationary subdivision 115
8.7 Convergence theorems 116
8.8 Computing the difference scheme 117
8.9 The four-point scheme 119
8.10 Analyzing the four-point scheme 120
8.11 Problems 120
II Surfaces
9 Tensor product surfaces
9.1 Tensor products 125
9.2 Tensor product Bézier surfaces 127
9.3 Tensor product polar forms 130
9.4 Conversion to and from monomial form 131
9.5 The de Casteljau algorithm 132
9.6 Derivatives 133
9.7 Simple C^{r} joints 135
9.8 Piecewise bicubic C^{1} interpolation 135
9.9 Surfaces of arbitrary topology 136
9.10 Singular parametrization 138
9.11 Bicubic C^{1} splines of arbitrary topology 139
9.12 Notes and Problems 139
10 Bézier representation of triangular patches
10.1 Bernstein polynomials 143
10.2 Bézier simplices 145
10.3 Linear precision 147
10.4 The de Casteljau algorithm 148
10.5 Derivatives 149
10.6 Convexity 151
10.7 Limitations of the convexity property 153
10.8 Notes and Problems 154
11 Bézier techniques for triangular patches
11.1 Symmetric polynomials 157
11.2 The main theorem 159
11.3 Subdivision and reparametrization 160
11.4 Convergence under subdivision 162
11.5 Surface generation 162
11.6 The symmetric polynomial of the derivative 164
11.7 Simple C^{r} joints 164
11.8 Degree elevation 166
11.9 Convergence under degree elevation 167
11.10 Conversion to tensor product Bézier representation 168
11.11 Conversion to triangular Bézier representation 169
11.12 Problems 170
12 Interpolation
12.1 Triangular Hermite interpolation 173
12.2 The Clough-Tocher interpolant 174
12.3 The Powell-Sabin interpolant 175
12.4 Surfaces of arbitrary topology 176
12.5 Singular parametrization 177
12.6 Quintic C^{1} splines of arbitrary topology 178
12.7 Notes and Problems 180
13 Constructing smooth surfaces
13.1 The general C^{1} joint 181
13.2 Joining two triangular cubic patches 183
13.3 Piper's G^{1} interpolant 185
13.4 The vertex enclosure problem 186
13.5 The parity phenomenon 187
13.6 Problems 188
$14 \mathrm{G}^{\mathrm{k}}$-constructions
14.1 The general C^{k} joint 191
$14.2 \quad G^{k}$ joints by cross curves 192
14.3 G^{k} joints by the chain rule 194
14.4 $\quad G^{k}$ surfaces of arbitrary topology 195
14.5 Smooth n-sided patches 200
14.6 Multi-sided patches in the plane 203
14.7 Problems 205
15 Stationary subdivision for regular nets
15.1 Tensor product schemes 207
15.2 General stationary subdivision and masks 209
15.3 Convergence theorems 211
15.4 Increasing averages 213
15.5 Computing the difference schemes 214
15.6 Computing the averaging schemes 216
15.7 Subdivision for triangular nets 217
15.8 Box splines over triangular grids 220
15.9 Subdivision for hexagonal nets 221
15.10 Half-box splines over triangular grids 223
15.11 Problems 224
16 Stationary subdivision for arbitrary nets
16.1 The midpoint scheme 227
16.2 The limiting surface 229
16.3 The standard parametrization 230
16.4 The subdivision matrix 232
16.5 Continuity of subdivision surfaces 233
16.6 The characteristic map 234
16.7 Higher order smoothness 235
16.8 Triangular and hexagonal nets 236
16.9 Problems 237

III Multivariate splines

17 Box splines

17.1 Definition of box splines 241
17.2 Box splines as shadows 242
17.3 Properties of box splines 244
17.4 Properties of box spline surfaces 246
17.5 Subdivision for box spline surfaces 248
17.6 Convergence under subdivision 251
17.7 Half-box splines 252
17.8 Half-box spline surfaces 254
17.9 Problems 257

18 Simplex splines
18.1 Shadows of simplices 261
18.2 Properties of simplex splines 262
18.3 Normalized simplex splines 264
18.4 Knot insertion 265
18.5 A recurrence relation 267
18.6 Derivatives 269
18.7 Problems 270

19 Multivariate splines
19.1 Generalizing de Casteljau's algorithm 273
19.2 B-polynomials and B-patches 275
19.3 Linear precision 276
19.4 Derivatives of a B-patch 277
19.5 Multivariate B-splines 279
19.6 Linear combinations of B-splines 281
19.7 A recurrence relation 282
19.8 Derivatives of a spline 284
19.9 The main theorem 285
19.10 Problems 286

Part I

Curves

2 Bézier representation

```
2.1 Bernstein polynomials - 2.2 Bézier representation - 2.3 The de Casteljau
algorithm - 2.4 Derivatives - 2.5 Singular parametrization - 2.6 A tetrahedral
algorithm - 2.7 Integration - 2.8 Conversion to Bézier representation -
2.9 Conversion to monomial form - 2.10 Problems
```

Every polynomial curve segment can be represented by its so-called Bézier polygon. The curve and its Bézier polygon are closely related. They have common end points and end tangents, the curve segment lies in the convex hull of its Bézier polygon, etc. Furthermore, one of the fastest and numerically most stable algorithm used to render a polynomial curve is based on the Bézier representation.

2.1 Bernstein polynomials

Computing the binomial expansion

$$
1=(u+(1-u))^{n}=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

leads to the Bernstein polynomials of degree n,

$$
B_{i}^{n}(u)=\binom{n}{i} u^{i}(1-u)^{n-i}, \quad i=0, \ldots, n
$$

which are illustrated in Figure 2.1 for $n=4$.
The following properties of the Bernstein polynomials of degree n are important.

- They are linearly independent.

Namely, dividing $\sum_{i=0}^{n} b_{i} u^{i}(1-u)^{n-i}=0$ by $(1-u)^{n}$, and setting $s=$

Figure 2.1: The Bernstein polynomials of degree 4 over $[0,1]$.
$u /(1-u)$, gives $\sum_{i=0}^{n} b_{i} s^{i}=0$, which implies $b_{0}=\ldots=b_{n}=0$.

- They are symmetric,

$$
B_{i}^{n}(u)=B_{n-i}^{n}(1-u)
$$

- They have roots at 0 and 1 only,

$$
B_{i}^{n}(0)=B_{n-i}^{n}(1)=\left\{\begin{array}{lll}
1 & \text { for } & i=0 \\
0 & i>0
\end{array} .\right.
$$

- They form a partition of unity,

$$
\sum_{i=0}^{n} B_{i}^{n}(u)=1, \quad \text { for all } \quad u \in \mathbb{R}
$$

- They are positive in $(0,1)$,

$$
B_{i}^{n}(u)>0, \quad \text { for } \quad u \in(0,1)
$$

- They satisfy the recursion formula

$$
B_{i}^{n+1}(u)=u B_{i-1}^{n}(u)+(1-u) B_{i}^{n}(u)
$$

where $B_{-1}^{n}=B_{n+1}^{n}=0$ and $B_{0}^{0}=1$.
This recursion formula follows directly from the identity

$$
\binom{n+1}{i}=\binom{n}{i-1}+\binom{n}{i}
$$

Remark 1: The computation of the Bernstein polynomials up to degree n can be arranged in a triangular scheme, as shown below, where the recursion is represented by the "key" on the right:

$$
\begin{array}{cccccl}
1=B_{0}^{0} & B_{0}^{1} & B_{0}^{2} & \cdots & B_{0}^{n} & \text { key } \\
& B_{1}^{1} & B_{1}^{2} & \cdots & B_{1}^{n} & * \\
& & B_{2}^{2} & \cdots & B_{2}^{n} & * \xrightarrow[1-u]{u}
\end{array}
$$

2.2 Bézier representation

A dimension count shows that the $n+1$ (linearly independent) Bernstein polynomials B_{i}^{n} form a basis for all polynomials of degree $\leq n$. Hence, every polynomial curve $\mathbf{b}(u)$ of degree $\leq n$ has a unique nth degree Bézier representation

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{c}_{i} B_{i}^{n}(u)
$$

Any affine parameter transformation

$$
u=a(1-t)+b t, \quad a \neq b
$$

leaves the degree of the curve \mathbf{b} unchanged. Consequently, $\mathbf{b}(u(t))$ has also an nth degree Bézier representation,

$$
\mathbf{b}(u(t))=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}(t)
$$

The coefficients \mathbf{b}_{i} are elements of \mathbb{R}^{d} and are called Bézier points. They are the vertices of the Bézier polygon of $\mathbf{b}(u)$ over the interval $[a, b]$. The parameter t is called the local and u the global parameter of \mathbf{b}, see Figure 2.2 .
The properties of Bernstein polynomials summarized in 2.1 are passed on to the Bézier representation of a curve.

- The symmetry of the Bernstein polynomials implies that

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}(t)=\sum_{i=0}^{n} \mathbf{b}_{n-i} B_{i}^{n}(s),
$$

Figure 2.2: A cubic curve segment with its Bézier polygon over $[a, b]$.

$$
\text { where } u=a(1-t)+b t=b(1-s)+a s
$$

These two sums define the Bézier representations of \mathbf{b} over $[a, b]$ and $[b, a]$, respectively. Thus, by using the oriented intervals $[a, b]$ and $[b, a]$, we can distinguish the two different parameter orientations of a polynomial curve.

- For the end points of the curve segment $\mathbf{b}[a, b]$, one has

$$
\mathbf{b}(a)=\mathbf{b}_{0} \quad \text { and } \quad \mathbf{b}(b)=\mathbf{b}_{n}
$$

Since the Bernstein polynomials sum to one,

- any point $\mathbf{b}(u)$ is an affine combination of the Bézier points.

As a consequence,

- the Bézier representation is affinely invariant, i.e., given any affine map Φ, the image curve $\Phi(\mathbf{b})$ has the Bézier points $\Phi\left(\mathbf{b}_{i}\right)$ over $[a, b]$.

Since the Bernstein polynomials are non-negative on $[0,1]$,

- one has for every $u \in[a, b]$ that $\mathbf{b}(u)$ is a convex combination of the \mathbf{b}_{i}. Hence, the curve segment $\mathbf{b}[a, b]$ lies in the convex hull of its Bézier points.

This is illustrated in Figure 2.3.
Remark 2: Using the convex hull property separately for each coordinate function of the curve $\mathbf{b}(u)$, a bounding box is obtained for the curve segment $\mathbf{b}[a, b]$,

$$
\mathbf{b}[a, b] \subset\left[\min _{i=0}^{n} \mathbf{b}_{i}, \max _{i=0}^{n} \mathbf{b}_{i}\right], \quad u \in[a, b]
$$

as illustrated in Figure 2.4 for a planar curve.

Figure 2.3: The convex hull of a Bézier polygon.

Figure 2.4: Bounding box.

2.3 The de Casteljau algorithm

A curve

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{b}_{i}^{0} B_{i}^{n}(t), \quad \text { with } \quad u=a(1-t)+b t,
$$

can be evaluated easily by the so called de Casteljau algorithm [Casteljau '59]. Repeatedly using the recurrence relation of the Bernstein polynomials and collecting terms, one obtains

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{b}_{i}^{0} B_{i}^{n}(t)=\sum_{i=0}^{n-1} \mathbf{b}_{i}^{1} B_{i}^{n-1}(t)=\cdots=\sum_{i=0}^{0} \mathbf{b}_{i}^{n} B_{i}^{0}(t)=\mathbf{b}_{0}^{n},
$$

where

$$
\mathbf{b}_{i}^{k+1}=(1-t) \mathbf{b}_{i}^{k}+t \mathbf{b}_{i+1}^{k} .
$$

Two examples are shown in Figure 2.5, with $t=0.4$ on the left and $t=1.4$ on the right side.
The intermediate points \mathbf{b}_{i}^{k} of the de Casteljau algorithm can be arranged in a triangular array, where each element is computed according to the "key"

Figure 2.5: The de Casteljau construction.
on the right:

$$
\begin{array}{ccccc}
\mathbf{b}_{0}^{0} & & & & \\
\mathbf{b}_{1}^{0} & \mathbf{b}_{0}^{1} & & & \text { key } \\
\mathbf{b}_{2}^{0} & \mathbf{b}_{1}^{1} & \mathbf{b}_{0}^{2} & & * \underbrace{1-t}_{t} \\
\vdots & & & \ddots & * \xrightarrow[t]{*} * \\
\mathbf{b}_{n}^{0} & \mathbf{b}_{n-1}^{1} & \mathbf{b}_{n-2}^{2} & \cdots & \mathbf{b}_{0}^{n}
\end{array}
$$

Remark 3: If t lies in $[0,1]$, then the de Casteljau algorithm consists only of convex combinations, which accounts for the numerical stability of this algorithm.
Remark 4: Horner's scheme is a very effective method to evaluate a polynomial in monomial form. It can also be used for a curve $\mathbf{b}(t)=\sum \mathbf{b}_{i} B_{i}^{n}(t)$ in Bézier form. After writing $\mathbf{b}(t)$ as

$$
\mathbf{b}(t)=(1-t)^{n}\left(\sum_{i=0}^{n} \mathbf{b}_{i}\binom{n}{i}\left(\frac{t}{1-t}\right)^{i}\right)
$$

one first evaluates the sum in parentheses by Horner's scheme for the value $t /(1-t)$ and then multiplies the result by $(1-t)^{n}$.
This method fails, if t is close to 1 . In this, case one can use the relationship

$$
\mathbf{b}(t)=t^{n}\left(\sum_{i=0}^{n} \mathbf{b}_{n-i}\binom{n}{i}\left(\frac{1-t}{t}\right)^{i}\right)
$$

2.4 Derivatives

The derivative of a Bernstein polynomial of degree n is simple to compute. From the definition of the Bernstein polynomials one gets

$$
\frac{d}{d t} B_{i}^{n}(t)=n\left(B_{i-1}^{n-1}(t)-B_{i}^{n-1}(t)\right) \quad \text { for } \quad i=0, \ldots, n
$$

where $B_{-1}^{n-1}=B_{n}^{n-1}=0$ as before. Thus, given a curve

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}(t), \quad t=\frac{u-a}{b-a}
$$

one obtains for its derivative $\mathbf{b}^{\prime}(u)$

$$
\frac{d}{d u} \mathbf{b}(u)=\frac{n}{b-a} \sum_{i=0}^{n-1} \Delta \mathbf{b}_{i} B_{i}^{n-1}(t)
$$

where $\Delta \mathbf{b}_{i}=\mathbf{b}_{i+1}-\mathbf{b}_{i}$ This is illustrated in Figure 2.6.

Figure 2.6: Bézier curve and its hodograph (1:3).

If the column $\mathbf{b}(u)$ is viewed as a point, then $\mathbf{b}^{\prime}(u)$ is a vector. One obtains a point again if $\mathbf{b}^{\prime}(u)$ is added to a point. In particular, $\mathbf{o}+\mathbf{b}^{\prime}(u)$ is called the (first) hodograph of \mathbf{b}.
Applying the derivative formula above repeatedly, one obtains any r th derivative of \mathbf{b},

$$
\mathbf{b}^{(r)}(u)=\frac{n!}{(n-r)!(b-a)^{r}} \sum_{i=0}^{n-r} \Delta^{r} \mathbf{b}_{i} B_{i}^{n-r}(t)
$$

where $\Delta^{r} \mathbf{b}_{i}=\Delta^{r-1} \mathbf{b}_{i+1}-\Delta^{r-1} \mathbf{b}_{i}$ denotes the $\boldsymbol{r} \mathbf{t h}$ forward difference of \mathbf{b}_{i}. As above one obtains the second and further hodographs.
Using the derivative formulas and the endpoint interpolation property of Bézier curves, we obtain a result that was fundamental for Bézier's first
development.
The derivatives of \mathbf{b} at $t=0($ or $t=1)$ up to order r depend only on the first (or last) $r+1$ Bézier points, and vice versa.

Geometrically, this means that, in general, the tangents of \mathbf{b} at $t=0$ and 1 are spanned by $\mathbf{b}_{0}, \mathbf{b}_{1}$ and $\mathbf{b}_{n-1}, \mathbf{b}_{n}$, respectively, and that the osculating planes of \mathbf{b} at $t=0$ and 1 are spanned by $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}$ and $\mathbf{b}_{n-2}, \mathbf{b}_{n-1}, \mathbf{b}_{n}$, respectively, and so forth. Figure 2.7 gives an illustration.

Figure 2.7: Tangents and osculating planes.
Remark 5: Viewing the Bézier polygon of a curve $\mathbf{b}(u)=\sum \mathbf{b}_{i} B_{i}^{n}(t)$, where $u=(1-t) a+t b$, as a piecewise linear function $\mathbf{p}(u)$ over $[a, b]$, one gets that
the derivative $\mathbf{p}^{\prime}(u)$ of the Bézier polygon consists of the Bézier points of $\mathbf{b}^{\prime}(u)$.

This is illustrated in Figure 2.8 for a functional curve.

Figure 2.8: The derivative of a Bézier polygon.

2.5 Singular parametrization

Consider a polynomial curve

$$
\mathbf{b}(t)=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}(t)
$$

and its derivative

$$
\dot{\mathbf{b}}(t)=n \sum_{i=0}^{n-1} \triangle \mathbf{b}_{i} B_{i}^{n-1}(t)
$$

where the dot indicates differentiation with respect to the parameter t.
If $\triangle \mathbf{b}_{0}=\mathbf{o}$, then $\dot{\mathbf{b}}(t)$ is zero at $t=0$. However, with the singular reparametrization $t=\sqrt{s}$, one gets

$$
\frac{d}{d s} \mathbf{b}(t(0))=n \cdot \triangle \mathbf{b}_{1}
$$

Thus, if $\triangle \mathbf{b}_{0}=\mathbf{o}$ and $\triangle \mathbf{b}_{1} \neq \mathbf{o}$, then the curve $\mathbf{b}(t)$ has a tangent at $t=0$ that is directed towards \mathbf{b}_{2}, as illustrated in Figure 2.9.

Figure 2.9: Singular parametrization.
Remark 6: If $\triangle \mathbf{b}_{0}=\triangle \mathbf{b}_{1}=\mathbf{o}$ and $\triangle \mathbf{b}_{2} \neq \mathbf{o}$, then the tangent of $\mathbf{b}(t)$ at $t=0$ is directed towards \mathbf{b}_{2}, etc.

2.6 A tetrahedral algorithm

Computing differences and the affine combinations of de Casteljau's algorithm can be combined. Namely, the r th derivative of a curve

$$
\mathbf{b}(u)=\sum \mathbf{b}_{i}^{0} B_{i}^{n}(t), \quad t=\frac{u-a}{b-a}
$$

at any u can be computed with de Casteljau's algorithm applied to multiples of the differences $\Delta^{k} \mathbf{b}_{i}$. Since the computation of affine combinations of affine combinations is commutative, i.e.,

$$
\sum \alpha_{i} \sum \beta_{j} \mathbf{p}_{i j}=\sum \beta_{j} \sum \alpha_{i} \mathbf{p}_{i j}
$$

the forward difference operator Δ commutes with the steps of de Casteljau's algorithm.
Hence, one can compute the r th derivative also by first computing $n-r$ steps of de Casteljau's algorithm, then r differencing steps and, finally, a multiplication by the factor $n \cdots(n-r+1) /(b-a)^{r}$. Thus, it follows

$$
\mathbf{b}^{(r)}(u)=\frac{n \cdots(n-r+1)}{(b-a)^{r}} \quad \Delta^{r} \mathbf{b}_{0}^{n-r}
$$

In particular, this formula says that the tangent and osculating plane of \mathbf{b} at u are spanned by $\mathbf{b}_{0}^{n-1}, \mathbf{b}_{1}^{n-1}$ and $\mathbf{b}_{0}^{n-2}, \mathbf{b}_{1}^{n-2}, \mathbf{b}_{2}^{n-2}$, respectively, as illustrated in Figure 2.10 for a cubic.

Figure 2.10: Osculating plane and tangent and the de Casteljau scheme.
Computing the points $\Delta^{r} \mathbf{b}_{0}^{n-k}$ for all k by successive de Casteljau and differencing steps, one also gets the intermediate points $\Delta^{k} \mathbf{b}_{i}^{j}, i+j+k \leq n$. All these points can be arranged conveniently in a tetrahedral array, as illustrated in Figure 2.11 for $n=2$, where the key represents the recursion

$$
\mathbf{c}=\mathbf{a}(1-t)+\mathbf{b} t \quad \text { and } \quad \mathbf{d}=\mathbf{b}-\mathbf{a}
$$

This is not the only possible way to compute the tetrahedral array. Eliminating \mathbf{a} or \mathbf{b}, one obtains

$$
\mathbf{c}=\mathbf{b}+\mathbf{d}(t-1) \quad \text { and } \quad \mathbf{c}=\mathbf{a}+\mathbf{d} t
$$

respectively.

Figure 2.11: Tetrahedral algorithm.

When we use one of these rules, instead of the differencing step, it suffices to compute only the points of the two triangular schemes given by the points on the left and bottom (or right) side of the tetrahedron.

Remark 7: It should be noted that differencing is not a numerically stable process, in general. Consequently, computing derivatives is not a numerically stable process either.

2.7 Integration

The integral of a polynomial curve in Bézier representation

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}(t), \quad t=\frac{u-a}{b-a}
$$

has the Bézier representation

$$
\mathbf{c}(u)=\int \mathbf{b}(u) d u=\sum_{i=0}^{n+1} \mathbf{c}_{i} B_{i}^{n+1}(t)
$$

where

$$
\begin{aligned}
\mathbf{c}_{i} & =\mathbf{c}_{i-1}+\frac{b-a}{n+1} \mathbf{b}_{i-1} \\
& =\mathbf{c}_{0}+\frac{b-a}{n+1}\left(\mathbf{b}_{0}+\cdots+\mathbf{b}_{i-1}\right), \quad i=n+1, \ldots, 1
\end{aligned}
$$

and \mathbf{c}_{0} is an arbitrary integration constant. This is verified by differentiating $\mathbf{c}(u)$.
As a consequence of the integration formula and the endpoint interpolation property of the Bézier representation, one obtains

$$
\int_{a}^{b} \mathbf{b}(u) d u=\frac{b-a}{n+1}\left(\mathbf{b}_{0}+\cdots+\mathbf{b}_{n}\right)
$$

and, in particular, independently of i,

$$
\int_{0}^{1} B_{i}^{n}(t) d t=\frac{1}{n+1}
$$

2.8 Conversion to Bézier representation

Some older CAD data formats represent curves by monomials. Thus, data conversion between different CAD systems is an application where it is necessary to convert the monomial to the Bézier representation and vice versa. Let

$$
\mathbf{b}(t)=\sum_{i=0}^{n} \mathbf{a}_{i}\binom{n}{i} t^{i}
$$

be a curve in monomial form with binomial factors as in the Bézier representation. Since

$$
\begin{aligned}
\binom{n}{i} t^{i}(1-t+t)^{n-i} & =\sum_{k=0}^{n-i}\binom{n}{i}\binom{n-i}{n-i-k} t^{i+k}(1-t)^{n-i-k} \\
& =\sum_{k=0}^{n-i}\binom{i+k}{i} B_{i+k}^{n} \\
& =\sum_{j=0}^{n}\binom{j}{i} B_{j}^{n}
\end{aligned}
$$

one obtains the conversion formula

$$
\mathbf{b}(t)=\sum_{j=0}^{n} \mathbf{b}_{j} B_{j}^{n}(t)
$$

where

$$
\mathbf{b}_{j}=\sum_{i=0}^{n}\binom{j}{i} \mathbf{a}_{i}
$$

and $\binom{j}{i}=0$ for $j<i$.

The formula for the conversion to monomial form can be derived similarly by multiplying out the Bernstein polynomials, see Problem 4. In Section 2.9, we present a different derivation of it.

Remark 8: If $\mathbf{a}_{2}=\cdots=\mathbf{a}_{n}=\mathbf{o}$ and $\mathbf{a}_{1} \neq \mathbf{o}$, then $\mathbf{b}(\mathrm{t})$ is a linear polynomial represented over $[0,1]$ by the Bézier points

$$
\mathbf{b}_{j}=\mathbf{a}_{0}+j \mathbf{a}_{1}
$$

as illustrated in Figure 2.12.

Figure 2.12: Equidistant Bézier points on a line.
Remark 9: Conversely, if the $n+1$ Bézier points \mathbf{b}_{i} lie equidistantly on a line, then $\mathbf{b}(\mathrm{t})$ is a linear polynomial, which can be written as

$$
\mathbf{b}(t)=(1-t) \mathbf{b}_{0}+t \mathbf{b}_{n} .
$$

This property is referred to as the linear precision of the Bézier representation.

Remark 10: As a consequence of Remark 9, the functional curve

$$
\mathbf{b}(t)=\left[\begin{array}{c}
t \\
b(t)
\end{array}\right], \quad b(t)=\sum b_{i} B_{i}^{n}(t)
$$

has the Bézier points $\left[i / n b_{i}\right]^{t}$, as illustrated in Figure 2.13. The coefficients b_{i} are referred to as the Bézier ordinates of $b(t)$, and i / n as the Bézier abscissae.

Figure 2.13: Bézier representation of a functional curve.

2.9 Conversion to monomial form

Given a polynomial curve in Bézier representation,

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}\left(\frac{u-a}{b-a}\right)
$$

one can obtain its monomial form simply by a Taylor expansion,

$$
\begin{aligned}
\mathbf{b}(u) & =\sum_{i=0}^{n} \mathbf{b}^{(i)}(a) \frac{(u-a)^{i}}{i!} \\
& =\sum_{i=0}^{n}\binom{n}{i} \Delta^{i} \mathbf{b}_{0} \frac{(u-a)^{i}}{(b-a)^{i}}
\end{aligned}
$$

Since $\Delta^{i} \mathbf{b}_{0}=\sum_{k=0}^{i}\binom{i}{k}(-1)^{i-k} \mathbf{b}_{k}$, see Problem 3, one can write this explicitly as

$$
\mathbf{b}(u)=\sum_{i=0}^{n} \sum_{k=0}^{i}(-1)^{i-k}\binom{n}{i}\binom{i}{k} \mathbf{b}_{k} t^{i}
$$

Remark 11: Using the tetrahedral algorithm in 2.6, one can compute the Taylor expansion at u,

$$
\mathbf{b}(u+h)=\sum_{i=0}^{n} \frac{1}{(b-a)^{i}} \Delta^{i} \mathbf{b}_{0}^{n-i}\binom{n}{i} h^{i}
$$

2.10 Problems

1 Show that the Bernstein polynomial $B_{i}^{n}(t)$ has only one maximum in $[0,1]$, namely at $t=i / n$.

2 The Bernstein operator \mathcal{B} assigns to a function f on $[0,1]$ the polynomial

$$
\mathcal{B}[f]=\sum_{i=0}^{n} f(i / n) B_{i}^{n}(t)
$$

If f is a polynomial of degree $m \leq n$, then $\mathcal{B}[f]$ is also a polynomial of degree m, see also Problem 2 in 3.13. Show that this is true.

3 Show that

$$
\Delta^{i} \mathbf{b}_{0}=\sum_{k=0}^{i}\binom{i}{k}(-1)^{i-k} \mathbf{b}_{k}
$$

4 Derive the conversion formula in 2.9 to monomial form by elementary algebraic manipulations similar to what is done in 2.8 .

5 Show that

$$
n \ldots(n-k) t^{k+1}=\sum_{i=0}^{n} i \ldots(i-k) B_{i}^{n}(t)
$$

6 Show that a planar cubic $\mathbf{b}(t)$ has a cusp at $t=0$, i.e., a point where it changes its direction, if $\dot{\mathbf{b}}(0)=\mathbf{o}$ and both coordinates of $\ddot{\mathbf{b}}(0)$ are non-zero. (The dots indicate differentiation with respect to t.)

7 Show that a planar cubic $\mathbf{b}(t)=\sum_{i=0}^{3} \mathbf{b}_{i} B_{i}^{3}(t)$ has a cusp if \mathbf{b}_{3} lies on the parabola $\mathbf{p}(t)=\left(\mathbf{b}_{0}+\mathbf{b}_{1}-\mathbf{b}_{2}\right) B_{0}^{2}(t)+\mathbf{b}_{1} B_{1}^{2}(t)+\mathbf{b}_{2} B_{2}^{2}(t)$ [Pottmann \& DeRose '91].

8 For which choices of \mathbf{b}_{3} does the cubic $\mathbf{b}(t)$ have a loop?
9 Let $\sum_{i=0}^{n} \mathbf{a}_{i}\binom{n}{i} t^{i}=\sum_{i=0}^{n} \mathbf{b}_{i} B_{i}^{n}(t)$. Then, in matrix notation, one obtains

$$
\left[\mathbf{a}_{0} \ldots \mathbf{a}_{n}\right]=\left[\begin{array}{lll}
\mathbf{b}_{0} & \ldots & \mathbf{b}_{n}
\end{array}\right] \Delta
$$

where $\Delta=\left[(-1)^{j-i}\binom{j}{i}\right]$ and $\Delta^{-1}=\left[\binom{i}{j}\right]$. The matrices Δ and Δ^{-1} are upper-triangular matrices.

5 B-spline representation

Abstract

5.1 Splines - 5.2 B-splines - 5.3 A recursive definition of B-splines - 5.4 The de Boor algorithm - 5.5 The main theorem - 5.6 Derivatives - 5.7 B-spline properties - 5.8 Conversion to B-spline form - 5.9 The complete de Boor algorithm - 5.10 Conversions between Bézier and B-spline representations 5.11 B-splines as divided differences - 5.12 Problems

Splines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear C^{0} spline, i.e., a polygonal curve. Other examples are the piecewise cubic C^{1} splines, as constructed in 4.5 .

The name spline is derived from elastic beams, so-called splines, used by draftsmen to lay out broad sweeping curves in ship design. Held in place by a number of heavy weights, these physical splines assume a shape that minimizes the strain energy. This property is approximately shared by the mathematical cubic C^{2} splines.

5.1 Splines

A curve $\mathbf{s}(u)$ is called a spline of degree n with the knots a_{0}, \ldots, a_{m}, where $a_{i} \leq a_{i+1}$ and $a_{i}<a_{i+n+1}$ for all possible i, if
$\mathbf{s}(u)$ is $n-r$ times differentiable at any r-fold knot ${ }^{1}$, and $\mathbf{s}(u)$ is a polynomial of degree $\leq n$ over each knot interval $\left[a_{i}, a_{i+1}\right]$, for $i=0, \ldots, m-1$.

It is also common to refer to a spline of degree n as a spline of order $n+1$. Figures 5.1 and 5.2 show examples of splines with simple knots obtained by

[^0]Stärk's construction, see Figures 3.8 and 3.9. The inner and end Bézier points are marked by hollow and solid dots, respectively.

Figure 5.1: Spline functions of degree 1, 2 and 3.

5.2 B-splines

As with the Bézier representation of polynomial curves, it is desirable to write a spline $\mathbf{s}(u)$ as an affine combination of some control points \mathbf{c}_{i}, namely

$$
\mathbf{s}(u)=\sum \mathbf{c}_{i} N_{i}^{n}(u)
$$

where the $N_{i}^{n}(u)$ are basis spline functions with minimal support and certain continuity properties. Schoenberg introduced the name B-splines for these functions [Schoenberg '67]. Their Bézier polygons can be constructed by Stärk's theorem.

Figure 5.3 shows a piecewise cubic $C^{2} \mathrm{~B}$-spline. Stärk's theorem is only needed for the Bézier ordinates, while the abscissae are given by Remark 8 in 2.3.

Figure 5.2: Parametric splines of degree 1, 2, and 3.

For higher degree this construction, albeit possible, becomes much less obvious and more complicated, see [Prautzsch '89]. Therefore, we use a recurrence relation, which was found independently by de Boor and Mansfield [de Boor '72] in 1970 and Cox [Cox '72] in 1971. We define B-splines from that relation and derive all important properties from that relation.

5.3 A recursive definition of B-splines

To define B-splines, let $\left(a_{i}\right)$ be a, for simplicity, biinfinite and strictly increasing sequence of knots, which means $a_{i}<a_{i+1}$, for all i. We define the B-splines N_{i}^{n} with these knots by the recursion formula

$$
N_{i}^{0}(u)= \begin{cases}1 & \text { if } u \in\left[a_{i}, a_{i+1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
N_{i}^{n}(u)=\alpha_{i}^{n-1} N_{i}^{n-1}(u)+\left(1-\alpha_{i+1}^{n-1}\right) N_{i+1}^{n-1}(u),
$$

Figure 5.3: Bézier points of the B-spline $N_{0}^{3}(u)$.
where

$$
\alpha_{i}^{n-1}=\left(u-a_{i}\right) /\left(a_{i+n}-a_{i}\right)
$$

is the local parameter with respect to the support of N_{i}^{n-1}. Figure 5.4 shows B-splines of degree 0,1 and 2 .

Figure 5.4: B-splines of degree 0,1 and 2.
In case of multiple knots, the B-splines $N_{i}^{n}(u)$ are defined by the same recursion formula and the convention

$$
N_{i}^{r-1}=N_{i}^{r-1} /\left(a_{i+r}-a_{i}\right)=0 \quad \text { if } \quad a_{i}=a_{i+r}
$$

Figure 5.5 shows B-splines with multiple knots.
From the definition above, the following properties of B-splines are evident.

- $N_{i}^{n}(u)$ is piecewise polynomial of degree n,
- $N_{i}^{n}(u)$ is positive in $\left(a_{i}, a_{i+n+1}\right)$,
- $N_{i}^{n}(u)$ is zero outside of $\left[a_{i}, a_{i+n+1}\right]$,

Figure 5.5: Some B-splines with multiple knots.

- $N_{i}^{n}(u)$ is right side continuous.

In Sections 5.5 and 5.6 , we will see that the B-splines are $n-r$ times differentiable at r-fold knots, and that every spline is a unique combination of B-splines.

Remark 1: If, in particular, $a_{1}=\ldots=a_{n}=0$ and $a_{n+1}=\ldots=a_{2 n}=1$, then the above recursion formula for $N_{0}^{n}, \ldots, N_{n}^{n}$ and $u \in[0,1)$ coincides with the recursion formula of the Bernstein polynomials. Hence, we have

$$
N_{i}^{n}(u)=B_{i}^{n}(u) \quad \text { for } \quad i=0, \ldots, n \quad \text { and } \quad u \in[0,1) .
$$

5.4 The de Boor algorithm

Consider a linear combination

$$
\mathbf{s}(u)=\sum_{i} \mathbf{c}_{i}^{0} N_{i}^{n}(u)
$$

of the nth degree B-splines over some knot sequence $\left(a_{i}\right)$. Since any finite sum can be converted to a formally biinfinite sum by adjunction of zero terms, we assume, without loss of generality, that the knot sequence and, hence, the sum above are biinfinite. Since the $N_{i}^{n}(u)$ have local supports, this sum is actually finite for any given u. In particular, let $u \in\left[a_{n}, a_{n+1}\right)$, then $\mathbf{s}(u)$ can be written as

$$
\mathbf{s}(u)=\sum_{i=0}^{n} \mathbf{c}_{i}^{0} N_{i}^{n}(u) .
$$

Using the B-spline recursion repeatedly and collecting terms, one obtains

$$
\begin{aligned}
\mathbf{s}(u) & =\sum_{i=1}^{n} \mathbf{c}_{i}^{1} N_{i}^{n-1}(u) \\
& \vdots \\
& =\sum_{i=n}^{n} \mathbf{c}_{i}^{n} N_{i}^{0}(u)=\mathbf{c}_{n}^{n},
\end{aligned}
$$

where the \mathbf{c}_{i}^{r} are given by the affine combinations

$$
\mathbf{c}_{i}^{r}=(1-\alpha) \mathbf{c}_{i-1}^{r-1}+\alpha \mathbf{c}_{i}^{r-1}, \quad \alpha=\alpha_{i}^{n-r}=\frac{u-a_{i}}{a_{i+n+1-r}-a_{i}}
$$

Note that $\alpha \in[0,1]$ since $u \in\left[a_{n}, a_{n+1}\right)$, i.e., the affine combinations are actually convex.
This algorithm was developed by de Boor in 1972 [de Boor '72]. The points \mathbf{c}_{i}^{r} are conveniently arranged in a triangular array, as illustrated below, where the recursion formula is represented by the key on the right,

An important consequence of de Boor's algorithm is that the spline $\mathbf{s}(u)$ over each knot interval is an affine and actually convex combination of $n+1$ consecutive coefficients \mathbf{c}_{i}. Hence, if the \mathbf{c}_{i} represent points of some affine space, then $\mathbf{s}(u)$ is also a point. For this reason, we refer to the \mathbf{c}_{i} as the control points of $\mathbf{s}(u)$.

Further, the spline lies in the affine hull of its control points, which implies that

$$
\sum_{i=0}^{n} 1 \cdot N_{i}^{n}(u)=1 \quad \text { for } \quad u \in\left[a_{n}, a_{n+1}\right)
$$

i.e., the B-splines form a partition of unity. Figure 5.6 illustrates the geometric interpretation of de Boor's algorithm, which was first given in [Gordon \& Riesenfeld '74].
Remark 2: For arbitrary $u \in \mathbb{R}$, de Boor's algorithm applied, as described above, to $\mathbf{c}_{0}^{0}, \ldots, \mathbf{c}_{n}^{0}$ does not compute $\mathbf{s}(u)$ in general, but the polynomial $\mathbf{s}_{n}(u)$ that agrees with $\mathbf{s}(u)$ over $\left[a_{n}, a_{n+1}\right)$.

Figure 5.6: The convex combinations of de Boor's algorithm for $n=3$.

5.5 The main theorem in its general form

Symmetric polynomials will help to see de Boor's algorithm in a wider context. As before, let

$$
\mathbf{s}(u)=\sum_{i} \mathbf{c}_{i} N_{i}^{n}(u)
$$

be an nth degree spline with knots a_{i}, and let $\mathbf{s}_{i}\left[u_{1} \ldots u_{n}\right]$ be the polar form that agrees on its diagonal with $\mathbf{s}(u)$ over $\left[a_{i}, a_{i+1}\right)$. Then we have the following general form of the main theorem 3.2.

As illustrated in Figure 5.7, the control points of \mathbf{s} are given by

$$
\mathbf{c}_{i}=\mathbf{s}_{j}\left[a_{i+1} \ldots a_{i+n}\right], \quad i=j-n, \ldots, j
$$

For a proof, let

$$
\mathbf{p}_{i}^{r}=\mathbf{s}_{j}\left[a_{i+1} \ldots a_{i+n-r} u . \stackrel{r}{.} u\right]
$$

and

$$
u=(1-\alpha) a_{i}+\alpha a_{i+n-r+1}
$$

Figure 5.7: The main theorem for a cubic spline.

Then, since \mathbf{s}_{j} is multiaffine and symmetric, it follows that

$$
\mathbf{p}_{i}^{r}=(1-\alpha) \mathbf{p}_{i-1}^{r-1}+\alpha \mathbf{p}_{i}^{r-1}, \quad \alpha=\alpha_{i}^{n-r}=\frac{u-a_{i}}{a_{i+n-r+1}-a_{i}}
$$

and, in particular,

$$
\mathbf{p}_{i}^{0}=\mathbf{s}_{j}\left[a_{i+1} \ldots a_{i+n}\right] \quad \text { and } \quad \mathbf{p}_{j}^{n}=\mathbf{s}_{j}(u)
$$

For $u \in\left[a_{j}, a_{j+1}\right)$, this construction agrees with de Boor's algorithm and can be used to compute any polynomial $\mathbf{s}_{j}[u \ldots u]$ of degree n. Hence, every polynomial of degree n can be written over $\left[a_{j}, a_{j+1}\right)$ as a linear combination of the B-splines $N_{j-n}^{n}(u), \ldots, N_{j}^{n}(u)$. A dimension count shows that this linear combination is unique whence the assertion follows.
Remark 3: In the proof, we showed that, over $\left[a_{n}, a_{n+1}\right]$, the B-splines $N_{0}^{n}(u), \ldots, N_{n}^{n}(u)$ form a basis for the space of all polynomial up to degree n. This result is due to [Curry \& Schoenberg '66].

Remark 4: The spline "segment" \mathbf{s}_{i} determines the control points $\mathbf{c}_{i-n}, \ldots, \mathbf{c}_{i}$. Conversely, every point \mathbf{c}_{j} is determined by any "segment" $\mathbf{s}_{j}, \ldots, \mathbf{s}_{j+n}$, i.e.,

$$
\mathbf{c}_{i}=\mathbf{s}_{i}\left[a_{i+1} \ldots a_{i+n}\right]=\cdots=\mathbf{s}_{i+n}\left[a_{i+1} \ldots a_{i+n}\right]
$$

Remark 5: The proof above shows that the symmetric polynomial $\mathbf{s}_{n}\left[u_{1} \ldots u_{n}\right]$ can be computed by a generalization of de Boor's algorithm. All one has to do, is to replace $\alpha=\alpha(u)$ in the recursion formula by

$$
\alpha\left(u_{r}\right)=\frac{u_{r}-a_{i}}{a_{i+n-r+1}-a_{i}} .
$$

If m of the n variables u_{1}, \ldots, u_{n} are knots, then only $n-m$ recursion steps are needed to compute $\mathbf{s}_{j}\left[u_{1} \ldots u_{n}\right]$. The computation can be arranged in a triangular array consisting of $1+2+\cdots+(n-m+1)$ points.

5.6 Derivatives and smoothness

Because of the basis property of B-splines, see Remark 3, the derivative of the polynomial spline segment \mathbf{s}_{n} can be written as

$$
\mathbf{s}_{n}^{\prime}(u)=\sum_{i=1}^{n} \mathbf{d}_{i} N_{i}^{n-1}(u), \quad u \in\left[a_{n}, a_{n+1}\right)
$$

where the unknown vectors \mathbf{d}_{i} can easily be expressed in terms of the \mathbf{c}_{i}. Let $\mathbf{s}_{n}^{\prime}\left[u_{2} \ldots u_{n}\right]$ be the symmetric polynomial of $\mathbf{s}_{n}^{\prime}(u)$, and let the direction $\Delta=a_{i+n}-a_{i}$ be given by the support of the B-spline $N_{i}^{n-1}(u)$. Then, it follows from the main theorem and 3.9 that

$$
\begin{aligned}
\mathbf{d}_{i} & =\mathbf{s}_{n}^{\prime}\left[a_{i+1} \ldots a_{i+n-1}\right] \\
& =\frac{n}{\Delta} \mathbf{s}_{n}\left[\Delta a_{i+1} \ldots a_{i+n-1}\right] \\
& =\frac{n}{a_{i+n}-a_{i}}\left(\mathbf{c}_{i}-\mathbf{c}_{i-1}\right) .
\end{aligned}
$$

Since the \mathbf{d}_{i} do not depend on the knot interval $\left[a_{n}, a_{n+1}\right)$, the derivative of the spline \mathbf{s} can be written for all $u \in \mathbb{R}$ as

$$
\begin{equation*}
\mathbf{s}^{\prime}(u)=\sum_{i} \frac{n}{a_{i+n}-a_{i}} \nabla \mathbf{c}_{i} N_{i}^{n-1}(u) \tag{1}
\end{equation*}
$$

where $\nabla \mathbf{c}_{i}=\mathbf{c}_{i}-\mathbf{c}_{i-1}$ denotes the first backward difference.
One can differentiate further so as to obtain the B-spline representation of higher derivatives. This is also useful in showing that the B-splines have the desired smoothness properties:
An nth degree spline \mathbf{s} is continuous at any n-fold knot. Namely if $a_{0}<a_{1}=$ $\cdots=a_{n}<a_{n+1}$, then it follows from Remark 4 in 5.5 that

$$
\begin{aligned}
\mathbf{s}_{0}\left(a_{1}\right) & =\mathbf{s}_{0}\left[a_{1} \ldots a_{n}\right]=\mathbf{c}_{0} \\
& =\mathbf{s}_{n}\left[a_{1} \ldots a_{n}\right] \\
& =\mathbf{s}_{n}\left(a_{n}\right) .
\end{aligned}
$$

Thus, if a_{i} is an r-fold knot, then the $(n-r)$ th derivative of \mathbf{s} is continuous at a_{i}. In other words,
a B-spline satisfies the smoothness criteria of a spline given in 5.1.

5.7 B-spline properties

We summarize the basic properties of B-splines.

- The B-splines of degree n with a given knot sequence that do not vanish over some knot interval are linearly independent over this interval.
- A dimension count shows that the B-splines $N_{0}^{n}, \ldots, N_{m}^{n}$ with the knots a_{0}, \ldots, a_{m+n+1} form a basis for all splines of degree n with support $\left[a_{0}, a_{m+n+1}\right]$ and the same knots.
- Similarly, the B-splines $N_{0}^{n}, \ldots, N_{m}^{n}$ over the knots a_{0}, \ldots, a_{m+n+1} restricted to the interval $\left[a_{n}, a_{m+1}\right)$ form a basis for all splines of degree n restricted to the same interval.
- The B-splines of degree n form a partition of unity, i.e.,

$$
\sum_{i=0}^{m} N_{i}^{n}(u)=1, \quad \text { for } \quad u \in\left[a_{n}, a_{m+1}\right) .
$$

- A spline $\mathbf{s}\left[a_{n}, a_{m+1}\right]$ of degree n with n-fold end knots,

$$
\left(a_{0}=\right) a_{1}=\ldots=a_{n} \quad \text { and } \quad a_{m+1}=\ldots=a_{m+n}\left(=a_{m+n+1}\right)
$$

has the same end points and end tangents as its control polygon.

- The end knots a_{0} and a_{m+n+1} have no influence on N_{0}^{n} and N_{m}^{n} over the interval $\left[a_{n}, a_{m+1}\right]$.
- The B-splines are positive over the interior of their support,

$$
N_{i}^{n}(u)>0 \quad \text { for } \quad u \in\left(a_{i}, a_{i+n+1}\right) .
$$

- The B-splines have compact support,

$$
\operatorname{supp} N_{i}^{n}=\left[a_{i}, a_{i+n+1}\right] .
$$

- The B-splines satisfy the de Boor, Mansfield, Cox recursion formula

$$
N_{i}^{n}(u)=\alpha_{i}^{n-1} N_{i}^{n-1}(u)+\left(1-\alpha_{i+1}^{n-1}\right) N_{i+1}^{n-1}(u)
$$

where $\alpha_{i}^{n-1}=\left(u-a_{i}\right) /\left(a_{i+n}-a_{i}\right)$ represents the local parameter over the support of N_{i}^{n-1}.

- The derivative of a single B-spline is given by

$$
\frac{d}{d u} N_{i}^{n}(u)=\frac{n}{u_{i+n}-u_{i}} N_{i}^{n-1}(u)-\frac{n}{u_{i+n+1}-u_{i+1}} N_{i+1}^{n-1}(u) .
$$

- The B-spline representation of a spline curve is invariant under affine maps.
- Any segment $\mathbf{s}_{j}\left[a_{j}, a_{j+1}\right)$ of an nth degree spline lies in the convex hull of its $n+1$ control points $\mathbf{c}_{j-n}, \ldots, \mathbf{c}_{j}$.
- A degree elevation formula is given in 6.5.

5.8 Conversion to B-spline form

Since any polynomial of degree n can be viewed as a spline of degree n or higher with an arbitrary sequence of knots, one can express the monomials as linear combinations of B-splines over any knot sequence $\left(a_{i}\right)$. To do so, recall from 3.1 that the monomials $A_{j}^{n}(u)=\binom{n}{j} u^{j}$ have the polar forms

$$
A_{j}^{n}\left[u_{1} \ldots u_{n}\right]=\sum_{i<\ldots<k} u_{i} \stackrel{j}{.} u_{k}
$$

Thus, it follows from the main theorem 5.5 that

$$
A_{j}^{n}(u)=\sum_{i} \alpha_{j i} N_{i}^{n}(u)
$$

where $\alpha_{j i}=A_{j}^{n}\left[a_{i+1} \ldots a_{i+n}\right]$, and, consequently,

$$
\begin{aligned}
\mathbf{a}(u) & =\mathbf{a}_{0} A_{0}^{n}(u)+\cdots+\mathbf{a}_{n} A_{n}^{n}(u) \\
& =\sum_{i}\left(\mathbf{a}_{0} \alpha_{0 i}+\cdots \mathbf{a}_{n} \alpha_{n i}\right) N_{i}^{n}(u)
\end{aligned}
$$

which generalizes Marsden's identity given in Problem 4 below. In particular, one obtains

$$
\begin{aligned}
u & =\frac{1}{n} A_{1}^{n}(u) \\
& =\sum_{i} \gamma_{i} N_{i}^{n}(u)
\end{aligned}
$$

where $\gamma_{i}=\alpha_{1 i} / n=\left(a_{i+1}+\cdots+a_{i+n}\right) / n$. The γ_{i} are the so-called Greville abscissae [Greville '67].
Remark 6: The Greville abscissae show up naturally in the control points of the graph of a spline function

$$
s(u)=\sum_{i} c_{i} N_{i}^{n}
$$

Namely, the graph $\mathbf{s}(u)=[u s(u)]^{t}$ has the control points $\mathbf{c}_{i}=\left[\gamma_{i} c_{i}\right]^{t}$. Fig-
ure 5.8 shows the example $s(u)=N_{2}^{3}(u)$. Other examples are shown in Figure 5.1.

Figure 5.8: Control points of the cubic B-spline $N_{2}^{3}(u)$.

5.9 The complete de Boor algorithm

The Taylor expansion of a polynomial spline segment

$$
\mathbf{s}_{n}(u)=\sum_{i=0}^{n} \mathbf{c}_{i} N_{i}^{n}(u), \quad u \in\left[a_{n}, a_{n+1}\right)
$$

can be computed at any $u \in \mathbb{R}$ following the ideas presented in 2.6 for Bézier curves.
Let $\mathbf{s}_{n}\left[u_{1} \ldots u_{n}\right]$ be the polar form of \mathbf{s}_{n} and consider the points and vectors

$$
\mathbf{c}_{r, i, k}=\mathbf{s}_{n}\left[\varepsilon . \stackrel{r}{.} \varepsilon a_{i} \ldots a_{i+n-r-k} u . \underline{.} . u\right]
$$

where ε denotes the direction $1-0$, for $i=r+k, \ldots, n$. It follows that

$$
\frac{d^{r}}{d u^{r}} \mathbf{s}_{n}(u)=\frac{n!}{(n-r)!} \mathbf{c}_{r, n, n-r}
$$

and the Taylor expansion is given by

$$
\mathbf{s}_{n}(u+h)=\sum_{r=0}^{n} \mathbf{c}_{r, n, n-r}\binom{n}{r} h^{r}
$$

The points and vectors $\mathbf{c}_{r i k}$ can again be arranged conveniently in a tetrahedral array, see Figure 5.9, where $n=2$ and $\varepsilon 4$ stands for $\mathbf{s}_{n}\left[\varepsilon a_{4}\right]$, etc.
This array, first considered by Sablonniere in 1978 [Sablonniere '78], is com-

Figure 5.9: The complete de Boor algorithm.
posed of $\binom{n+2}{3}$ subtetrahedra and contains the given control points $\mathbf{c}_{i}=\mathbf{c}_{0, i, 0}$ on the "left" edge and the multiples

$$
\frac{(n-r)!}{n!} \mathbf{s}_{n}^{(r)}(u)
$$

of the derivatives on the opposite edge.
Any two of the four points of a subtetrahedron can be computed from the two other points. The computation rules follow directly from the properties of multiaffine symmetric polynomials. For example, one has

$$
\mathbf{c}_{r+1, i, k}=\frac{1}{a_{i+n-r-k}-a_{i}}\left(\mathbf{c}_{r, i, k}-\mathbf{c}_{r, i-1, k}\right)
$$

on the "left" face,

$$
\mathbf{c}_{r, i, k+1}=(1-\alpha) \mathbf{c}_{r, i-1, k}+\alpha \mathbf{c}_{r, i, k}, \quad \alpha=\frac{u-a_{i}}{a_{i+n-r-k}-a_{i}},
$$

on the "rear" face,

$$
\begin{equation*}
\mathbf{c}_{r, i, k}=\mathbf{c}_{r, i, k+1}+\left(a_{i+n-r-k}-u\right) \mathbf{c}_{r+1, i, k} \tag{2}
\end{equation*}
$$

on the "bottom" face, and

$$
\begin{equation*}
\mathbf{c}_{r, i-1, k}=\mathbf{c}_{r, i, k+1}+\left(a_{i}-u\right) \mathbf{c}_{r+1, i, k} \tag{3}
\end{equation*}
$$

on the "top" face.
Remark 7: One can use the above formulae to convert a B-spline representation to monomial representation and vice versa.

Remark 8: In order to obtain the derivatives from the control points or vice versa, it suffices to compute, for example, only the left and top faces of the tetrahedral array, see [Lee '82, Boehm '84b].
Remark 9: If one first computes the rear face and then the bottom (or top) face of the tetrahedral array, one needs to solve formula (2) above (or (3)) for $\mathbf{c}_{r+1, i, k}$ (or $c_{r, i-1, k}$). This is impossible if $u=a_{i+n-r-k}$ (or $u=a_{i}$). Hence, the derivatives of the polynomial \mathbf{s}_{n} cannot be computed in this fashion for $u=a_{n+1}, \ldots, a_{2 n}\left(\right.$ or $\left.u=a_{0}, \ldots, a_{n-1}\right)$.

5.10 Conversions between Bézier and B-spline representations

There is also a tetrahedral algorithm to convert a B-spline representation into a Bézier representation and vice versa [Boehm '77, Sablonniere '78]. It can be derived similarly as the algorithm in 5.9. Let the notations be as in 5.9 and let

$$
\mathbf{q}_{r i k}=\mathbf{s}_{n}\left[a . \stackrel{r}{.} a a_{i+1} \ldots a_{i+n-r-k} b . \stackrel{k}{.} . b\right]
$$

for $i=r+k, \ldots, n$. Thus, the control points of the spline are given by

$$
\mathbf{c}_{i}=\mathbf{q}_{0 i 0}
$$

and the Bézier points of the polynomial \mathbf{s}_{n} over $[a, b]$ are given by

$$
\mathbf{b}_{j}=\mathbf{q}_{n-j, n, j}
$$

Again, the points $\mathbf{q}_{\text {rik }}$ are conveniently arranged in a tetrahedral array, as illustrated below in Figure 5.10 for $n=2$, where $a 3$, $a b$, etc. stand for $\mathbf{q}_{120}, \mathbf{q}_{101}$, etc.
The left face is computed according to the rule

$$
\mathbf{q}_{r+1, i, k}=(1-\alpha) \mathbf{q}_{r, i-1, k}+\alpha \mathbf{q}_{r, i, k}, \quad \alpha=\frac{a-a_{i}}{a_{i+n-r-k}-a_{i}}
$$

and the bottom face according to the rule

$$
\mathbf{q}_{r, i, k+1}=(1-\gamma) \mathbf{q}_{r+1, i, k}+\gamma \mathbf{q}_{r, i, k}, \quad \gamma=\frac{b-a}{a_{i+n-r-k}-a}
$$

Conversely, one can compute the B-spline control points from the Bézier points. First, one solves the two formulae above for $\mathbf{q}_{r, i-1, k}$ and $\mathbf{q}_{r i k}$. Second, one applies the formulae to compute the bottom and then the left face.

Figure 5.10: Conversion between Bézier and B-spline representations.

5.11 B-splines as divided differences

The standard definition of B-splines uses divided differences, and the calculus of divided differences has been heavily used in developing the univariate spline theory [de Boor '78]. In particular, divided differences were used by de Boor, Cox, and Mansfield to derive the recurrence relation.
Using the derivative formula (1) in 5.6 , we show that B-splines are divided differences of the truncated power function

$$
f(a)=(a-u)_{+}^{n}:=\left\{\begin{array}{cl}
(a-u)^{n} & \text { if } a>u \\
0 & \text { otherwise }
\end{array}\right.
$$

shown in Figure 5.11. Note that f is a function of a while u is some fixed parameter.

Figure 5.11: A truncated power function.
With the divided differences given in 4.3 , one obtains that
the B-spline N_{0}^{n} with the knots a_{0}, \ldots, a_{n+1} can be written as

$$
N_{0}^{n}(u)=\left(a_{n+1}-a_{0}\right)\left[a_{0} \ldots a_{n+1}\right](a-u)_{+}^{n}
$$

One can prove this fact by induction over n. For $n=0$, the identity is easily checked. For the induction step from $n-1$ to n, we recall from 4.3 that $\left[a_{0} \ldots a_{n+1}\right] f(a)$ is the leading coefficient of the $(n+1)$ th degree polynomial interpolating $f(a)$ at a_{0}, \ldots, a_{n+1}. Hence, one can substitute $f(a)$ by the monomial $(a-u)^{n}$ of degree n in a if $u<a_{0}$ and by the zero function if $u \geq a_{n+1}$. This shows that the identity above holds for $u<a_{0}$ and $u \geq a_{n+1}$.
Thus, it suffices to show that the derivative of the claimed identity holds. Note that the divided difference is a linear combination of possibly differentiated power functions. Hence, the divided difference is differentiable in u, except at an $(n+1)$-fold knot. This causes no problem since there is at most one $(n+1)$-fold knot.

Using the recursive definition of divided differences, the induction hypothesis and the derivative formula for B-splines, we obtain

$$
\begin{aligned}
\frac{d}{d u}\left(a_{n+1}-\right. & \left.a_{0}\right)\left[a_{0} \ldots a_{n+1}\right](a-u)_{+}^{n} \\
& =-n\left(a_{n+1}-a_{0}\right)\left[a_{0} \ldots a_{n+1}\right](a-u)_{+}^{n-1} \\
& =n\left(\left[a_{0} \ldots a_{n}\right](a-u)_{+}^{n-1}-\left[a_{1} \ldots a_{n+1}\right](a-u)_{+}^{n-1}\right) \\
& =\frac{n}{a_{n}-a_{0}} N_{0}^{n-1}-\frac{n}{a_{n+1}-a_{1}} N_{1}^{n-1} \\
& =\frac{d}{d u} N_{0}^{n}(u)
\end{aligned}
$$

which proves the assertion. \diamond

5.12 Problems

1 Consider a cubic C^{2} spline $s(u)$ with the single knots a_{0}, \ldots, a_{m}. Show that every C^{2} function $f(u) \neq s(u)$ which interpolates s at all knots and also the derivative of $s(u)$ at $u=a_{0}$ and a_{m} has greater strain energy than s, i.e.,

$$
\int_{a_{0}}^{a_{m}}\left|f^{\prime \prime}(u)\right|^{2} d u>\int_{a_{0}}^{a_{m}}\left|s^{\prime \prime}(u)\right|^{2} d u
$$

For a solution, we refer to literature in numerical analysis, for example, [Boehm \& Prautzsch '93, pp. 125 f].

2 Given a spline $s(u)=\sum_{i=0}^{m} c_{i} N_{i}^{n}(u)$ with the knots a_{0}, \ldots, a_{m+n+1}, show
that

$$
\int_{a_{0}}^{a_{m+n+1}} s(u) d u=\sum_{i=0}^{m} \frac{a_{i+n+1}-a_{i}}{n+1} c_{i}
$$

3 Sketch the cubic B-splines with the knots $0,0,0,0,1 ; 0,0,0,1,2$; $0,0,1,2,3$ and $0,1,2,3,4$ with their Bézier polygons. Compute the values of their Bézier ordinates.

4 Use symmetric polynomials to prove Marsden's identity

$$
(u-a)^{n}=\sum_{i}\left(a_{i+1}-a\right) \ldots\left(a_{i+n}-a\right) N_{i}^{n}(u)
$$

5 Use the derivative formula of B-splines to derive the recursion formula of de Boor, Mansfield and Cox by induction.

6 Use Leibniz's identity for the product $f=g h$ of two functions, i.e.,

$$
\left[a_{i} \ldots a_{i+k}\right] f=\sum_{r=i}^{i+k}\left(\left[a_{i} \ldots a_{r}\right] g\right)\left(\left[a_{r} \ldots a_{i+k}\right] h\right)
$$

to derive[de Boor '72] the recursion formula of de Boor, Mansfield and Cox, see also [de Boor '72].
7 Let $s(u)=\sum_{i=0}^{3} c_{i} N_{i}^{3}$ with the knots $0,1,2, \ldots, 7$ be given by $c_{0}, \ldots, c_{3}=$ $4,7,-2,1$.
a) Sketch $s[3,4]$ with its control polygon.
b) Compute $s, s^{\prime}, s^{\prime \prime}$ and $s^{\prime \prime \prime}$ at $u=3$.
c) Compute the monomial representation of $s(u)$ over $[3,4]$.
d) Compute the Bézier representation of $s(u)$ over $[3,4]$.

8 Show that if a multiaffine symmetric polynomial can be computed from $n+1$ points $\mathbf{p}\left[a_{i, 1} \ldots a_{i, n}\right], i=0, \ldots, n$, by affine combinations as in de Boor's algorithm, then there are real numbers $a_{1}, \ldots, a_{2 n}$ such that $a_{i, j}=a_{i+j}$.

13 Constructing smooth surfaces

13.1 The general C^{1} joint - 13.2 The vertex enclosure problem - 13.3 The parity phenomenon - 13.4 Joining two triangular cubic patches - 13.5 Piper's G^{1} interpolant - 13.6 Notes and Problems

The simple C^{1} joint discussed in 11.7 is too restrictive for modelling smooth regular surfaces of arbitrary shape. Here, we present general C^{1}-conditions and a interpolation scheme that allows to design regular surfaces of arbitrary topology with triangular patches.

13.1 The general C^{1} joint

Let $\mathbf{p}(x, y)$ and $\mathbf{q}(x, y)$ be two regular C^{1} surface patches with a common boundary at $x=0$, i.e.,

$$
\mathbf{p}(0, y)=\mathbf{q}(0, y)
$$

for all $y \in[0,1]$. Figure 13.1 gives an illustration. The patches \mathbf{p} and \mathbf{q} neither need to be polynomial, nor three- or four-sided.

Figure 13.1: Two patches with a common boundary curve.

One says that \mathbf{p} and \mathbf{q} have a general $\mathbf{C}^{\mathbf{1}}$ or geometric $\mathbf{C}^{\mathbf{1}}$ - or, in short, $\mathbf{G}^{\mathbf{1}}$ joint in $x=0$ if they have equal normals along this parameter line, i.e., if

$$
\frac{\mathbf{p}_{x} \times \mathbf{p}_{y}}{\left\|\mathbf{p}_{x} \times \mathbf{p}_{y}\right\|}=\frac{\mathbf{q}_{x} \times \mathbf{q}_{y}}{\left\|\mathbf{q}_{x} \times \mathbf{q}_{y}\right\|} \quad \text { for } \quad x=0
$$

Equivalently, one can characterize G^{1}-continuity by requiring that there are connection functions $\lambda(y), \mu(y)$ and $\nu(y)$ such that for $x=0$ and all y

$$
\begin{equation*}
\lambda \mathbf{p}_{x}=\mu \mathbf{q}_{x}+\nu \mathbf{q}_{y} \quad \text { and } \quad \lambda \mu<0 \tag{1}
\end{equation*}
$$

except for isolated zeros.

In particular, if \mathbf{p} and \mathbf{q} have a G^{1} joint and are polynomials, then the connection functions are also polynomials, and, up to a common factor, we have

$$
\begin{aligned}
\text { degree } \lambda & \leq \text { degree } \mathbf{q}_{x}(0, y)+\text { degree } \mathbf{q}_{y}(0, y) \\
\text { degree } \mu & \leq \text { degree } \mathbf{p}_{x}(0, y)+\text { degree } \mathbf{q}_{y}(0, y) \\
\text { degree } \nu & \leq \text { degree } \mathbf{p}_{x}(0, y)+\text { degree } \mathbf{q}_{x}(0, y)
\end{aligned}
$$

For a proof, we compute the vector product of equation (1) with \mathbf{q}_{x} and \mathbf{q}_{y}. This gives

$$
\begin{aligned}
\lambda \mathbf{p}_{x} \times \mathbf{q}_{x} & =\nu \mathbf{q}_{y} \times \mathbf{q}_{x}, \quad \text { and } \\
\lambda \mathbf{p}_{x} \times \mathbf{q}_{y} & =\mu \mathbf{q}_{x} \times \mathbf{q}_{y}
\end{aligned}
$$

Recall that \mathbf{q} is regular. Hence, at least one coordinate, say the first of $\left[\mathbf{q}_{x} \times \mathbf{q}_{y}\right]$, denoted by $\left[\mathbf{q}_{x} \times \mathbf{q}_{y}\right]_{1}$, is non-zero. Since equation (1) can be multiplied by a factor, we may assume that

$$
\lambda=\left[\mathbf{q}_{x} \times \mathbf{q}_{y}\right]_{1}
$$

This implies

$$
\mu=\left[\mathbf{p}_{x} \times \mathbf{q}_{y}\right]_{1} \quad \text { and } \quad \nu=-\left[\mathbf{p}_{x} \times \mathbf{q}_{x}\right]_{1}
$$

which proves the assertion. \diamond
Remark 1: Often, one sets $\lambda=1$. Then μ and ν are rational, in general.
Remark 2: The proof given above also holds for rational polynomials \mathbf{p} and \mathbf{q}. Then, the functions λ, μ and ν are rational up to a common factor with the same degree estimates as above.
Remark 3: Any G^{1} joint is a simple C^{1} joint after a suitable parameter transformation. Namely, if \mathbf{p} and \mathbf{q} satisfy the G^{1}-condition (1), then $\mathbf{a}(x, y)=\mathbf{p}(\lambda x, y)$ and $\mathbf{b}(x, y)=\mathbf{q}(\mu x, \nu x+y)$ have a simple C^{1} joint, see 9.7 and 11.7.

Remark 4: Whether two patches have a G^{1} joint does not depend on their parametrization. However, the connection functions do depend on the parametrization. The maximum degree of the connection function is invariant under affine reparametrization.

13.2 Joining two triangular cubic patches

Consider two triangular cubic patches

$$
\mathbf{p}(u)=\sum \mathbf{p}_{\imath} B_{\imath}^{3}(u) \quad \text { and } \quad \mathbf{q}(u)=\sum \mathbf{q}_{\imath} B_{\imath}^{3}(u),
$$

where $\mathbb{0} \leq i=(i, j, k)$ and $|i|=i+j+k=3$ and $\mathbf{p}_{i}=\mathbf{q}_{i}$ for $i=0$ such that \mathbf{p} and \mathbf{q} join continuously at $n=0$ and have common tangent planes at $\mathbb{e}_{1}=(0,1,0)$ and $\mathbb{e}_{2}=(0,0,1)$. This configuration is illustrated in Figure 13.2. The shaded quadrilaterals are planar but not necessarily affine.

Figure 13.2: Moving interior Bézier points so as to achieve a G^{1} joint.

In general, we can move both interior points \mathbf{p}_{111} and \mathbf{q}_{111} so that \mathbf{p} and \mathbf{q} join G^{1}-continuously along $u=0$.

In particular, we show how to obtain such a smooth joint with linear connection functions $\lambda(v), \mu(v)$ and $\nu(v)$. Then, the G^{1}-condition for \mathbf{p} and \mathbf{q} along $u=0$ becomes a cubic equation in $w=1-v$. Denoting the partial derivatives with respect to the directions $\mathbb{e}_{0}-\mathbb{e}_{2}$ and $\mathbb{e}_{2}-\mathbb{e}_{1}$ by subindices 0 and 1 , respectively, this cubic equation is

$$
\lambda \mathbf{p}_{0}+\mu \mathbf{q}_{0}=\nu \mathbf{q}_{1}, \quad \lambda \mu>0
$$

At $v=0$, we know the derivatives $\mathbf{p}_{0}, \mathbf{q}_{0}$ and \mathbf{q}_{1}. Hence, this equation establishes a linear system for $\lambda_{0}=\lambda(0), \mu_{0}=\mu(0)$ and $\nu_{0}=\nu(0)$, with a
one parameter family of solutions. Similarly, there is a one parameter family of solutions λ_{1}, μ_{1} and ν_{1} at $v=1$. We choose arbitrary solutions at $v=0$ and $v=1$, which determine the linear functions λ, μ and ν. Since a cubic is determined by its values and derivatives at two points, here $v=0$ and $v=1$, we are also interested in the derivative and, therefore, differentiate the G^{1}-condition along $u=0$. Thus, we obtain

$$
\lambda \mathbf{p}_{01}+\mu \mathbf{q}_{01}=\nu \mathbf{q}_{11}+\nu^{\prime} \mathbf{q}_{1}-\lambda^{\prime} \mathbf{p}_{0}+\mu^{\prime} \mathbf{q}_{0}
$$

Expressing $\mathbf{p}_{01}, \mathbf{q}_{01}$ etc. in terms of the Bézier points, we obtain at \mathbb{e}_{1} the equations

$$
\begin{aligned}
& \mathbf{p}_{01}=6\left(\mathbf{p}_{003}+\mathbf{p}_{111}-\mathbf{p}_{012}-\mathbf{p}_{102}\right) \\
& \mathbf{q}_{01}=6\left(\mathbf{q}_{021}+\mathbf{q}_{111}-\mathbf{q}_{012}-\mathbf{q}_{120}\right)
\end{aligned}
$$

etc.
and similar expressions for $\mathbf{p}_{01}, \mathbf{q}_{01}$, etc. at \mathbb{e}_{2}. The points $\mathbf{q}_{11}, \mathbf{q}_{1}, \mathbf{q}_{0}$, and \mathbf{p}_{0} do not depend on \mathbf{p}_{111} and \mathbf{q}_{111} for $v=0$ and $v=1$. Substituting these expressions into the differentiated G^{1}-condition leads to a linear system for \mathbf{p}_{111} and \mathbf{q}_{111} given by

$$
\left[\mathbf{p}_{111} \mathbf{q}_{111}\right]\left[\begin{array}{ll}
\lambda_{0} & \lambda_{1} \\
\mu_{0} & \mu_{1}
\end{array}\right]=\left[\mathbf{w}_{0} \mathbf{w}_{1}\right]
$$

where \mathbf{w}_{0} and \mathbf{w}_{1} are combinations of known Bézier points $\mathbf{p}_{\mathfrak{i}}$ and $\mathbf{q}_{\mathfrak{i}}$, except \mathbf{p}_{111} and \mathbf{q}_{111}. This system has a solution if the matrix

$$
\left[\begin{array}{ll}
\lambda_{0} & \lambda_{1} \\
\mu_{0} & \mu_{1}
\end{array}\right]
$$

is invertible. Hence, a solution exists, unless $\lambda(y): \mu(y)=$ constant. Only for the configuration illustrated in Figure 13.3, a solution might not exist. \diamond

Figure 13.3: Critical configuration.

In fact, there is no solution if $\lambda(y): \mu(y)$ is constant, if both quadrilaterals are not affine and if the common boundary $\mathbf{p}(0, y)=\mathbf{q}(0, y)$ is a regular cubic, i.e., if $\mathbf{q}_{y}(0, y)$ is a quadratic not passing through the origin.
Namely, rewriting the G^{1}-condition as

$$
\mathbf{p}_{x}-\frac{\mu}{\lambda} \mathbf{q}_{x}=\frac{\nu}{\lambda} \mathbf{q}_{y}
$$

results in a quadratic on the left. Since \mathbf{q}_{y} is also quadratic without real root, it follows that ν / λ must be constant. This, finally, contradicts the assumption that the two quadrilaterals shown in Figure 13.3 are not affine.
If $\mathbf{q}(0, y)$ is quadratic or non-regular, a solution exists with linear functions λ, μ and ν, see Problem 3.

13.3 Piper's G ${ }^{1}$ interpolant

In 1985, Bruce Piper [Piper '87] presented a scheme to construct a piecewise quartic G^{1} surface interpolating a triangular network of cubic curves, as illustrated in Figure 13.4. We review the basic construction, but rule out critical situations so that cubic patches suffice.

Figure 13.4: A triangular G^{1}-net of cubic curves.

Adjacent "triangles" of a cubic net exhibit the configurations discussed in 13.2. For simplicity, we assume that there are no critical configurations as in Figure 13.3. Then, any "triangle" can be interpolated by a macro patch consisting of three cubic patches, as described below. Figure 13.5 shows the Bézier points of such a macro patch schematically.

The Bézier points o on the boundary are given by the cubic net. The Bézier points - are the centroids of their three neighbors o with which they form a planar quadrilateral which is shaded in the Figure.
The Bézier points $\boldsymbol{\theta}$ are computed as in 13.2 such that adjacent macro patches have a G^{1} joint.
The Bézier points \square are the centroids of the three neighbors $\bullet \bullet \bullet$ with which they form a planar quadrilateral (shaded in the Figure).
The Bézier point $■$ is the centroid of the shaded triangle $\square \square \square$.
Hence, adjacent patches of the macro patch have simple C^{1} joints in analogy to the Clough-Tocher element, see 12.2.

Figure 13.5: Piper's macro patch.

13.4 The vertex enclosure problem

Piper implicitly solves with his construction a special G^{1}-problem. The G^{1} conditions for adjacent patches sharing a common vertex form a cyclic system. Whether this problem is solvable or not, is referred to as the vertex enclosure problem. To discuss this problem, we consider n trilateral or quadrilateral patches $\mathbf{p}^{i}(x, y), i=1, \ldots, n$, such that

$$
\mathbf{p}^{i}(0, z)=\mathbf{p}^{i+1}(z, 0)
$$

where $\mathbf{p}^{n+1}=\mathbf{p}^{1}$, as illustrated in Figure 13.6, and

$$
\begin{equation*}
\lambda_{i} \mathbf{p}_{x}^{i}(0, z)=\mu_{i} \mathbf{p}_{y}^{i+1}(z, 0)+\nu_{i} \mathbf{p}_{x}^{i+1}(z, 0) \tag{2}
\end{equation*}
$$

with any $3 n$ connection functions $\lambda_{i}(z), \mu_{i}(z)$ and $\nu_{i}(z)$.

Figure 13.6: A vertex enclosed by n patches, where $n=6$.

For $z=0$, these equations form constraints on the derivatives \mathbf{p}_{x}^{i} and the connection functions, which can easily be satisfied. More difficult are the twist constraints, which we obtain by differentiating the G^{1}-conditions (2),

$$
\lambda_{i}^{\prime} \mathbf{p}_{x}^{i}+\lambda_{i} \mathbf{p}_{x y}^{i}=\mu_{i}^{\prime} \mathbf{p}_{y}^{i+1}+\mu_{i} \mathbf{p}_{x y}^{i+1}+\nu_{i}^{\prime} \mathbf{p}_{x}^{i+1}+\nu_{i} \mathbf{p}_{x x}^{i+1}
$$

For $z=0$, these equations form the cyclic linear system

$$
\left[\mathbf{p}_{x y}^{1} \ldots \mathbf{p}_{x y}^{n}\right]\left[\begin{array}{ccccc}
\lambda_{1} & & & & -\mu_{1} \\
-\mu_{2} & \lambda_{2} & & & \\
& & \ddots & & \\
& & & -\mu_{n} & \lambda_{n}
\end{array}\right]=\left[\mathbf{r}_{1} \ldots \mathbf{r}_{n}\right]
$$

where

$$
\mathbf{r}_{i}=-\lambda_{i}^{\prime} \mathbf{p}_{x}^{i}+\mu_{i}^{\prime} \mathbf{p}_{y}^{i}+\nu_{i}^{\prime} \mathbf{p}_{x}^{i+1}+\nu_{i} \mathbf{p}_{x x}^{i+1}
$$

We abbreviate this system by $T A=R$.

13.5 The parity phenomenon

The cyclic matrix A of the twist constraints exhibits the following phenomenon. The rank of A is n if n is odd, and it is $n-1$ if n is even. Thus, A is non-singular only for odd n. Consequently, the twist constraints are solvable if the number n of patches is odd, while, in general, there is no solution if the number is even. In order to verify this surprising fact, we observe that

$$
\begin{aligned}
\operatorname{det} A & =\lambda_{1} \ldots \lambda_{n}-\mu_{1} \ldots \mu_{n} \\
& =\Pi \lambda_{i}-\Pi \mu_{i}
\end{aligned}
$$

Computing, the vector product of

$$
\lambda_{i} \mathbf{p}_{x}^{i}=\mu_{i} \mathbf{p}_{y}^{i+1}+\nu_{i} \mathbf{p}_{x}^{i+1}
$$

with $\mathbf{p}_{x}^{i+1}=\mathbf{p}_{y}^{i}$ gives

$$
\lambda_{i}: \mu_{i}=\left[\mathbf{p}_{x}^{i+2} \times \mathbf{p}_{x}^{i+1}\right]:\left[\mathbf{p}_{x}^{i+1} \times \mathbf{p}_{x}^{i}\right]
$$

which implies that

$$
\Pi \lambda_{i}: \Pi \mu_{i}=(-1)^{n}
$$

and, since all $\lambda_{i} \neq 0$,

$$
\operatorname{det} A \begin{cases}=0 & \text { if } n \text { is even } \\ \neq 0 & \text { if } n \text { is odd }\end{cases}
$$

Since the submatrix of A obtained by deleting the first row and column has full rank, A has at least rank $n-1$, which concludes the proof.

Remark 5: The twist constraints $A T=R$ are solvable if the data originates from patches $\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}$ forming a G^{1} surface. In particular, this is the case when the \mathbf{p}^{i} form a piecewise polynomial reparametrization of a polynomial patch.
Remark 6: If $n=4$ and $\lambda_{i}^{\prime}(0)=\mu_{i}^{\prime}(0)=\nu_{i}^{\prime}(0)=\nu_{i}(0)=0$, for $i=1,2,3,4$, as illustrated in Figure 13.7, then the twist constraints are solvable, see 9.7.

Figure 13.7: Equal opposite tangents.

Remark 7: One obtains always solvable twist constraints by splitting each patch \mathbf{p}^{i} as in Piper's construction described in 13.3, see [Peters '91].

13.6 Problems

1 Show that the problem from Section 13.2 can always be solved if \mathbf{p} and \mathbf{q} are quartic patches.

2 Solve the problem from Section 13.2, where
$\mathbf{p}_{201} \quad \mathbf{p}_{111} \quad \mathbf{p}_{012} \quad\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\left[\mathbf{p}_{111}\right]\left[\begin{array}{l}6 \\ 1 \\ 1\end{array}\right]$
$\left.\begin{array}{l}\begin{array}{llll}\mathbf{p}_{300} \\ \| & \mathbf{p}_{210} & \mathbf{p}_{120} & \mathbf{p}_{030} \\ \mathbf{q}_{300} & \mathbf{q}_{210} & \mathbf{q}_{120} & \mathbf{q}_{030}\end{array}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\end{array} \begin{array}{l}2 \\ 0 \\ 0\end{array}\right] \quad\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right] \quad\left[\begin{array}{l}6 \\ 0 \\ 1\end{array}\right]$.

3 Show that the problem stated in 13.2, see Figure 13.3, has a solution with linear functions $\lambda=\mu$ and ν if $\mathbf{q}(0, v, 1-v)$ is quadratic or non-regular. Hint: If $\mathbf{q}(0, v, 1-v)$ is quadratic, choose $\lambda=\mu=1$. If $\mathbf{q}_{1}(0, v, 1-v)=\mathbf{o}$ for $v=v_{0}$, set $\lambda=\mu=\left(v-v_{0}\right) c_{1}$ and $\nu=v c_{2}$, where the constants c_{1} and c_{2} are chosen so that the G^{1}-condition is satisfied at $v=1$.

4 Show that the twist constraints in 13.4 have a solution if and only if

$$
\mathbf{s}=\mathbf{t}_{1}\left(1-\frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}\right)
$$

can be solved for \mathbf{t}_{1}, where

$$
\mathbf{s}=\frac{\mu_{1} \cdots \mu_{n-1}}{\lambda_{1} \cdots \lambda_{n}} \mathbf{r}_{n}+\cdots+\frac{\mu_{1}}{\lambda_{1} \lambda_{2}} \mathbf{r}_{2}+\frac{1}{\lambda_{1}} \mathbf{r}_{1}
$$

5 The equation $\mathbf{s}=\mathbf{o}$ can be viewed as a linear system for $\nu_{1}^{\prime}(0), \nu_{2}^{\prime}(0)$ and $\nu_{1}(0)$. It has a (unique) solution unless $\mathbf{p}_{x x}^{2}=\mathbf{o}$.

6 Consider two biquartic patches

$$
\begin{aligned}
\mathbf{p}(x, y) & =\sum \mathbf{p}_{i j} B_{i j}^{44}(x, y) \quad \text { and } \\
\mathbf{q}(x, y) & =\sum \mathbf{q}_{i j} B_{i j}^{44}(x, y)
\end{aligned}
$$

such that the boundary curves $\mathbf{p}(x, 0)$ and $\mathbf{q}(x, 0)$ agree and are cubic, see Figure 13.8.
Let λ, μ and ν be any connection functions of degree 1,1 and 3 , respectively, such that the G^{1}-condition

$$
\lambda \mathbf{p}_{y}(x, 0)=\mu \mathbf{q}_{y}(x, 0)+\nu \mathbf{q}_{x}(x, 0)
$$

and its derivative with respect to x hold at $x=0$ and $x=1$. Show that

Figure 13.8: Moving two Bézier points so as to obtain a G^{1} joint.
one can change \mathbf{p}_{21} and \mathbf{q}_{21}, in general, so that the G^{1}-condition holds for all x.

[^0]: ${ }^{1} A$ knot a_{i+1} is called r-fold if $a_{i}<a_{i+1}=\cdots=a_{i+r}<a_{i+r+1}$.

